The present application is a continuation-in-part application of previously filed, now pending application having Ser. No. 12/653,843, filed on Dec. 18, 2009 incorporated herein by reference.
1. Field of the Invention
This invention is directed to a mobile platform assembly such as, but not limited to, a skateboard, roller skate, etc. and including at least one but more practically a plurality of spherically configured wheels, each movably interconnected to the platform by a bearing assembly and a mounting assembly. Each bearing assembly is cooperatively disposed and structured with a corresponding mounting assembly to facilitate movement of a corresponding spherical wheel through a substantially universal, rotational range of motion relative to the platform.
2. Description of the Related Art
Numerous types of mobile support platforms have been known and utilized for years. The popularity of such structures has even risen to the level where the use thereof defines an “extreme” sport. As such, skateboards or other mobile platforms are utilized by skilled riders to perform a variety of difficult maneuvers. While not limited to skateboards, mobile platforms include various types of wheel structures adaptable for use in the performance of sporting maneuvers as well as recreation, exercising, and travel for relatively short distances. Mobile platforms of the type referred to include roller skates, rollerblades as well the aforementioned skateboards. In use, these types of platforms are manually propelled and are dimensioned and configured to support one or both of the individual's feet as the platform travels over a variety of different supporting surfaces.
As set forth above, skateboards in particular have become widely developed and generally comprise an elongated platform large enough for an individual to be supported in an upright or standing orientation. The wheel assembly associated therewith typically includes a front wheel structure and a rear wheel structure, wherein the portion of the platform extending between such front and rear wheel structures are sufficient to support the riding individual in the manner described.
In addition, various types of roller skate designs have been popularized for sporting, recreational and entertainment uses. As conventionally designed and structured, roller skates normally include a plurality of two pairs of substantially disk shaped wheels each supported on either a leading and trailing axle, wherein the two axles are disposed generally adjacent a front and rear portion a skate base respectively. As such, sufficient stability is provided for the user to move and/or be transported over a variety of different surfaces while also performing a variety of different maneuvers. More recently developed shoe skates are commonly known as “blade” skates, “inline” skates and/or rollerblades, which normally comprise a plurality of disk shaped wheels disposed in a linearly aligned relation to one another as they collectively extend along the length of the sole or base portion of the shoe skate on which they are mounted.
While structures of the type set forth above have enjoyed extensive popularity over many years, they are at least generally recognized as being at least partially restrictive, at least to the extent of allowing the rider or user to perform movements incorporating a somewhat limited degree of maneuverability. To overcome such disadvantages, an additional wheel assembly or wheel structure has been incorporated in skates, skateboards and other mobile platforms wherein one or all of the wheels include a spherical configuration. Accordingly, while spherical wheels have been generally known, the attachment or movable interconnection of this type of wheel to the under portion of the support platform also presents problems and/or disadvantages.
Such disadvantages are typically related to a relatively limited range of motion of the spherical wheel(s) thereby restricting maneuverability of the mobile platform to which such one or more wheels are attached. More specifically, known and conventional interconnecting and/or mounting structures associated with spherical wheels frequently diminish the potential freedom of movement which an improved spherical wheel assembly and appropriate mounting assembly could accomplish. In addition, the use of spherical or ball-shaped wheels may also suffer from problems and disadvantages associated with stability and/or maintenance problems. Similar to the above recognized disadvantages, such reliability problems could also be the result of at least partially ineffective connecting or mounting structures used to movably interconnect the spherical or ball type wheels to the support platform.
Accordingly, there is a need in this area for a support platform assembly capable of supporting and/or transporting an individual over a variety of different surfaces. Such a preferred and proposed mobile platform assembly should overcome the problems and disadvantages recognized in known and conventional mobile platforms, of this type, by providing sufficient maneuverability while reliably and efficiently interconnecting the wheel assembly to the platform. Also, the adaptability of an appropriate wheel assembly to a variety of different types of support platforms including skateboards, roller skates, etc. should be such as to increase the performance of all such mobile support platforms. Finally, a proposed and preferred mobile support platform which incorporates a versatile and high performance wheel assembly should be designed and structured for commercial development at a reasonable cost and price so as to be available to a greater portion of the consuming public.
The present invention is directed to an assembly structured to movably support or transport an individual over a variety of different supporting surfaces. In a practical application, the mobile platform may take the form of a skateboard or similar structure which is manually propelled and which is capable of supporting one or both feet of the individual on the outer exposed surface thereof.
Accordingly, the mobile platform assembly of the present invention includes a wheel assembly rotationally connected to the platform and disposed in engaging relation to the supporting surface over which the platform travels. In addition, the wheel assembly includes at least one, but more practically in at least some embodiments, a plurality of wheels each having a spherical configuration. The one or more spherical wheels are movably connected to the platform through a cooperatively structured mounting assembly and bearing assembly associated with each of the spherical wheels. As set forth in greater detail hereinafter, the bearing assembly associated with each spherical wheel may comprise one of a plurality of different embodiments structured to movably interconnect it to the platform. Common to each of the different embodiments of the bearing assembly is the capability of facilitating a substantially universal, rotational movement of the corresponding spherical wheel relative to the platform, as the wheel engages and travels over the supporting surface. However, distinguishing structural features of the embodiments of the bearing provide for a substantially universal, rotational range of motion of the corresponding wheel in a substantially free or unrestricted manner or about more specifically defined axes.
Additional structural and operative features associated with the various preferred embodiments of the present invention include a mounting assembly associated with each of the plurality of wheels. The mounting assembly comprises at least one mounting or retaining plate preferably having an annular configuration and a central aperture cooperatively dimensioned and configured to facilitate receipt of a corresponding one of the spherical wheels there through. Further, each of the spherical wheels is cooperatively dimensioned and disposed relative to the central aperture to concurrently extend or protrude outwardly from opposite faces or surfaces of the mobile platform. This protruding disposition of the spherical wheel significantly enhances the versatility of the mobile platform by allowing the use thereof while the platform is in either one of at least two operative positions of the platform.
Each of the two operative positions are defined by a different one of the opposite surfaces of the platform being disposed in an outer or exposed orientation and in confronting, engaging and supporting relation to the individual riding the mobile platform. More specifically, due to the fact that each of the spherical wheels extend concurrently outward from each of the opposite surfaces of the platform a sufficient distance to engage the supporting surface over which the platform travels, the user of the mobile platform can choose to “ride” or be supported on different ones of the opposite surfaces, dependent on which of the two operative positions the platform is disposed. To facilitate the versatility of operating and/or using the mobile platform in this manner, the configuration of the platform may have to be modified and/or customized in order to permit the orientation of the platform in either of the at least operative positions.
Each bearing assembly associated with a different one of the spherical wheels is movably connected to and/or retained by a corresponding one of the mounting or retaining plates defining the mounting assembly. As such, the mounting or retaining plates associated with each spherical wheel may be cooperatively disposed and structured with the corresponding bearing assembly for that wheel and include a bearing a race therein. Accordingly, the bearing assembly associated with each spherical wheel is disposed in movable, retaining engagement with the exterior surface of the corresponding wheel, while being movable within or along a corresponding retaining or mounting plate disposed to interconnect the corresponding bearing assembly and the spherical wheel to the platform.
Therefore, one preferred embodiment of the bearing assembly includes a plurality of at least two bearing sections each connected to a common mounting assembly and disposed in spaced relation to one another. The spacing between the two bearing sections is sufficient to provide a sufficient force on the exterior surface of the corresponding wheel to retain it on the platform during its substantially universal rotational movement relative to the platform. More specifically, the two sections of a common bearing assembly for each spherical wheel are preferably disposed on opposite sides of an imaginary “great circle” generated on the exterior surface of the spherical wheel. For purposes of clarity, an accepted definition of the term “great circle” is a circle, in this case imaginary, generated on the surface of a sphere that divides that sphere equally into two hemispheres. Accordingly, the “great circle” may also be accurately defined as the intersection of the surface of a sphere with a plane passing through the center of that sphere.
Therefore, the distance of the bearing sections from the great circle may vary but should be sufficient to provide adequate retaining force to facilitate maintaining the wheel in movably connected and supporting relation to the platform. In one preferred embodiment of the bearing assembly each spherical wheel is allowed to “freely” rotate through a substantially universal range of motion. This is due to the fact that the spherical wheel is only interconnected to the support platform through the provision of the spaced apart sections of the corresponding bearing assembly. Further these two retaining bearing sections extend in surrounding relation to and in continuous movable engagement with the exterior surface of the spherical wheel, while the bearing sections are movably retained by the corresponding mounting plate(s).
In contrast, another preferred embodiment of the bearing assembly includes an axle extending through the center of a corresponding one of the spherical wheels and being of sufficient dimension to at least partially extend outwardly from the opposite sides of the sphere. When operatively connected in the manner set forth in greater detail hereinafter, this centrally disposed axle will define a first rotational axis of the wheel. Moreover, this preferred embodiment of the bearing assembly includes a first bearing portion and a second bearing portion. The first bearing portion rotationally interconnects the centrally deposed axle to the spherical wheel. The second portion of the bearing assembly preferably includes two bearing sections at least generally similar to the two bearing sections described above. Moreover, when operatively assembled, the two bearing sections of this additional embodiment of the bearing assembly are disposed in continuously surrounding relation to the exterior surface of the wheel and in engaging relation therewith. Also these two bearing sections are connected to one another and to opposite end portions of the centrally disposed axle.
Accordingly, the axle extending through the spherical wheel and the wheel itself is rotational with the second bearing portion, comprising the two bearing sections, relative to the mounting assembly connected to the bearing assembly. Therefore, the first bearing portion of each bearing assembly, associated with each spherical wheel, rotationally interconnects the axle to the spherical wheel. The second bearing portion of each bearing assembly associated, associated with each spherical wheel, interconnects the spherical wheel, through fixed attachment to the axle, to the platform and/or more specifically, to a corresponding mounting assembly. As a result, this preferred embodiment of the bearing assembly defines more specific rotational characteristics by affiliating each spherical wheel to rotate about a first rotational axis at least partially defined by the centrally disposed axle and concurrently about a second rotational axis which is transverse or perpendicular to the second rotational axis.
Yet another preferred embodiment of the present invention is directed to a mobile platform assembly varying at least somewhat in structure and operation from the preferred embodiments as set forth above. As such, this additional preferred embodiment may be structured to operate and function more like a shoe skate rather than a skateboard. However, as will be more evident from a detailed description of this additional preferred embodiment, the operational characteristics of this “skate-type” embodiment may be substantially similar to the “skateboard” embodiment described above.
Accordingly, this additional preferred embodiment includes a base comprising a wheel assembly including at least one, but more practically a plurality of wheels connected to the base and disposed in spaced relation to one another. Each of a plurality of preferably two wheels of the wheel assembly is located adjacent to opposite ends of the base. In addition, each wheel has a spherical configuration and is movably interconnected to the base by means of a bearing assembly. As set forth with the other preferred embodiments described herein, the bearing assembly may be defined by different structures and may include various structural modifications while still facilitating the intended movement or travel of the base as the wheel assembly engages a supporting surface over which the base travels.
More specifically, the bearing assembly associated with each of the spherical wheels is structured to movably interconnect the base and the wheel in a manner which facilitates a substantially universal, rotational movement of the corresponding wheel relative to the base, as it travels over the supporting surface. Additional structural features of this additional skate-type embodiment include the provision of a support platform moveably connected to the base and disposed generally intermediate the ends of the base and between the two spherical wheels located adjacent opposite ends of the base. In addition, the support platform is disposed and structured to facilitate supporting engagement with preferably one foot of the individual. In this skate-type of structural configuration, a single foot of the user may be supported on the support platform and movable therewith relative to the base. However, structural variations of this preferred embodiment may include an enlarged or otherwise modified dimension and configuration of the support platform and/or the base in order to possibly accommodate at least the temporary engagement and support of both feet of the user.
Due to the movable interconnection of the support platform with the base, the support platform may be selectively disposable in and out of confronting relation to the supporting surface over which the base is traveling. Further, such selective disposition of the support platform relative to the supporting surface is accomplished by a predetermined manipulation of the at least one foot of the individual engaged by and supported on the support platform. This confronting relation may be more specifically described as a frictional engagement of the support platform with the supporting surface over which the base travels. Accordingly, at least one embodiment of the support platform comprises at least one contact portion disposed in outwardly extending relation to an under surface of the support platform. Moreover, the at least one contact portion may preferably, but not exclusively, be located adjacent one end of the support platform. As a result, the pivotal or at least partially rotational movement of the support platform, due to predetermined manipulation of the corresponding foot of the individual, will force the one contact portion into frictional engagement with the supporting surface over which the base is traveling.
Additional structural and operational features associated with this skate-type embodiment include the support platform and the one contact portion being cooperatively structured with the base to readily accomplish a selective disposition of the contact portion into a “braking orientation” relative to the supporting surface upon predetermined movement of the user's foot. This in turn will serve to affect the velocity of the base, by slowing or braking it, as it travels over the supporting surface due to such frictional engagement. In contrast, the velocity of the base relative to the supporting surface may be further influenced by disposing the support platform and the contact portion in what may be referred to as an “accelerating orientation”. The accelerating orientation is accomplished by the pivotal or at least partial rotational disposition of the support platform resulting in the one contact portion frictionally engaging the supporting surface. The accelerating orientation allows the user supported on the base to effectively “push-off” thereby serving to increase and/or at least maintain the velocity of the base. When the foot of the individual is disposed in the aforementioned predetermined orientation necessary to accomplish the accelerating orientation of the support platform, other portions of the user's body may also be oriented to further facilitate the “push-off” function as the one contact portion frictionally engages the supporting surface.
Therefore, the various preferred embodiments of the mobile platform assembly, including what may be referred to in general, but not limiting, terms as a “skateboard” embodiment and a “skate-type” embodiment will facilitate the use thereof in a manner which overcomes certain disadvantages and problems of known mobile platforms by increasing the maneuverability thereof. As more fully described hereinafter, such increased maneuverability is at least partially attributable to the ability of each spherical wheel, defining the corresponding wheel assemblies, being capable of moving relative to the platform or base through a substantially universal, rotational range of motion independently of one another. Further, in the skateboard embodiment, the platform may vary in size and shape and still be capable of being disposed in either of at least two operative positions respectively defined by different ones of the opposite platform surfaces being disposed in confronting, supporting relation to an individual rider. As such, an individual may effectively orient the platform between the first and second operative position even during travel of the platform especially by individuals which are considered highly skilled in the operation or use of the platform, such as but not limited to, skateboard type assemblies.
These and other objects, features and advantages of the present invention will become clearer when the drawings as well as the detailed description are taken into consideration.
For a fuller understanding of the nature of the present invention, reference should be had to the following detailed description taken in connection with the accompanying drawings in which:
Like reference numerals refer to like parts throughout the several views of the drawings.
As shown in the accompanying Figures, the present invention is directed to an assembly generally indicated as 10 which is structured to transport or otherwise movably support an individual rider over a variety of supporting surfaces. The platform 12 may be in the form of a skateboard or other mobile device which is typically, but not exclusively, manually propelled. However, it is emphasized that the platform 12 of the assembly 10 may be structured, dimensioned and configured to define a number of different types of support platform other than a skateboard, such as a base of a scooter, a roller skate, shoe skate, etc.
Accordingly, the assembly 10 includes the platform 12, including an outer, exposed surface 14 and an undersurface 16. In conventional fashion, the outer, exposed surface 14 is typically disposed in supporting, generally confronting engagement or relation to the individual rider. As such, the outer supporting surface is of a sufficient dimension and configuration to receive and support one foot or both feet of the rider thereon. In addition, the mobile assembly 10 includes a wheel assembly 18 which includes at least one but more practically a plurality of wheels 20 one or more of which comprises a spherical configuration. Each of the one or more wheels 20 are movably connected to the platform 12 by a mounting assembly generally indicated as 22 and one of a plurality of embodiments of a bearing assembly generally indicated as 24, 24′, 24″, etc. as explained in greater detail hereinafter.
With primary reference to
Further, the operative placement of the two bearing sections 26 and 28 and the corresponding plurality of bearings 30 associated with each of these sections, are disposed to movably engage and retain the spherical wheel 20 within the central aperture 25. The cooperative placement and structuring of each of the wheels 20 with the corresponding mounting assemblies 22 and bearing assemblies 24 will facilitate that each of the spherical wheels 20 will be maintained in the operative position represented in
In addition, the dimension of each of the wheels 20 is such that the portion thereof protruding from each of the opposite surfaces 14 and 16 can be disposed in movable, supporting engagement with a supporting surface over which the platform 12 travels. Therefore, the platform may be selectively disposed in either of two operative positions. Each of the two operative positions is defined by a different one of the opposite faces or surfaces 14 or 16 being disposed in the outer, exposed orientation and in confronting, supporting, engaging relation to the individual rider. Therefore, those individuals who are extremely skilled or practiced in the use of a skateboard or other type platform 12, may effectively “flip” or turn and thereby reverse the position of the opposite surfaces 14 and 16, during various maneuvers by the skilled, individual rider. In addition, the two end portions 12′ of the platform 12 may have their configurations altered so as not to extend outwardly from the surface 14, thereby additionally facilitating the placement of the platform 12 in either of the two operative positions.
Further with regard to the embodiments of
An intended freedom of rotation of the spherical wheel 20 is accomplished as it moves through a substantially universal, rotational range of motion. Such freedom of rotation is at least partially accomplished, by the two bearing sections 26 and 28 being disposed in predetermined spaced relation to one another as they retain and engage the exterior surface of the wheel 20 and are movably disposed within separate ones of the race bearings 36 of the mounting or retaining plate 34. The spacing between the two sections 26 and 28 may vary but should be sufficient to provide an adequate retaining force on the exterior surface of the spherical wheels 20 while allowing the aforementioned freedom of movement of the wheel throughout the substantially universal, rotational range of motion, as set forth above. Further, each of the bearing sections 26 and 28 and the bearing members 30 associated therewith are disposed to movably engage the exterior surface of the spherical wheel 20 about different hemispherical portions thereof.
More specifically, regardless of the rotational orientation of the spherical wheel 20, each of the bearing sections 26 and 28 will be disposed on opposite sides of an imaginary “great circle” generated on the exterior surface of the spherical wheel 20. For purposes of clarity, the term “great circle” is defined as a circle, in this case imaginary, generated on the surface of a sphere that divides that the sphere equally into two hemispheres. Accordingly, the term “great circle” as used herein may also be accurately defined as the intersection of the surface of a sphere with a plane passing through the center of that sphere. As clearly represented in
Therefore, each of the wheels 20 is associated with a mounting plate 34 defining a corresponding mounting assembly 22. Each mounting plate 34 and the bearing assembly 24 associated therewith are cooperatively structured to movably interconnect corresponding ones of the wheels 20 through the platform 12 in a location which facilitates the travel of the platform 12 over a supporting surface while providing sufficient stability to the individual rider during the travel of the platform 12. In order to accomplish such versatility and stability, each of the mounting or retaining plates 20 have the aforementioned annular configuration such that outer peripheral portions thereof are fixedly secured to the platform 12 such as by appropriate connectors (not shown) passing through receiving portions 39 of the retaining or mounting plate 34 as represented. In addition, the bearing assembly 24 comprising the at least two bearing sections 26 and 28 extend about the inner peripheral portion of the annular retaining or mounting plate 34 so as to surround and at least partially define the inner peripheral portion of the central aperture 25. As such, the bearing members associate with each of the bearing sections 26 and 28, extend outwardly from the corresponding bearing race 36 into movable, retaining engagement with the exterior surface of the corresponding one wheel 20.
With primary reference to
More specifically, with regard to the embodiment of the bearing assembly 24′ of
Therefore, the bearing assembly 24′ associated with each of the spherical wheels 20 includes a first bearing portion 44 and a second bearing portion defined by the two bearing sections 47 and 49. As set forth above, the first bearing portion 44 rotationally interconnects the spherical wheel 40 to the centrally disposed axle 40. Concurrently, the second bearing portion 47, 49, being fixedly connected to the axle 40 via its ends 40′, will serve to movably and rotationally interconnect the corresponding wheels 20 to the mounting assembly 22 and thereby to the platform 12. As a result, the elongated axle 40 and its cooperative interconnection with the first bearing portion 44 serves to define a first rotational axis, schematically represented as 60 extending along the length of the axle 40. In addition, a second rotational axis, schematically represented as 62, passes through the center of the spherical wheel 20 in intersecting relation to the first rotational axis 60. The second rotational axis 62 is defined by a fixed connection of the first and second bearing sections 47 and 49 with one another and with the opposite ends 40′ of the axle 40.
As represented in
Additional structural features associated with the bearing assembly 24′ are further represented in
Yet additional structural features of the bearing assembly 24′ of the embodiments of
Yet another preferred embodiment of the bearing assembly is generally represented as 24′ in
Therefore while the individual bearing members 30′ and 30″ may have different configurations, bearing members 30′ and 30″ are operable in the manner described to facilitate the rotation of corresponding ones of the wheels 20 about the second rotational axis 62. However, the tapered or conical/frustum bearings may have a physical and/or operative advantages by converting horizontal forces into axial forces as well as allowing the vertical forces exerted thereon to not bind the system but rather displace such vertical forces along the inner surfaces of the corresponding retaining or mounting plates 34′.
With primary reference to
The base 102, while having similar operational and performance characteristics of the platform 12, is structurally distinguishable at least to the extent of defining what may be generally referred to as a “skate-type” structure as versus what more closely resembles a “skateboard” structure as in the embodiments of
Accordingly, the base 102 is dimensioned and configured to engage and support preferably a single foot of the individual rider or user. As such, the mobile platform 100 in the aforementioned skate-type configuration includes a support platform generally indicated as 104. Moreover, the support platform 104 is movably and more specifically pivotally or at least partially rotationally connected to the base 102 by means of a connecting rod or shaft 106 extending transversely to the base 102. The connecting rod 106 has its opposite ends 106′ connected to opposite, lateral side portions of the base 102. Therefore, the connecting rod 106 defines a pivotal or rotational axis of the support platform 104 relative to the base 102. The dimension, configuration and overall structure of the support platform 104 cooperate to engage, receive and movably support either foot of the user. As such, predetermined manipulation of the supported user's foot accomplishes an intended and selected pivotal movement and/or orientation of the support platform 104 as clearly represented in
Additional structural features of the base 102 are provided to facilitate placement and positioning of the foot of the individual and include lateral sides as at 110 each extending at least partially upward or outward from the exposed surface or tread configuration 108 of the support platform 104. Further, each of the lateral side portions 110 may include an outwardly extending rail segment 112. Moreover, each of the rail segments 112 may be structured to facilitate attachment to an appropriate connecting or restraining assembly, not shown for purposes of clarity. Such a restraining assembly may be appropriately structured to facilitate the retention of the preferred foot of the user on the support platform 104, while not interfering with the movement of the user's foot and/or the support platform 104 into a preferred or selected orientation relative to the base. Accordingly, each or at least one of the rail segments 112 may include a plurality of apertures or other appropriate structures 114 to accomplish connection of the aforementioned restraining assembly.
As represented in
Therefore, the support platform 104 and at least one contact portion 120 are cooperatively structured and disposed with the base 102 for selective disposition into what may be referred to as a “braking orientation”. Such a braking orientation is defined by frictional engagement or contact between the one contact portion 120 and the supporting surface 200. As such, the orientation of the foot and possibly other portions of the rider's body will influence the velocity of the base 102 to the extent of slowing or stopping the travel of the base 102 relative to the supporting surface 200. In contrast, the support platform 104 and contact portion 120 are also cooperatively structured and disposed relative to the base 102 so as to selectively position the contact portion 120 into a frictional engagement with the supporting surface 200 in a manner which defines an “accelerating orientation”. Such an accelerating orientation will also be defined by a predetermined position or manipulation of the user's foot and possibly a “forward leaning” or other appropriate attitude or orientation of other portions of the user's body which may facilitate a “push-off” of the base 102 relative to the supporting surface 200. As a result, the velocity of the base 102 will be increased and/or substantially maintained. Accordingly, the selective orientation of the support platform 102 and the contact portion 120 allows the user to dispose the support platform 104 and the contact portion 120 into either of the aforementioned braking orientation or accelerating orientation.
Additional features associated with the preferred embodiment of
Minor structural modifications may be incorporated in the support platform 102 to accommodate the use of the bearing assembly 24′ of
Since many modifications, variations and changes in detail can be made to the described preferred embodiment of the invention, it is intended that all matters in the foregoing description and shown in the accompanying drawings be interpreted as illustrative and not in a limiting sense. Thus, the scope of the invention should be determined by the appended claims and their legal equivalents.
Now that the invention has been described,
Number | Name | Date | Kind |
---|---|---|---|
108184 | Pollitt | Oct 1870 | A |
904088 | Rother | Nov 1908 | A |
3351353 | Weitzner | Nov 1967 | A |
3355185 | Carter | Nov 1967 | A |
3379454 | Woodman | Apr 1968 | A |
3512798 | Siegel | May 1970 | A |
4043566 | Johnson | Aug 1977 | A |
4076263 | Rand | Feb 1978 | A |
4106786 | Talbott | Aug 1978 | A |
4149735 | Blackburn et al. | Apr 1979 | A |
4150838 | Lappage | Apr 1979 | A |
4168076 | Johnson | Sep 1979 | A |
4191371 | Armer, Jr. | Mar 1980 | A |
4225147 | Lowery | Sep 1980 | A |
4445699 | Darasko | May 1984 | A |
4572529 | Thomas | Feb 1986 | A |
4618158 | Liberkowski | Oct 1986 | A |
D346418 | Fischbach | Apr 1994 | S |
5409265 | Douglass | Apr 1995 | A |
5549331 | Yun et al. | Aug 1996 | A |
5590890 | Rosso et al. | Jan 1997 | A |
5716074 | Theodorou | Feb 1998 | A |
6065762 | Brelvi | May 2000 | A |
6293565 | Bouchard et al. | Sep 2001 | B1 |
6568695 | Dornan | May 2003 | B2 |
6616583 | Stack | Sep 2003 | B1 |
6637827 | Hurwitz | Oct 2003 | B2 |
6698776 | Todd | Mar 2004 | B2 |
6705977 | Ziak | Mar 2004 | B1 |
6848750 | Hurwitz | Feb 2005 | B2 |
6899344 | Raynor | May 2005 | B1 |
7172044 | Bouvet | Feb 2007 | B2 |
20010052683 | Vance | Dec 2001 | A1 |
20020070514 | Costa, Jr. et al. | Jun 2002 | A1 |
20030146584 | Gaus | Aug 2003 | A1 |
20030146586 | Hurwitz | Aug 2003 | A1 |
20050146100 | Hurwitz | Jul 2005 | A1 |
20050285363 | Joung et al. | Dec 2005 | A1 |
20060287173 | Guadagno | Dec 2006 | A1 |
20070235970 | Stillinger | Oct 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20110148063 A1 | Jun 2011 | US |