Mobile-phone adapter for electronic transactions

Information

  • Patent Grant
  • 9794392
  • Patent Number
    9,794,392
  • Date Filed
    Thursday, July 10, 2014
    10 years ago
  • Date Issued
    Tuesday, October 17, 2017
    7 years ago
Abstract
A mobile-device adapter to facilitate the exchange of visual information between a mobile device and a point-of-sale terminal is disclosed. The mobile-device adapter may be connected to a point-of-sale terminal at a retail checkout and configured to allow a customer to temporarily position their mobile device so that the mobile-device adapter may (i) image the mobile-device display and (ii) present images to the mobile-device camera. In this way, the mobile-device adapter may facilitate electronic transactions using visual images.
Description
FIELD OF THE INVENTION

The present invention relates to point-of-sale (POS) systems, and more specifically, to an apparatus for facilitating an electronic transaction with a mobile device.


BACKGROUND

Generally speaking point-of-sale (i.e., checkout) systems are computing systems that facilitate the exchange of goods/services for a payment. In general, these systems require customer payment information in order to process a cashless transaction. Traditionally, this payment information was provided by manually swiping a credit card through a magnetic reader. Recently, mobile devices (e.g., smartphones or feature phones) have begun to replace traditional credit cards for retail payments. For example, a mobile device capable of near field communication (NFC) can communicate with a point-of-sale (POS) system to exchange payment information and process the transaction. Unfortunately, a large number of customers do not use these NFC-enabled mobile devices. All mobile devices are likely, however, to be equipped with a camera and a display. These mobile devices could process a transaction with a point-of-sale terminal if there was an adapter in place that allowed the mobile device to visually communicate using its camera and display.


A need, therefore, exists for a mobile-device adapter that facilitates the exchange of visual information through the use of a mobile-device's camera and display.


SUMMARY

Accordingly, in one aspect, the present invention embraces a mobile-device adapter to facilitate electronic communication between a mobile device and a host device. The mobile-device adapter includes (i) an adapter camera, (ii) an adapter display, (iii) an adapter frame, and (iv) an adapter communication module. The adapter camera is configured to acquire images of a mobile-device display, and the adapter display is configured to present images to a mobile-device camera. The adapter frame is configured to temporarily position the mobile device. The adapter frame also permanently supports the adapter camera and the adapter display. In this way, the adapter frame permits the adapter camera to acquire images of the mobile-device display, and permits the adapter display to present images to the mobile-device camera. The adapter communication module is electrically connected to the adapter camera and the adapter display. The communication module is configured to facilitate a digital data link between the mobile-device adapter and a host device.


In another aspect, the present invention embraces a checkout system. The checkout system includes (i) a mobile device, (ii) a mobile-device adapter, and (iii) a point-of-sale terminal. The mobile device has a mobile-device camera for capturing visual information and a mobile-device display for displaying visual information. The mobile-device adapter is configured to temporarily position the mobile device and to exchange visual information with the mobile device. The mobile-device adapter includes an adapter camera for receiving visual information from the mobile-device display and an adapter display for transmitting visual information to the mobile-device camera. The point-of-sale terminal processes and records the visual information from the mobile-device adapter and is connected to the mobile-device adapter by a communication link.


The foregoing illustrative summary, as well as other exemplary objectives and/or advantages of the invention, and the manner in which the same are accomplished, are further explained within the following detailed description and its accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 graphically depicts an exemplary checkout system including a mobile-device adapter.





DETAILED DESCRIPTION

As the number of customers using mobile devices in retail settings increases, the use of these devices for transacting purchases becomes highly desirable. Transactions using mobile devices may be enabled through the exchange of data over a wireless radio frequency (RF) link. Indeed, near field communication (NFC) has been established as a means for this wireless communication link due to its security and straightforward use. Unfortunately, many mobile devices are not equipped with NFC technology. Most, if not all, mobile devices are, however, equipped with at least one integrated camera and a display. This mobile-device camera and mobile-device display may be utilized as a means of transmitting and receiving information through visual images. In this way, mobile devices (e.g., smartphones or feature phones), not equipped with NFC, have the potential to perform the electronic communication necessary for processing a retail transaction (e.g., electronic payment).


Communicating through images (i.e., visual communication) may be accomplished using visual symbols. Barcodes, for example, are a means for transmitting information through the use of a one (or two) dimensional pattern. This pattern represents data relating to the object to which it is associated. Historically, barcodes have been read (i.e., decoded) using barcode scanners. These scanners acquire barcode information by detecting the reflected light resulting from a beam of light scanned across the light and dark areas of the barcode. More recently, these barcode scanners have been replaced with imagers that capture a visual image of the barcode and then use image processing algorithms running on a microprocessor (i.e., processor) to read (i.e., decode) the information encoded in the barcode. Indeed, applications for mobile devices exist to allow a user read a product barcode to determine price or other information.


The display of a mobile device has likewise been used for image communications. For example, the mobile-device display has been used as a means of presenting barcodes for ticketing or coupons. To redeem a coupon with a mobile device, the coupon's barcode may be displayed on the mobile device. The mobile device can then be presented, like a traditional coupon, to a checkout operator. The operator then scans the mobile-device display to redeem the coupon. Since this process may involve a customer handing the mobile device to a stranger, customers may be reluctant to adopt it as a means for transaction. Some customers feel uncomfortable letting a stranger handle their mobile device. A self-service reader, therefore, is often a preferred in this situation.


As described above, mobile devices may be used for both transmitting and receiving information visually. Combining the mobile-device imaging and display subsystems to facilitate a visual communication link with a point-of-sale terminal for the purposes of enabling a retail transaction, however, requires a novel interface (i.e., adapter). This mobile-device adapter may serve to (i) physically position the mobile device (ii) transmit/receive visual images to/from the mobile device, and (iii) communicate with a point-of-sale terminal.


An exemplary embodiment of a checkout system using a mobile-device adapter is shown in FIG. 1. In this system, a point-of-sale terminal 1 is connected via a communication link (e.g., digital-data link) 2 to a mobile-device adapter 3. The mobile-device adapter 3 allows the point-of-sale terminal 1 to interface with a mobile device 4 for the exchange of payment information (e.g., credit card information). This information may include the data necessary to process a transaction (e.g., credit card purchase). The mobile-device adapter 3 allows communication to proceed with a mobile-device camera and a mobile-device display, thereby eliminating the need for any wireless functionality (e.g., NFC communication). In general, however, functionality for both types of communication could be incorporated into the mobile-device adapter.


To use the mobile-device adapter 3, a mobile-device owner enables the mobile device 4 for a transaction and then positions the mobile device 4 in a guide area 6 formed into the mobile-device adapter frame 5. Enabling the mobile device 4 could include activating an application (i.e., app) on the mobile device 4. The application could serve to coordinate the mobile-device's camera and display for video communication. For example, the mobile-device display could present a barcode to convey transaction information, while at the same time the mobile-device's camera could be configured to collect images. Information from the collected images could then be used to update the mobile-device's display. This process of transmitting and receiving images could proceed through several iterations, and in this way, serve as a full two-way communication link.


A guide area 6 in the mobile-device adapter may be a transparent platter to help the mobile-device owner properly position the device in the mobile-device adapter 3. When the mobile device 4 is in proper position, the mobile-device display may be imaged by an adapter camera 7. Likewise, an adapter display 8 is positioned within the field of view of the mobile-device camera when the mobile device 4 is positioned in the guide area 6.


For the embodiment shown in FIG. 1, the mobile-device display and mobile-device camera are on opposite sides of the mobile device 4, however a mobile device could have both on the same side. To accommodate this, the adapter 3 could have the adapter camera 7 and the adapter display 8 on the same side. Alternatively, a different mobile-device adapter embodiment may have a reconfigurable display/camera arrangement. In addition, the adapter frame 5, shown in FIG. 1, is substantially vertical but could also be non-vertical.


The mobile-device adapter's adapter display 8, as shown in FIG. 1, presents a visual mark (i.e., symbol) representing information from the point-of-sale terminal 1 that is necessary for a transaction (e.g., checkout). For example, a symbol on the mobile-device display could identify the point-of-sale terminal. The symbol could be any mark used to encode information. Examples of possible coded symbols include: barcodes, characters for optical character recognition (OCR), or images. In addition, the symbol image could contain encrypted data within a displayed symbol or mark to add another layer of security to the communication with the mobile device.


The adapter display 8 could be a fixed mark (e.g., printed mark) or could be an electronic display (i.e., video display). When using an electronic display (e.g., video display), the visual marks could be updated or changed depending on usage and work flow. The adaptability of an electronic display could, for example, allow for a modifiable encryption for security purposes. In addition, video signals sent to the adapter display could allow for added functionality.


A video signal includes many images (i.e., image frames) sent sequentially in time. The frames are typically displayed at a frame rate that is sufficiently high so that the human eye does not perceive individual images. While this phenomenon is typically used to convey motion, it may also be used to multiplex information intended for different purposes. For example, an adapter display 8 with a high frame rate could be used to interleave transaction information frames with frames directed to the mobile-device owner (i.e., customer). These customer-directed frames might include customer information such as advertisements or customer instructions (e.g., how to use the mobile-device adapter). The transaction directed frames, on the other hand, might include (i) transaction processing payment information (e.g., credit card information or coupon information), (ii) security information (e.g., point-of-sale terminal identification), and/or (iii) timing/logic for communication. In addition, multiple frames may be used to convey a single information message. In other words, information may be distributed and displayed on different frames in a video sequence. This is especially useful to transfer a large amount of data.


The adapter camera 7 has a field of view that is directed to the mobile-device display when the mobile device 4 is positioned in the mobile-device adapter 3. In one embodiment, the mobile-device adapter 3 uses the backlight of the mobile-device's display for illumination and therefore no additional lighting is necessary.


The mobile device 4 may display a single image or may display multiple images during the transaction. In some cases, the mobile-device camera and mobile-device display may work in conjunction to transmit and receive visual information in a full two-way image communication link with the mobile-device adapter. In other embodiments the mobile-device camera might simply present a single image (e.g., coupon) for decoding (i.e., a one-way image communication link). The mobile device 4 may use a processor running algorithms to interpret (i.e., decode) a symbol displayed on the adapter display 8 in order to trigger the generation of a secure payment information image. This information may be stored on the device or may be algorithmically derived based on the transaction. A transaction may require multiple exchanges of information.


In one possible embodiment, the mobile-device adapter 3 may have electronics and processing to interpret the images acquired by the mobile-device camera 7, while in others this operation may take place remotely on a host device (e.g., point-of-sale terminal 1). For example, the functionality of a barcode reader could be incorporated with the mobile-device adapter. Here, the information sent to the point-of-sale terminal 1 would be the decoded information from the barcode. On the other hand, the mobile-device adapter may simply send raw images to the point-of-sale terminal, where the processing and decoding of the image would take place.


The data link (i.e., communication link) between the point-of-sale terminal 1 and the mobile-device adapter 3 may be wired or wireless (e.g., using radio frequency). A communication module 9 integrated as part of the mobile-device adapter 3 may process the adapter camera 7 data, add protocol information and timing, and transmit/receive data. This module may also be electrically connected to the adapter display if the adapter display is an electronic display and can be updated.


To supplement the present disclosure, this application incorporates entirely by reference the following patents, patent application publications, and patent applications:

  • U.S. Pat. No. 6,832,725; U.S. Pat. No. 7,128,266;
  • U.S. Pat. No. 7,159,783; U.S. Pat. No. 7,413,127;
  • U.S. Pat. No. 7,726,575; U.S. Pat. No. 8,294,969;
  • U.S. Pat. No. 8,317,105; U.S. Pat. No. 8,322,622;
  • U.S. Pat. No. 8,366,005; U.S. Pat. No. 8,371,507;
  • U.S. Pat. No. 8,376,233; U.S. Pat. No. 8,381,979;
  • U.S. Pat. No. 8,390,909; U.S. Pat. No. 8,408,464;
  • U.S. Pat. No. 8,408,468; U.S. Pat. No. 8,408,469;
  • U.S. Pat. No. 8,424,768; U.S. Pat. No. 8,448,863;
  • U.S. Pat. No. 8,457,013; U.S. Pat. No. 8,459,557;
  • U.S. Pat. No. 8,469,272; U.S. Pat. No. 8,474,712;
  • U.S. Pat. No. 8,479,992; U.S. Pat. No. 8,490,877;
  • U.S. Pat. No. 8,517,271; U.S. Pat. No. 8,523,076;
  • U.S. Pat. No. 8,528,818; U.S. Pat. No. 8,544,737;
  • U.S. Pat. No. 8,548,242; U.S. Pat. No. 8,548,420;
  • U.S. Pat. No. 8,550,335; U.S. Pat. No. 8,550,354;
  • U.S. Pat. No. 8,550,357; U.S. Pat. No. 8,556,174;
  • U.S. Pat. No. 8,556,176; U.S. Pat. No. 8,556,177;
  • U.S. Pat. No. 8,559,767; U.S. Pat. No. 8,599,957;
  • U.S. Pat. No. 8,561,895; U.S. Pat. No. 8,561,903;
  • U.S. Pat. No. 8,561,905; U.S. Pat. No. 8,565,107;
  • U.S. Pat. No. 8,571,307; U.S. Pat. No. 8,579,200;
  • U.S. Pat. No. 8,583,924; U.S. Pat. No. 8,584,945;
  • U.S. Pat. No. 8,587,595; U.S. Pat. No. 8,587,697;
  • U.S. Pat. No. 8,588,869; U.S. Pat. No. 8,590,789;
  • U.S. Pat. No. 8,596,539; U.S. Pat. No. 8,596,542;
  • U.S. Pat. No. 8,596,543; U.S. Pat. No. 8,599,271;
  • U.S. Pat. No. 8,599,957; U.S. Pat. No. 8,600,158;
  • U.S. Pat. No. 8,600,167; U.S. Pat. No. 8,602,309;
  • U.S. Pat. No. 8,608,053; U.S. Pat. No. 8,608,071;
  • U.S. Pat. No. 8,611,309; U.S. Pat. No. 8,615,487;
  • U.S. Pat. No. 8,616,454; U.S. Pat. No. 8,621,123;
  • U.S. Pat. No. 8,622,303; U.S. Pat. No. 8,628,013;
  • U.S. Pat. No. 8,628,015; U.S. Pat. No. 8,628,016;
  • U.S. Pat. No. 8,629,926; U.S. Pat. No. 8,630,491;
  • U.S. Pat. No. 8,635,309; U.S. Pat. No. 8,636,200;
  • U.S. Pat. No. 8,636,212; U.S. Pat. No. 8,636,215;
  • U.S. Pat. No. 8,636,224; U.S. Pat. No. 8,638,806;
  • U.S. Pat. No. 8,640,958; U.S. Pat. No. 8,640,960;
  • U.S. Pat. No. 8,643,717; U.S. Pat. No. 8,646,692;
  • U.S. Pat. No. 8,646,694; U.S. Pat. No. 8,657,200;
  • U.S. Pat. No. 8,659,397; U.S. Pat. No. 8,668,149;
  • U.S. Pat. No. 8,678,285; U.S. Pat. No. 8,678,286;
  • U.S. Pat. No. 8,682,077; U.S. Pat. No. 8,687,282;
  • U.S. Pat. No. 8,692,927; U.S. Pat. No. 8,695,880;
  • U.S. Pat. No. 8,698,949; U.S. Pat. No. 8,717,494;
  • U.S. Pat. No. 8,717,494; U.S. Pat. No. 8,720,783;
  • U.S. Pat. No. 8,723,804; U.S. Pat. No. 8,723,904;
  • U.S. Pat. No. 8,727,223; U.S. Pat. No. D702,237;
  • International Publication No. 2013/163789;
  • International Publication No. 2013/173985;
  • International Publication No. 2014/019130;
  • U.S. Patent Application Publication No. 2008/0185432;
  • U.S. Patent Application Publication No. 2009/0134221;
  • U.S. Patent Application Publication No. 2010/0177080;
  • U.S. Patent Application Publication No. 2010/0177076;
  • U.S. Patent Application Publication No. 2010/0177707;
  • U.S. Patent Application Publication No. 2010/0177749;
  • U.S. Patent Application Publication No. 2011/0202554;
  • U.S. Patent Application Publication No. 2012/0111946;
  • U.S. Patent Application Publication No. 2012/0138685;
  • U.S. Patent Application Publication No. 2012/0168511;
  • U.S. Patent Application Publication No. 2012/0168512;
  • U.S. Patent Application Publication No. 2012/0193407;
  • U.S. Patent Application Publication No. 2012/0193423;
  • U.S. Patent Application Publication No. 2012/0203647;
  • U.S. Patent Application Publication No. 2012/0223141;
  • U.S. Patent Application Publication No. 2012/0228382;
  • U.S. Patent Application Publication No. 2012/0248188;
  • U.S. Patent Application Publication No. 2013/0043312;
  • U.S. Patent Application Publication No. 2013/0056285;
  • U.S. Patent Application Publication No. 2013/0070322;
  • U.S. Patent Application Publication No. 2013/0075168;
  • U.S. Patent Application Publication No. 2013/0082104;
  • U.S. Patent Application Publication No. 2013/0175341;
  • U.S. Patent Application Publication No. 2013/0175343;
  • U.S. Patent Application Publication No. 2013/0200158;
  • U.S. Patent Application Publication No. 2013/0214048;
  • U.S. Patent Application Publication No. 2013/0256418;
  • U.S. Patent Application Publication No. 2013/0257744;
  • U.S. Patent Application Publication No. 2013/0257759;
  • U.S. Patent Application Publication No. 2013/0270346;
  • U.S. Patent Application Publication No. 2013/0278425;
  • U.S. Patent Application Publication No. 2013/0287258;
  • U.S. Patent Application Publication No. 2013/0292474;
  • U.S. Patent Application Publication No. 2013/0292475;
  • U.S. Patent Application Publication No. 2013/0292477;
  • U.S. Patent Application Publication No. 2013/0293539;
  • U.S. Patent Application Publication No. 2013/0293540;
  • U.S. Patent Application Publication No. 2013/0306728;
  • U.S. Patent Application Publication No. 2013/0306730;
  • U.S. Patent Application Publication No. 2013/0306731;
  • U.S. Patent Application Publication No. 2013/0306734;
  • U.S. Patent Application Publication No. 2013/0307964;
  • U.S. Patent Application Publication No. 2013/0308625;
  • U.S. Patent Application Publication No. 2013/0313324;
  • U.S. Patent Application Publication No. 2013/0313325;
  • U.S. Patent Application Publication No. 2013/0313326;
  • U.S. Patent Application Publication No. 2013/0327834;
  • U.S. Patent Application Publication No. 2013/0341399;
  • U.S. Patent Application Publication No. 2013/0342717;
  • U.S. Patent Application Publication No. 2014/0001267;
  • U.S. Patent Application Publication No. 2014/0002828;
  • U.S. Patent Application Publication No. 2014/0008430;
  • U.S. Patent Application Publication No. 2014/0008439;
  • U.S. Patent Application Publication No. 2014/0021256;
  • U.S. Patent Application Publication No. 2014/0025584;
  • U.S. Patent Application Publication No. 2014/0027518;
  • U.S. Patent Application Publication No. 2014/0034723;
  • U.S. Patent Application Publication No. 2014/0034734;
  • U.S. Patent Application Publication No. 2014/0036848;
  • U.S. Patent Application Publication No. 2014/0039693;
  • U.S. Patent Application Publication No. 2014/0042814;
  • U.S. Patent Application Publication No. 2014/0049120;
  • U.S. Patent Application Publication No. 2014/0049635;
  • U.S. Patent Application Publication No. 2014/0061305;
  • U.S. Patent Application Publication No. 2014/0061306;
  • U.S. Patent Application Publication No. 2014/0061307;
  • U.S. Patent Application Publication No. 2014/0063289;
  • U.S. Patent Application Publication No. 2014/0066136;
  • U.S. Patent Application Publication No. 2014/0067692;
  • U.S. Patent Application Publication No. 2014/0070005;
  • U.S. Patent Application Publication No. 2014/0071840;
  • U.S. Patent Application Publication No. 2014/0074746;
  • U.S. Patent Application Publication No. 2014/0075846;
  • U.S. Patent Application Publication No. 2014/0076974;
  • U.S. Patent Application Publication No. 2014/0078341;
  • U.S. Patent Application Publication No. 2014/0078342;
  • U.S. Patent Application Publication No. 2014/0078345;
  • U.S. Patent Application Publication No. 2014/0084068;
  • U.S. Patent Application Publication No. 2014/0086348;
  • U.S. Patent Application Publication No. 2014/0097249;
  • U.S. Patent Application Publication No. 2014/0098284;
  • U.S. Patent Application Publication No. 2014/0098792;
  • U.S. Patent Application Publication No. 2014/0100774;
  • U.S. Patent Application Publication No. 2014/0100813;
  • U.S. Patent Application Publication No. 2014/0103115;
  • U.S. Patent Application Publication No. 2014/0104413;
  • U.S. Patent Application Publication No. 2014/0104414;
  • U.S. Patent Application Publication No. 2014/0104416;
  • U.S. Patent Application Publication No. 2014/0104451;
  • U.S. Patent Application Publication No. 2014/0106594;
  • U.S. Patent Application Publication No. 2014/0106725;
  • U.S. Patent Application Publication No. 2014/0108010;
  • U.S. Patent Application Publication No. 2014/0108402;
  • U.S. Patent Application Publication No. 2014/0108682;
  • U.S. Patent Application Publication No. 2014/0110485;
  • U.S. Patent Application Publication No. 2014/0114530;
  • U.S. Patent Application Publication No. 2014/0124577;
  • U.S. Patent Application Publication No. 2014/0124579;
  • U.S. Patent Application Publication No. 2014/0125842;
  • U.S. Patent Application Publication No. 2014/0125853;
  • U.S. Patent Application Publication No. 2014/0125999;
  • U.S. Patent Application Publication No. 2014/0129378;
  • U.S. patent application Ser. No. 13/367,978 for a Laser Scanning Module Employing an Elastomeric U-Hinge Based Laser Scanning Assembly, filed Feb. 7, 2012 (Feng et al.);
  • U.S. patent application Ser. No. 29/436,337 for an Electronic Device, filed Nov. 5, 2012 (Fitch et al.);
  • U.S. patent application Ser. No. 13/736,139 for an Electronic Device Enclosure, filed Jan. 8, 2013 (Chaney);
  • U.S. patent application Ser. No. 13/771,508 for an Optical Redirection Adapter, filed Feb. 20, 2013 (Anderson);
  • U.S. patent application Ser. No. 13/780,356 for a Mobile Device Having Object-Identification Interface, filed Feb. 28, 2013 (Samek et al.);
  • U.S. patent application Ser. No. 13/852,097 for a System and Method for Capturing and Preserving Vehicle Event Data, filed Mar. 28, 2013 (Barker et al.);
  • U.S. patent application Ser. No. 13/902,110 for a System and Method for Display of Information Using a Vehicle-Mount Computer, filed May 24, 2013 (Hollifield);
  • U.S. patent application Ser. No. 13/902,144, for a System and Method for Display of Information Using a Vehicle-Mount Computer, filed May 24, 2013 (Chamberlin);
  • U.S. patent application Ser. No. 13/902,242 for a System For Providing A Continuous Communication Link With A Symbol Reading Device, filed May 24, 2013 (Smith et al.);
  • U.S. patent application Ser. No. 13/912,262 for a Method of Error Correction for 3D Imaging Device, filed Jun. 7, 2013 (Jovanovski et al.);
  • U.S. patent application Ser. No. 13/912,702 for a System and Method for Reading Code Symbols at Long Range Using Source Power Control, filed Jun. 7, 2013 (Xian et al.);
  • U.S. patent application Ser. No. 29/458,405 for an Electronic Device, filed Jun. 19, 2013 (Fitch et al.);
  • U.S. patent application Ser. No. 13/922,339 for a System and Method for Reading Code Symbols Using a Variable Field of View, filed Jun. 20, 2013 (Xian et al.);
  • U.S. patent application Ser. No. 13/927,398 for a Code Symbol Reading System Having Adaptive Autofocus, filed Jun. 26, 2013 (Todeschini);
  • U.S. patent application Ser. No. 13/930,913 for a Mobile Device Having an Improved User Interface for Reading Code Symbols, filed Jun. 28, 2013 (Gelay et al.);
  • U.S. patent application Ser. No. 29/459,620 for an Electronic Device Enclosure, filed Jul. 2, 2013 (London et al.);
  • U.S. patent application Ser. No. 29/459,681 for an Electronic Device Enclosure, filed Jul. 2, 2013 (Chaney et al.);
  • U.S. patent application Ser. No. 13/933,415 for an Electronic Device Case, filed Jul. 2, 2013 (London et al.);
  • U.S. patent application Ser. No. 29/459,785 for a Scanner and Charging Base, filed Jul. 3, 2013 (Fitch et al.);
  • U.S. patent application Ser. No. 29/459,823 for a Scanner, filed Jul. 3, 2013 (Zhou et al.);
  • U.S. patent application Ser. No. 13/947,296 for a System and Method for Selectively Reading Code Symbols, filed Jul. 22, 2013 (Rueblinger et al.);
  • U.S. patent application Ser. No. 13/950,544 for a Code Symbol Reading System Having Adjustable Object Detection, filed Jul. 25, 2013 (Jiang);
  • U.S. patent application Ser. No. 13/961,408 for a Method for Manufacturing Laser Scanners, filed Aug. 7, 2013 (Saber et al.);
  • U.S. patent application Ser. No. 14/018,729 for a Method for Operating a Laser Scanner, filed Sep. 5, 2013 (Feng et al.);
  • U.S. patent application Ser. No. 14/019,616 for a Device Having Light Source to Reduce Surface Pathogens, filed Sep. 6, 2013 (Todeschini);
  • U.S. patent application Ser. No. 14/023,762 for a Handheld Indicia Reader Having Locking Endcap, filed Sep. 11, 2013 (Gannon);
  • U.S. patent application Ser. No. 14/035,474 for Augmented-Reality Signature Capture, filed Sep. 24, 2013 (Todeschini);
  • U.S. patent application Ser. No. 29/468,118 for an Electronic Device Case, filed Sep. 26, 2013 (Oberpriller et al.);
  • U.S. patent application Ser. No. 14/047,896 for Terminal Having Illumination and Exposure Control filed Oct. 7, 2013 (Jovanovski et al.);
  • U.S. patent application Ser. No. 14/053,175 for Imaging Apparatus Having Imaging Assembly, filed Oct. 14, 2013 (Barber);
  • U.S. patent application Ser. No. 14/055,234 for Dimensioning System, filed Oct. 16, 2013 (Fletcher);
  • U.S. patent application Ser. No. 14/053,314 for Indicia Reader, filed Oct. 14, 2013 (Huck);
  • U.S. patent application Ser. No. 14/065,768 for Hybrid System and Method for Reading Indicia, filed Oct. 29, 2013 (Meier et al.);
  • U.S. patent application Ser. No. 14/074,746 for Self-Checkout Shopping System, filed Nov. 8, 2013 (Hejl et al.);
  • U.S. patent application Ser. No. 14/074,787 for Method and System for Configuring Mobile Devices via NFC Technology, filed Nov. 8, 2013 (Smith et al.);
  • U.S. patent application Ser. No. 14/087,190 for Optimal Range Indicators for Bar Code Validation, filed Nov. 22, 2013 (Hejl);
  • U.S. patent application Ser. No. 14/094,087 for Method and System for Communicating Information in a Digital Signal, filed Dec. 2, 2013 (Peake et al.);
  • U.S. patent application Ser. No. 14/101,965 for High Dynamic-Range Indicia Reading System, filed Dec. 10, 2013 (Xian);
  • U.S. patent application Ser. No. 14/118,400 for Indicia Decoding Device with Security Lock, filed Nov. 18, 2013 (Liu);
  • U.S. patent application Ser. No. 14/150,393 for Indicia-reader Having Unitary Construction Scanner, filed Jan. 8, 2014 (Colavito et al.);
  • U.S. patent application Ser. No. 14/154,207 for Laser Barcode Scanner, filed Jan. 14, 2014 (Hou et al.);
  • U.S. patent application Ser. No. 14/154,915 for Laser Scanning Module Employing a Laser Scanning Assembly having Elastomeric Wheel Hinges, filed Jan. 14, 2014 (Havens et al.);
  • U.S. patent application Ser. No. 14/158,126 for Methods and Apparatus to Change a Feature Set on Data Collection Devices, filed Jan. 17, 2014 (Berthiaume et al.);
  • U.S. patent application Ser. No. 14/159,074 for Wireless Mesh Point Portable Data Terminal, filed Jan. 20, 2014 (Wang et al.);
  • U.S. patent application Ser. No. 14/159,509 for MMS Text Messaging for Hand Held Indicia Reader, filed Jan. 21, 2014 (Kearney);
  • U.S. patent application Ser. No. 14/159,603 for Decodable Indicia Reading Terminal with Optical Filter, filed Jan. 21, 2014 (Ding et al.);
  • U.S. patent application Ser. No. 14/160,645 for Decodable Indicia Reading Terminal with Indicia Analysis Functionality, filed Jan. 22, 2014 (Nahill et al.);
  • U.S. patent application Ser. No. 14/161,875 for System and Method to Automatically Discriminate Between Different Data Types, filed Jan. 23, 2014 (Wang);
  • U.S. patent application Ser. No. 14/165,980 for System and Method for Measuring Irregular Objects with a Single Camera filed Jan. 28, 2014 (Li et al.);
  • U.S. patent application Ser. No. 14/166,103 for Indicia Reading Terminal Including Optical Filter filed Jan. 28, 2014 (Lu et al.);
  • U.S. patent application Ser. No. 14/176,417 for Devices and Methods Employing Dual Target Auto Exposure filed Feb. 10, 2014 (Meier et al.);
  • U.S. patent application Ser. No. 14/187,485 for Indicia Reading Terminal with Color Frame Processing filed Feb. 24, 2014 (Ren et al.);
  • U.S. patent application Ser. No. 14/200,405 for Indicia Reader for Size-Limited Applications filed Mar. 7, 2014 (Feng et al.);
  • U.S. patent application Ser. No. 14/222,994 for Method and Apparatus for Reading Optical Indicia Using a Plurality of Data filed Mar. 24, 2014 (Smith et al.);
  • U.S. patent application Ser. No. 14/230,322 for Focus Module and Components with Actuator filed Mar. 31, 2014 (Feng et al.);
  • U.S. patent application Ser. No. 14/231,898 for Hand-Mounted Indicia-Reading Device with Finger Motion Triggering filed Apr. 1, 2014 (Van Horn et al.);
  • U.S. patent application Ser. No. 14/249,497 for Terminal Having Plurality of Operating Modes filed Apr. 10, 2014, Grunow et al.);
  • U.S. patent application Ser. No. 14/250,923 for Reading Apparatus Having Partial Frame Operating Mode filed Apr. 11, 2014, (Deng et al.);
  • U.S. patent application Ser. No. 14/257,174 for Imaging Terminal Having Data Compression filed Apr. 21, 2014, (Barber et al.)
  • U.S. patent application Ser. No. 14/257,364 for Docking System and Method Using Near Field Communication filed Apr. 21, 2014, (Showering);
  • U.S. patent application Ser. No. 14/264,173 for Autofocus Lens System for Indicia Readers filed Apr. 29, 2014, (Ackley et al.);
  • U.S. patent application Ser. No. 14/274,858 for Mobile Printer with Optional Battery Accessory filed May 12, 2014, (Marty et al.);
  • U.S. patent application Ser. No. 14/342,544 for Imaging Based Barcode Scanner Engine with Multiple Elements Supported on a Common Printed Circuit Board filed Mar. 4, 2014 (Liu et al.);
  • U.S. patent application Ser. No. 14/342,551 for Terminal Having Image Data Format Conversion filed Mar. 4, 2014 (Lui et al.);
  • U.S. patent application Ser. No. 14/345,735 for Optical Indicia Reading Terminal with Combined Illumination filed Mar. 19, 2014 (Ouyang);
  • U.S. patent application Ser. No. 29/486,759 for an Imaging Terminal, filed Apr. 2, 2014 (Oberpriller et al.); and
  • U.S. patent application Ser. No. 14/355,613 for Optical Indicia Reading Terminal with Color Image Sensor filed May 1, 2014, (Lu et al.).


In the specification and/or figures, typical embodiments of the invention have been disclosed. The present invention is not limited to such exemplary embodiments. The use of the term “and/or” includes any and all combinations of one or more of the associated listed items. The figures are schematic representations and so are not necessarily drawn to scale. Unless otherwise noted, specific terms have been used in a generic and descriptive sense and not for purposes of limitation.

Claims
  • 1. A mobile-device adapter to facilitate electronic communication between a mobile device and a host device, the mobile-device adapter comprising: an adapter camera configured to acquire images of a mobile-device display;an adapter display configured to present images to a mobile-device camera;an adapter frame configured to temporarily position the mobile device in a guide area and to permanently support the adapter camera and the adapter display, the adapter frame permitting (i) the adapter camera to acquire images of the mobile-device display and (ii) the adapter display to present images to the mobile-device camera when the mobile device is positioned in the guide area; andan adapter communication module configured to facilitate a digital data link between the mobile-device adapter and a host device, the adapter communication module being electrically connected to the adapter camera and the adapter display.
  • 2. The mobile-device adapter according to claim 1, wherein the electronic communication between the mobile device and the host device comprises payment information.
  • 3. The mobile-device adapter according to claim 1, wherein, the host device is a point-of-sale terminal.
  • 4. The mobile-device adapter according to claim 1, wherein the adapter display comprises a video display configured to display a sequence of image frames comprising image frames for customer viewing and image frames for electronic communication.
  • 5. The mobile-device adapter according to claim 4, wherein the image frames for customer viewing comprise customer instructions.
  • 6. The mobile-device adapter according to claim 1, wherein the digital data link is a wireless communication link.
  • 7. The mobile-device adapter according to claim 1, wherein images displayed by the adapter display comprise encrypted data.
  • 8. The mobile-device adapter according to claim 1, wherein the images displayed by the adapter display comprise point-of-sale terminal identification information.
  • 9. The mobile-device adapter according to claim 1, wherein the adapter display comprises a fixed mark.
  • 10. The mobile-device adapter according to claim 1, wherein the mobile-device adapter comprises a processor configured to interpret images from the adapter camera, the processor being electrically connected to the adapter camera.
  • 11. A checkout system, comprising: a mobile device having a mobile-device camera for capturing visual information and a mobile-device display for displaying visual information;a mobile-device adapter configured to temporarily position the mobile device in a guide area and to exchange visual information with the mobile device, the mobile-device adapter comprising (i) an adapter camera for receiving visual information from the mobile-device display and (ii) an adapter display for transmitting visual information to the mobile-device camera when the mobile device is positioned in the guide area; anda point-of-sale terminal for processing and recording the visual information from the mobile-device adapter, the point-of-sale terminal connected to the mobile-device adapter via a communication link.
  • 12. The checkout system according to claim 11, wherein the visual information received by the adapter camera comprises coded symbols and the mobile-device adapter comprises a processor configured to decode the coded symbols.
  • 13. The checkout system according to claim 11, wherein the adapter display is a printed mark.
  • 14. The checkout system according to claim 11, wherein the adapter display is an electronic display.
  • 15. The checkout system according to claim 14, wherein the mobile-device adapter comprises a communication module electrically connected to both the adapter camera and the adapter display, the communication module facilitating a digital data link between the mobile-device adapter and the point-of-sale terminal.
  • 16. The checkout system according to claim 11, wherein the visual information includes payment information.
  • 17. The checkout system according to claim 11, wherein the visual information comprises point-of-sale terminal identification.
  • 18. The checkout system according to claim 11, wherein the visual information comprises encrypted information.
  • 19. The checkout system according to claim 11, wherein the visual information comprises multiple images sequentially displayed.
  • 20. The checkout system according to claim 11, wherein the point-of-sale terminal is connected to the mobile-device adapter via a wireless communication link.
US Referenced Citations (226)
Number Name Date Kind
4302810 Bouricius et al. Nov 1981 A
4575621 Dreifus Mar 1986 A
5917913 Wang Jun 1999 A
6069968 Shaw et al. May 2000 A
6175922 Wang Jan 2001 B1
6282656 Wang Aug 2001 B1
6594759 Wang Jul 2003 B1
6820199 Wheeler et al. Nov 2004 B2
6832725 Gardiner et al. Dec 2004 B2
6850916 Wang Feb 2005 B1
7089214 Wang Aug 2006 B2
7124937 Myers et al. Oct 2006 B2
7128266 Marlton et al. Oct 2006 B2
7136623 Fare et al. Nov 2006 B2
7159783 Walczyk et al. Jan 2007 B2
7278581 Ong Oct 2007 B2
7374079 Nam et al. May 2008 B2
7413127 Ehrhart et al. Aug 2008 B2
7635084 Wang et al. Dec 2009 B2
7726575 Wang et al. Jun 2010 B2
8294969 Plesko Oct 2012 B2
8317105 Kotlarsky et al. Nov 2012 B2
8322622 Suzhou et al. Dec 2012 B2
8366005 Kotlarsky et al. Feb 2013 B2
8371507 Haggerty et al. Feb 2013 B2
8376233 Van Horn et al. Feb 2013 B2
8381979 Franz Feb 2013 B2
8390909 Plesko Mar 2013 B2
8408464 Zhu et al. Apr 2013 B2
8408468 Horn et al. Apr 2013 B2
8408469 Good Apr 2013 B2
8424768 Rueblinger et al. Apr 2013 B2
8448863 Xian et al. May 2013 B2
8457013 Essinger et al. Jun 2013 B2
8459557 Havens et al. Jun 2013 B2
8469272 Kearney Jun 2013 B2
8474712 Kearney et al. Jul 2013 B2
8479992 Kotlarsky et al. Jul 2013 B2
8490877 Kearney Jul 2013 B2
8517271 Kotlarsky et al. Aug 2013 B2
8523076 Good Sep 2013 B2
8528818 Ehrhart et al. Sep 2013 B2
8544737 Gomez et al. Oct 2013 B2
8548420 Grunow et al. Oct 2013 B2
8550335 Samek et al. Oct 2013 B2
8550354 Gannon et al. Oct 2013 B2
8550357 Kearney Oct 2013 B2
8556174 Kosecki et al. Oct 2013 B2
8556176 Van Horn et al. Oct 2013 B2
8556177 Hussey et al. Oct 2013 B2
8559767 Barber et al. Oct 2013 B2
8561895 Gomez et al. Oct 2013 B2
8561903 Sauerwein Oct 2013 B2
8561905 Edmonds et al. Oct 2013 B2
8565107 Pease et al. Oct 2013 B2
8571307 Li et al. Oct 2013 B2
8579200 Samek et al. Nov 2013 B2
8583924 Caballero et al. Nov 2013 B2
8584945 Wang et al. Nov 2013 B2
8587595 Wang Nov 2013 B2
8587697 Hussey et al. Nov 2013 B2
8588869 Sauerwein et al. Nov 2013 B2
8590789 Nahill et al. Nov 2013 B2
8596539 Havens et al. Dec 2013 B2
8596542 Havens et al. Dec 2013 B2
8596543 Havens et al. Dec 2013 B2
8599271 Havens et al. Dec 2013 B2
8599957 Peake et al. Dec 2013 B2
8600158 Li et al. Dec 2013 B2
8600167 Showering Dec 2013 B2
8602309 Longacre et al. Dec 2013 B2
8608053 Meier et al. Dec 2013 B2
8608071 Liu et al. Dec 2013 B2
8611309 Wang et al. Dec 2013 B2
8615487 Gomez et al. Dec 2013 B2
8621123 Caballero Dec 2013 B2
8622303 Meier et al. Jan 2014 B2
8628013 Ding Jan 2014 B2
8628015 Wang et al. Jan 2014 B2
8628016 Winegar Jan 2014 B2
8629926 Wang Jan 2014 B2
8630491 Longacre et al. Jan 2014 B2
8635309 Berthiaume et al. Jan 2014 B2
8636200 Kearney Jan 2014 B2
8636212 Nahill et al. Jan 2014 B2
8636215 Ding et al. Jan 2014 B2
8636224 Wang Jan 2014 B2
8638806 Wang et al. Jan 2014 B2
8640958 Lu et al. Feb 2014 B2
8640960 Wang et al. Feb 2014 B2
8643717 Li et al. Feb 2014 B2
8646692 Meier et al. Feb 2014 B2
8646694 Wang et al. Feb 2014 B2
8657200 Ren et al. Feb 2014 B2
8659397 Vargo et al. Feb 2014 B2
8668149 Good Mar 2014 B2
8678285 Kearney Mar 2014 B2
8678286 Smith et al. Mar 2014 B2
8682077 Longacre Mar 2014 B1
D702237 Oberpriller et al. Apr 2014 S
8687282 Feng et al. Apr 2014 B2
8692927 Pease et al. Apr 2014 B2
8695880 Bremer et al. Apr 2014 B2
8698949 Grunow et al. Apr 2014 B2
8702000 Barber et al. Apr 2014 B2
8717494 Gannon May 2014 B2
8720783 Biss et al. May 2014 B2
8723804 Fletcher et al. May 2014 B2
8723904 Marty et al. May 2014 B2
8727223 Wang May 2014 B2
20050165684 Jensen et al. Jul 2005 A1
20070063048 Havens et al. Mar 2007 A1
20080185432 Caballero et al. Aug 2008 A1
20090134221 Zhu et al. May 2009 A1
20100177076 Essinger et al. Jul 2010 A1
20100177080 Essinger et al. Jul 2010 A1
20100177707 Essinger et al. Jul 2010 A1
20100177749 Essinger et al. Jul 2010 A1
20110169999 Grunow et al. Jul 2011 A1
20110184824 George Jul 2011 A1
20110202554 Powilleit et al. Aug 2011 A1
20110251892 Laracey Oct 2011 A1
20120111946 Golant May 2012 A1
20120138685 Qu et al. Jun 2012 A1
20120168511 Kotlarsky et al. Jul 2012 A1
20120168512 Kotlarsky et al. Jul 2012 A1
20120193407 Barten Aug 2012 A1
20120193423 Samek Aug 2012 A1
20120203647 Smith Aug 2012 A1
20120223141 Good et al. Sep 2012 A1
20120228382 Havens et al. Sep 2012 A1
20120248188 Kearney Oct 2012 A1
20130043312 Van Horn Feb 2013 A1
20130056285 Meagher Mar 2013 A1
20130070322 Fritz et al. Mar 2013 A1
20130075168 Amundsen et al. Mar 2013 A1
20130082104 Kearney et al. Apr 2013 A1
20130175341 Kearney et al. Jul 2013 A1
20130175343 Good Jul 2013 A1
20130200158 Feng et al. Aug 2013 A1
20130214048 Wilz Aug 2013 A1
20130256418 Havens et al. Oct 2013 A1
20130257744 Daghigh et al. Oct 2013 A1
20130257759 Daghigh Oct 2013 A1
20130270346 Xian et al. Oct 2013 A1
20130278425 Cunningham et al. Oct 2013 A1
20130287258 Kearney Oct 2013 A1
20130292474 Xian et al. Nov 2013 A1
20130292475 Kotlarsky et al. Nov 2013 A1
20130292477 Hennick et al. Nov 2013 A1
20130293539 Hunt et al. Nov 2013 A1
20130293540 Laffargue et al. Nov 2013 A1
20130306728 Thuries et al. Nov 2013 A1
20130306730 Brady et al. Nov 2013 A1
20130306731 Pedraro Nov 2013 A1
20130306734 Xian et al. Nov 2013 A1
20130307964 Bremer et al. Nov 2013 A1
20130308625 Corcoran Nov 2013 A1
20130313324 Koziol et al. Nov 2013 A1
20130313325 Wilz et al. Nov 2013 A1
20130313326 Ehrhart Nov 2013 A1
20130327834 Hennick et al. Dec 2013 A1
20130341399 Xian et al. Dec 2013 A1
20130342717 Havens et al. Dec 2013 A1
20140001267 Giordano et al. Jan 2014 A1
20140002828 Laffargue et al. Jan 2014 A1
20140008430 Soule et al. Jan 2014 A1
20140008439 Wang Jan 2014 A1
20140021256 Qu et al. Jan 2014 A1
20140025584 Liu et al. Jan 2014 A1
20140027518 Edmonds et al. Jan 2014 A1
20140034723 Van Horn et al. Feb 2014 A1
20140034734 Sauerwein Feb 2014 A1
20140036848 Pease et al. Feb 2014 A1
20140039693 Havens et al. Feb 2014 A1
20140042814 Kather et al. Feb 2014 A1
20140049120 Kohtz et al. Feb 2014 A1
20140049635 Laffargue et al. Feb 2014 A1
20140061305 Nahill et al. Mar 2014 A1
20140061306 Wu et al. Mar 2014 A1
20140061307 Wang et al. Mar 2014 A1
20140063289 Hussey et al. Mar 2014 A1
20140066136 Sauerwein et al. Mar 2014 A1
20140067692 Ye et al. Mar 2014 A1
20140070005 Nahill et al. Mar 2014 A1
20140071840 Venancio Mar 2014 A1
20140074746 Wang Mar 2014 A1
20140075846 Woodburn Mar 2014 A1
20140076974 Havens et al. Mar 2014 A1
20140078341 Havens et al. Mar 2014 A1
20140078342 Li et al. Mar 2014 A1
20140078345 Showering Mar 2014 A1
20140084068 Gillet et al. Mar 2014 A1
20140086348 Peake et al. Mar 2014 A1
20140097249 Gomez et al. Apr 2014 A1
20140098284 Oberpriller et al. Apr 2014 A1
20140098792 Wang et al. Apr 2014 A1
20140100774 Showering Apr 2014 A1
20140100813 Showering Apr 2014 A1
20140100973 Brown Apr 2014 A1
20140103115 Meier et al. Apr 2014 A1
20140104413 McCloskey et al. Apr 2014 A1
20140104414 McCloskey et al. Apr 2014 A1
20140104416 Li et al. Apr 2014 A1
20140104451 Todeschini et al. Apr 2014 A1
20140106594 Skvoretz Apr 2014 A1
20140106725 Sauerwein Apr 2014 A1
20140108010 Maltseff et al. Apr 2014 A1
20140108402 Gomez et al. Apr 2014 A1
20140108682 Caballero Apr 2014 A1
20140110485 Toa et al. Apr 2014 A1
20140114530 Fitch et al. Apr 2014 A1
20140121438 Kearney May 2014 A1
20140121445 Ding et al. May 2014 A1
20140124577 Wang et al. May 2014 A1
20140124579 Ding May 2014 A1
20140125842 Winegar May 2014 A1
20140125853 Wang May 2014 A1
20140125999 Longacre et al. May 2014 A1
20140129378 Richardson May 2014 A1
20140131441 Nahill et al. May 2014 A1
20140133379 Wang et al. May 2014 A1
20140140585 Wang May 2014 A1
20140151453 Meier et al. Jun 2014 A1
20140160329 Ren et al. Jun 2014 A1
20140291396 Molisimo Oct 2014 A1
Foreign Referenced Citations (14)
Number Date Country
2365644 Sep 2000 CA
2403332 Sep 2001 CA
1623173 Jun 2005 CN
1159700 Dec 2001 EP
1272933 Jan 2003 EP
560159 Nov 2003 TW
0052866 Sep 2000 WO
0169388 Sep 2001 WO
02069291 Sep 2002 WO
03065318 Aug 2003 WO
03081377 Oct 2003 WO
2013163789 Nov 2013 WO
2013173985 Nov 2013 WO
2014019130 Feb 2014 WO
Non-Patent Literature Citations (54)
Entry
U.S. Appl. No. 14/274,858 for Mobile Printer With Optional Battery Accessory, filed May 12, 2014, (Marty et al.), 26 pages.
U.S. Appl. No. 14/264,173 for Autofocus Lens System for Indicia Readers, filed Apr. 29, 2014, (Ackley et al.), 39 pages.
U.S. Appl. No. 14/230,322 for Focus Module and Components with Actuator, filed Mar. 31, 2014 (Feng et al.); 92 pages.
U.S. Appl. No. 14/222,994 for Method and Apparatus for Reading Optical Indicia Using a Plurality of Data, filed Mar. 24, 2014 (Smith et al.); 30 pages.
U.S. Appl. No. 14/231,898 for Hand-Mounted Indicia-Reading Device with Finger Motion Triggering, filed Apr. 1, 2014 (Van Horn et al.); 36 pages.
U.S. Appl. No. 29/486,759 for an Imaging Terminal, filed Apr. 2, 2014 (Oberpriller et al.); 8 pages.
U.S. Appl. No. 29/436,337 for an Electronic Device, filed Nov. 5, 2012 (Fitch et al.); 19 pages.
U.S. Appl. No. 29/458,405 for an Electronic Device, filed Jun. 19, 2013 (Fitch et al.); 22 pages.
U.S. Appl. No. 29/459,620 for an Electronic Device Enclosure, filed Jul. 2, 2013 (London et al.); 21 pages.
U.S. Appl. No. 29/459,681 for an Electronic Device Enclosure, filed Jul. 2, 2013 (Chaney et al.); 14 pages.
U.S. Appl. No. 29/459,785 for a Scanner and Charging Base, filed Jul. 3, 2013 (Fitch et al.); 21 pages.
U.S. Appl. No. 29/459,823 for a Scanner, filed Jul. 3, 2013 (Zhou et al.); 13 pages.
U.S. Appl. No. 29/468,118 for an Electronic Device Case, filed Sep. 26, 2013 (Oberpriller et al.); 44 pages.
U.S. Appl. No. 13/367,978, filed Feb. 7, 2012, (Feng et al.); now abandoned.
U.S. Appl. No. 13/736,139 for an Electronic Device Enclosure, filed Jan. 8, 2013 (Chaney); 40 pages.
U.S. Appl. No. 13/771,508 for an Optical Redirection Adapter, filed Feb. 20, 2013 (Anderson);26 pages.
U.S. Appl. No. 13/780,356 for a Mobile Device Having Object Identification Interface, filed Feb. 28, 2013 (Samek et al.); 21 pages.
U.S. Appl. No. 13/852,097 for a System and Method for Capturing and Preserving Vehicle Event Data, filed Mar. 28, 2013 (Barker et al.); 20 pages.
U.S. Appl. No. 13/902,110 for a System and Method for Display of Information Using a Vehicle-Mount Computer, filed May 24, 2013 (Hollifield); 29 pages.
U.S. Appl. No. 13/902,144, for a System and Method for Display of Information Using a Vehicle-Mount Computer, filed May 24, 2013 (Chamberlin); 23 pages.
U.S. Appl. No. 13/902,242 for a System for Providing a Continuous Communication Link With a Symbol Reading Device, filed May 24, 2013 (Smith et al.); 24 pages.
U.S. Appl. No. 13/912,262 for a Method of Error Correction for 3D Imaging Device, filed Jun. 7, 2013 (Jovanovski et al.); 33 pages.
U.S. Appl. No. 13/912,702 for a System and Method for Reading Code Symbols at Long Range Using Source Power Control, filed Jun. 7, 2013 (Xian et al.); 24 pages.
U.S. Appl. No. 13/922,339 for a System and Method for Reading Code Symbols Using a Variable Field of View, filed Jun. 20, 2013 (Xian et al.); 23 pages.
U.S. Appl. No. 13/927,398 for a Code Symbol Reading System Having Adaptive Autofocus, filed Jun. 26, 2013 (Todeschini); 24 pages.
U.S. Appl. No. 13/930,913 for a Mobile Device Having an Improved User Interface for Reading Code Symbols, filed Jun. 28, 2013 (Gelay et al.); 24 pages.
U.S. Appl. No. 13/933,415 for an Electronic Device Case, filed Jul. 2, 2013 (London et al.); 47 pages.
U.S. Appl. No. 13/947,296 for a System and Method for Selectively Reading Code Symbols, filed Jul. 22, 2013 (Rueblinger et al.); 29 pages.
U.S. Appl. No. 13/950,544 for a Code Symbol Reading System Having Adjustable Object Detection, filed Jul. 25, 2013 (Jiang); 28 pages.
U.S. Appl. No. 13/961,408 for a Method for Manufacturing Laser Scanners, filed Aug. 7, 2013 (Saber et al.); 26 pages.
U.S. Appl. No. 14/018,729 for a Method for Operating a Laser Scanner, filed Sep. 5, 2013 (Feng et al.); 24 pages.
U.S. Appl. No. 14/019,616 for a Device Having Light Source to Reduce Surface Pathogens, filed Sep. 6, 2013 (Todeschini); 23 pages.
U.S. Appl. No. 14/023,762 for a Handheld Indicia Reader Having Locking Endcap, filed Sep. 11, 2013 (Gannon); 31 pages.
U.S. Appl. No. 14/035,474 for Augmented-Reality Signature Capture, filed Sep. 24, 2013 (Todeschini); 33 pages.
U.S. Appl. No. 14/047,896 for Terminal Having Illumination and Exposure Control, filed Oct. 7, 2013 (Jovanovski et al.); 32 pages.
U.S. Appl. No. 14/053,175 for Imaging Apparatus Having Imaging Assembly, filed Oct. 14, 2013 (Barber); 39 pages.
U.S. Appl. No. 14/055,234 for Dimensioning System, filed Oct. 16, 2013 (Fletcher); 26 pages.
U.S. Appl. No. 14/053,314 for Indicia Reader, filed Oct. 14, 2013 (Huck); 29 pages.
U.S. Appl. No. 14/065,768 for Hybrid System and Method for Reading Indicia, filed Oct. 29, 2013 (Meier et al.); 22 pages.
U.S. Appl. No. 14/074,746 for Self-Checkout Shopping System, filed Nov. 8, 2013 (Hejl et al.); 26 pages.
U.S. Appl. No. 14/074,787 for Method and System for Configuring Mobile Devices via NFC Technology, filed Nov. 8, 2013 (Smith et al.); 28 pages.
U.S. Appl. No. 14/087,190 for Optimal Range Indicators for Bar Code Validation, filed Nov. 22, 2013 (Hejl); 27 pages.
U.S. Appl. No. 14/345,735 for Optical Indicia Reading Terminal with Combined Illumination, filed Mar. 19, 2014 (Ouyang); 19 pages.
U.S. Appl. No. 14/101,965 for High Dynamic-Range Indicia Reading System, filed Dec. 10, 2013 (Xian); 28 pages.
U.S. Appl. No. 14/118,400 for Indicia Decoding Device with Security Lock, filed Nov. 18, 2013 (Liu); 28 pages.
U.S. Appl. No. 14/150,393 for Incicia-reader Having Unitary Construction Scanner, filed Jan. 8, 2014 (Colavito et al.); 28 pages.
U.S. Appl. No. 14/154,207 for Laser Barcode Scanner, filed Jan. 14, 2014 (Hou et al.); 26 pages.
U.S. Appl. No. 14/154,915 for Laser Scanning Module Employing a Laser Scanning Assembly having Elastomeric Wheel Hinges, filed Jan. 14, 2014 (Havens et al.); 24 pages.
U.S. Appl. No. 14/158,126 for Methods and Apparatus to Change a Feature Set on Data Collection Devices, filed Jan. 17, 2014 (Berthiaume et al.); 53 pages.
U.S. Appl. No. 14/342,551 for Terminal Having Image Data Format Conversion, filed Mar. 4, 2014 (Lui et al.); 25 pages.
U.S. Appl. No. 14/342,544 for Imaging Based Barcode Scanner Engine with Multiple Elements Supported on a Common Printed Circuit Board, filed Mar. 4, 2014 (Liu et al.); 27 pages.
U.S. Appl. No. 14/257,174 for Reading Apparatus Having Partial Frame Operating Mode, filed Apr. 21, 2014, (Barber et al.), 67 pages.
U.S. Appl. No. 14/200,405 for Indicia Reader for Size-Limited Applications, filed Mar. 7, 2014 (Feng et al.); 42 pages.
U.S. Appl. No. 14/166,103 for Indicia Reading Terminal Including Optical Filter, filed Jan. 28, 2014 (Lu et al.); 29 pages.
Related Publications (1)
Number Date Country
20160014251 A1 Jan 2016 US