The embodiments herein relate generally to machines that are used to move users below a ground surface in a bridge construction setting.
Prior to embodiments of the disclosed invention, machines existed that could move users below a ground surface, but those machines only operated on solid level ground. Some examples of these efforts include: U.S. Pat. Nos. 5,253,373, 5,318,149 and 4,696,371 all issued to Moog; U.S. Pat. No. 4,154,318 issued to Malleone, Chinese Patent 2,761,682 issued to Sun; UK Patent 1,515,114 issued to Harrison; UK Patent 1,321,051 issued to Bartoli; and Chinese Patent 102,071,638 issued to Hao.
A mobile platform carrying system is configured to be adjusted to remain level. The mobile platform carrying system includes a chassis, attached to a front axle assembly and a rear axle assembly. The front axle assembly includes a front axle housing through which a front axle telescoping portion extends. A first front wheel housing is joined to the front axle telescoping portion, and a first front actuator. The first front actuator is adapted to adjust a front linear position of the first front wheel housing relative to the chassis. A first front wheel is joined to the first front wheel housing with a first front hinge. The rear axle assembly includes a rear axle housing through which a rear axle telescoping portion extends. A first rear wheel housing is joined to the rear axle telescoping portion, and a first rear actuator. The first rear actuator is adapted to adjust a rear linear position of the first rear wheel housing relative to the chassis. A first rear wheel is joined to the first rear wheel housing with a first rear hinge.
The detailed description of some embodiments of the invention is made below with reference to the accompanying figures, wherein like numerals represent corresponding parts of the figures.
By way of example, and referring to
The front axle assembly 20 further comprises a front axle housing 22 through which a front axle telescoping portion 24 extends. The front axle telescoping portion 24 is joined to a first front wheel housing 26. The first front wheel housing 26 is joined to a first front actuator 28. The first front actuator 28 is adapted to adjust a front linear position of the first front wheel housing 26 relative to the chassis 12. The first front wheel housing 26 is further joined to a first front wheel 30 with a first front hinge 32.
The front axle housing 22 is further attached to a second front wheel housing 34. The second front wheel housing 34 is connected to a second front wheel 36 with a second front hinge 38. The front axle housing 22 is further attached to a first front screw jack 40 and a second front screw jack 42. The front axle housing 22 is further attached to a first front pivot support arm 44 and a second front pivot support arm 46.
The rear axle assembly 50 further comprises a rear axle housing 52 through which a rear axle telescoping portion 54 extends. The rear axle telescoping portion 54 is joined to a first rear wheel housing 56. The first rear wheel housing 56 is joined to a first rear actuator 58. The first rear actuator 58 is adapted to adjust a rear linear position of the first rear wheel housing 56 relative to the chassis 12. The first rear wheel housing 56 is further joined to a first rear wheel 60 with a first rear hinge 62.
The rear axle housing 52 is further attached to a second rear wheel housing 64. The second rear wheel housing 64 is connected to a second rear wheel 66 with a second rear hinge 68. The rear axle housing 52 is further attached to a first rear screw jack 70 and a second rear screw jack 72. The rear axle housing 52 is further attached to a first rear pivot support arm 74 and a second rear pivot support arm 76.
In use, the mobile platform carrying system 10 can be used for building a bridge. This can be dangerous, at first, because before the ground of the bridge is laid a vehicle must travel on narrow beams B1, B2, that are arranged a known distance D from one another. However, that known distance D varies from bridge to bridge. Embodiments of the disclosed invention solve this problem by using actuators powered by hydraulic system 80 in order to adjust the linear position of the first front wheel housing 26 and the first rear wheel housing 56 in order to be set the known distance D between the narrow beams B1, B2.
In the second instance, building a bridge from a platform can be dangerous because the beams are rarely arranged at a uniform height. Bridges, like all roads, have curved surfaces for drainage and many other reasons. This would seem to create a balance issue for the mobile platform carrying system 10. However, that problem is solved by using the first front screw jack 40, the second front screw jack 42, the first rear screw jack 70, and the second rear screw jack 72, in order to ensure that the platform 14 is level in all directions. While screw jacks generally refer to manual devices that rotate to expand, that device is a species of what this application calls a “lift assembly” which means any hydraulic, manual, or pneumatic system that can lift a platform. Accordingly, there can be a first front lift assembly, a second front lift assembly, a first rear lift assembly and a second rear lift assembly.
The chassis 12 is mechanically coupled to front support structure 82. The front support structure is rotatable coupled to a front telescoping arm 84. The front telescoping arm 84 is attached to the chassis 12 with a front telescoping actuator 86. The front telescoping arm 84 is attached to a front expansion arm 88. The front expansion arm 88 is attached to a front distal end linkage 90. The front distal end linkage 90 is further attached to a front platform attachment linkage 92. The front platform attachment linkage 92 is further attached to the front expansion arm 88 with a front two-linkage connection 94. The front two-linkage connection 94 is attached to the front distal end linkage 90 with a front linkage actuator 96. The front platform attachment linkage 92 is adjustable with a front platform height actuator 98.
The chassis 12 is mechanically coupled to rear support structure 102. The rear support structure is rotatable coupled to a rear telescoping arm 104. The rear telescoping arm 104 is attached to the chassis 12 with a rear telescoping actuator 106. The rear telescoping arm 104 is attached to a rear expansion arm 108. The rear expansion arm 108 is attached to a rear distal end linkage 110. The rear distal end linkage 110 is further attached to a rear platform attachment linkage 112. The rear platform attachment linkage 112 is further attached to the rear expansion arm 108 with a rear two-linkage connection 114. The rear two-linkage connection 114 is attached to the rear distal end linkage 110 with a rear linkage actuator 116. The rear platform attachment linkage 112 is adjustable with a rear platform height actuator 118.
A mobile platform 120 is attached to the front platform attachment linkage 92 and the rear platform attachment linkage 112. As noted above, a difficulty in this field of endeavor is ensuring that chassis platform 14 is level. It is further challenging to ensure that mobile platform 120 is level. A goal of the mobile platform carrying system 10 is to ensure that the chassis platform 14 is parallel to the mobile platform 120 even while the mobile platform 120 is moving outward, downward, and then inward. To accomplish this the front linkage actuator 96 and the rear linkage actuator 116 operate in tandem to make minor corrections in the angle of the mobile platform 120 in order to ensure that the mobile platform 120 remains level while moving.
As used in this application, the term “a” or “an” means “at least one” or “one or more.”
As used in this application, the term “about” or “approximately” refers to a range of values within plus or minus 10% of the specified number.
As used in this application, the term “substantially” means that the actual value is within about 10% of the actual desired value, particularly within about 5% of the actual desired value and especially within about 1% of the actual desired value of any variable, element or limit set forth herein.
All references throughout this application, for example patent documents including issued or granted patents or equivalents, patent application publications, and non-patent literature documents or other source material, are hereby incorporated by reference herein in their entireties, as though individually incorporated by reference, to the extent each reference is at least partially not inconsistent with the disclosure in the present application (for example, a reference that is partially inconsistent is incorporated by reference except for the partially inconsistent portion of the reference).
A portion of the disclosure of this patent document contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.
Any element in a claim that does not explicitly state “means for” performing a specified function, or “step for” performing a specified function, is not to be interpreted as a “means” or “step” clause as specified in 35 U.S.C. § 112, ¶ 6. In particular, any use of “step of” in the claims is not intended to invoke the provision of 35 U.S.C. § 112, ¶ 6.
Persons of ordinary skill in the art may appreciate that numerous design configurations may be possible to enjoy the functional benefits of the inventive systems. Thus, given the wide variety of configurations and arrangements of embodiments of the present invention the scope of the invention is reflected by the breadth of the claims below rather than narrowed by the embodiments described above.
Number | Name | Date | Kind |
---|---|---|---|
3159110 | Wylie | Dec 1964 | A |
3232377 | Smith | Feb 1966 | A |
3311193 | Eitel | Mar 1967 | A |
3592070 | Hammond | Jul 1971 | A |
3610367 | Atchey | Oct 1971 | A |
4154318 | Malleone | May 1979 | A |
4179010 | Ashworth | Dec 1979 | A |
4206833 | Goyarts | Jun 1980 | A |
4696371 | Moog | Sep 1987 | A |
5159989 | Claxton | Nov 1992 | A |
5253731 | Moog | Oct 1993 | A |
5318149 | Moog | Jun 1994 | A |
5435410 | Langston | Jul 1995 | A |
6443687 | Kaiser | Sep 2002 | B1 |
6598702 | McGillewie, Jr. | Jul 2003 | B1 |
8888122 | Berry | Nov 2014 | B2 |
9695024 | Herauf | Jul 2017 | B2 |
9776846 | Ditty | Oct 2017 | B2 |
20130020775 | Beji | Jan 2013 | A1 |
20170341566 | Luminet | Nov 2017 | A1 |
Number | Date | Country |
---|---|---|
2932872 | Dec 2017 | CA |
2761682 | Mar 2006 | CN |
102071638 | May 2011 | CN |
202595622 | Dec 2012 | CN |
103123016 | May 2013 | CN |
203834369 | Sep 2014 | CN |
203923926 | Nov 2014 | CN |
104192769 | Dec 2014 | CN |
204212065 | Mar 2015 | CN |
204418013 | Jun 2015 | CN |
105735140 | Jul 2016 | CN |
205501842 | Aug 2016 | CN |
105239515 | Apr 2017 | CN |
3305384 | Mar 1984 | DE |
8805760 | Jul 1988 | DE |
1321051 | Jun 1973 | GB |
1515114 | Jun 1978 | GB |
2263681 | Jan 1992 | GB |
10088521 | Apr 1998 | JP |
2009057685 | Mar 2009 | JP |
2009235687 | Oct 2009 | JP |
Entry |
---|
Title: Highways Date Accessed: Aug. 31, 2017 Source: Bridge Access Specialties URL: http://www.bridgeaccessspecialties.com/highways.php. |
Title: Bridge Inspection Rental Equipment Date Accessed: Aug. 31, 2017 Source: TRL Rents URL: http://www.trlrents.com/Bridge-Inspection-Rental.html. |
Title: Terex Hydra HPT 11/38 Access Platform Date Accessed: Mar. 30, 2017 Source: Construction Equipment URL: https://www.constructionequipment.com/terex-hydra-hpt-1138-access-plafform. |