Portable devices such as mobile phones are typically small, lightweight, and easily carried by users. As technology has advanced, such portable devices have provided users with an increasing amount of “on-the-go” functionality. For example, portable devices can incorporate a digital camera, a media player, and Internet-surfing capabilities. Some portable devices also include a global positioning system (GPS) transceiver. The ability to detect a current location of the portable device may enable location-based searches at the portable device. For example, a user of a mobile phone may perform (e.g., via a browser or a maps application) a search for restaurants that are near the current location. However, such a listing may not always be useful. For example, if the user is in a car that is traveling on a highway, identifying restaurants that the user has already traveled past may not be useful.
Other devices, such as vehicle navigation systems, may identify points of interest that are along a route of the vehicle. However, the vehicle navigation system may not be able to identify such points of interest unless a user has previously identified their intended destination.
Systems and methods of performing a search at a mobile computing device and generating search results based on a predicted (e.g., future) location of the mobile computing device are disclosed. When a user enters one or more search terms into the mobile computing device, the mobile computing device may transmit a search query that includes the one or more search terms and a location history of the mobile computing device to a server. For example, the location history may be used (e.g., by a location prediction service accessible to the server) to predict a future location of the mobile computing device. The predicted location of the mobile computing device may be a predicted destination of the mobile computing device, a point along a predicted route of the mobile computing device, or some other location. The search terms from the user may be augmented with information regarding the predicted location, thereby creating a trajectory-aware search query. The trajectory-aware search query may be transmitted to a search engine to identify trajectory-aware search results that may be more relevant to a travelling user than search results identified solely based on a current location of the user.
In alternate implementations, the future location(s) of the mobile computing device may be predicted at the mobile computing device instead of at a server or by a location prediction service. The mobile search techniques disclosed herein may identify trajectory-aware search results even when an intended destination or an intended route of the mobile computing device are not expressly input by a user. Thus, the disclosed systems and methods may be operable “out of the box.”
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter.
In a particular embodiment, a method includes receiving one or more search terms at a mobile computing device while the mobile computing device is located at a particular location. The method also includes transmitting a search query to a server. The search query includes the one or more search terms and a location history of the mobile computing device. The method further includes receiving a search result in response to the search query, where the search result includes content identified based on a predicted destination of the mobile computing device. The method includes displaying an interface at the mobile computing device that identifies the search result.
In another particular embodiment, a non-transitory computer-readable storage medium includes instructions that, when executed by a computer, cause the computer to receive a search query from a mobile computing device. The search query includes one or more search terms and a set of geographic elements traversed by the mobile computing device during a trip. The instructions are also executable to cause the computer to determine a predicted location of the mobile computing device based on the set of geographic elements and to create a trajectory-aware search query based on the one or more search terms and the predicted location. The instructions are further executable to cause the computer to identify one or more search results in response to the trajectory-aware search query and to transmit the one or more search results to the mobile computing device.
In another particular embodiment, a system includes a location indicator, an input interface, an output interface, and a network interface. The system also includes a processor and a memory storing instructions executable by the processor to track a location history based on outputs of the location indicator. The instructions are also executable by the processor to receive one or more search terms via the input interface and to predict a destination based on the location history. The instructions are further executable to create a trajectory-aware search query based on the one or more search terms and the predicted destination. The instructions are executable to transmit the trajectory-aware search query to a search engine via the network interface and to receive one or more search results from the search engine via the network interface. The instructions are also executable to display content associated with the one or more search results via the output interface.
The mobile computing device 110 may be a mobile telephone, a smartphone, a portable digital assistant (PDA), a laptop computer, a tablet computer, a netbook computer, a navigation device, a digital camera, a watch or other electronic apparel or accessory, or some other portable electronic device or portable computing device. The mobile computing device 110 may include one or more input and output interfaces or devices. For example, the mobile computing device 110 may be a mobile telephone that includes input devices such as a keypad and a microphone, output devices such as a speaker, and combination input/output devices such as a capacitive touchscreen. The mobile computing device 110 may also include a location indicator such as a GPS transceiver. When sampled, the location indicator may return a current location of the mobile computing device 110. In alternate embodiments, other forms of location measurement may be used by or provided to the mobile computing device 110. For example, the current location of the mobile computing device 110 may be determined from one or more wireless (e.g., Wi-Fi) access points, cellular towers, Bluetooth radios, or a separate location determining device (e.g., a vehicle's navigation system).
In a particular embodiment, the mobile computing device 110 is operable to detect the start and stop of a trip made by a user that possesses the mobile computing device 110. Trips may be detected automatically or in response to user input. For example, the start of a car trip may be detected when the mobile computing device 110 experiences a sudden and large change in velocity. During the trip, the mobile computing device 110 may sample the location indicator to maintain a location history 124 of the mobile computing device 110. For example, the location history 124 may identify a set of one or more geographic elements (e.g., geographic cells, road segments, or other geographic elements) traversed by the mobile computing device 110 during the trip.
In a particular embodiment, the mobile computing device 110 samples the location indicator periodically (e.g., upon expiration of a sampling period such as 5 seconds). The mobile computing device 110 may identify a geographic element corresponding to the location returned by the location indicator and add the geographic element to the location history 124. In a particular embodiment, the geographic element is not added to the location history 124 unless the geographic element is more than a threshold distance (e.g., 20 meters) from a previously returned location. In alternate embodiments, a sampling period other than 5 seconds and a threshold distance other than 20 meters may be used.
When the mobile computing device receives 110 a search query 120 including one or more search terms 122 from the user, the mobile computing device 120 may add the location history 124 (or information related to the location history 124) to the search query 120 before transmitting the search query 120 to the server 130. For example, the search terms 122 may be received via a browser application or a maps application executing at the mobile computing device 110.
The server 130 may receive the search query 120 from the mobile computing device 110. In a particular embodiment, the server 130 identifies a predicted location 142 of the mobile computing device 110 after receiving the search query 120. For example, the predicted location 142 may be a predicted destination of the mobile computing device 110, a point on a predicted route of the mobile computing device 110, or some other location. In certain situations, a predicted destination of the mobile computing device 110 may correspond to the current location of the mobile computing device 110 (i.e., the location of the mobile computing device 110 when the search terms 122 were entered). That is, the server 130 may predict that a user has arrived at his or her intended destination, will make a round-trip, or will not travel anywhere else for a period of time. Alternately, the predicted destination of the mobile computing device 110 may be different than the current location of the mobile computing device 110.
The server 130 may add information regarding the predicted location 142 to the search query 120 to generate a trajectory-aware search query 132. For example, the trajectory-aware search query 132 may include the search terms 122 and geographic coordinates or keywords corresponding to the predicted location 142. To illustrate, if the search terms 122 included “hardware store” and the predicted location was “Seattle, Wash.,” the trajectory-aware search query 132 may include “hardware store Seattle, Wash.” The trajectory-aware search query 132 may be transmitted to a search engine server 160 to generate the search results 162. For example, the search engine server 160 may correspond to an Internet-accessible search engine.
In a particular embodiment, the server 130 utilizes a location prediction service 140 to identify the predicted location 142. For example, the server 130 may extract the location history 124 from the search query 120 and may transmit the location history 124 to the location prediction service 140. The location prediction service 140 may use the location history 124 to determine the predicted location 142 and may transmit the predicted location 142 to the server 130. For example, the location prediction service 140 may include or may have access to stored travel times 150 corresponding to a geographic region. The stored travel times 150 may include estimates of how long it takes to travel (e.g., by foot, bicycle, motorcycle, car, public transportation, or any combination thereof) between two points in the geographic region. The location prediction service 140 may use the stored travel times 150 and other information or assumptions (e.g., that most trips are less than half an hour in duration) to determine the predicted location 142. An exemplary method of predicting a future location based on a location history is described with reference to
In a particular embodiment, the mobile computing device 110 transmits updated location histories to the server 130 during a trip. For example, an updated location history may indicate movement of the mobile computing device 110 from a first location to a second location. The server 130 may use the updated location histories to refine the predicted location 142 and to identify updated search results via the search engine server 160. For example, the trajectory-aware search query 132 may be transmitted to the search engine server 160 via a search engine application programming interface (API). The server 130 may transmit the updated search results to the mobile computing device 110, where the updated search results are displayed alongside or instead of the search results 162 (e.g., at a graphical user interface (GUI) generated by the mobile computing device 110). An exemplary search interface is further described with reference to
In another particular embodiment, trajectory-aware search is not performed if the search terms 122 include a geographic search term. To illustrate, if the search terms 122 or a second search query included “hardware store Portland, Oreg.” instead of merely “hardware store,” the mobile computing device 120 may not add the location history 124 to the search query 120, since the search terms 122 already specify a geographic target. Alternately, the mobile computing device 110 may add the location history 124, but the server 130 may ignore the location history 124 and may transmit the search query 120 to the search engine server 160 as-is to retrieve search results regarding hardware stores in the Portland, Oreg. area (e.g., independently of a trajectory of the mobile computing device 110).
In yet another embodiment, the location history 124 may be used for disambiguation purposes. For example, if the search terms 122 included “hardware store Portland,” the server 130 may use the location history 124 and the predicted location 142 to deduce that a mobile phone is travelling towards Portland, Oreg. and not Portland, Me. The server 130 may thus prioritize search results associated with Portland, Oreg. over those associated with Portland, Me. Alternately, or in addition, the location history 124 may be used to suggest auto-complete search terms. For example, if a user located in Bellevue, Wash. types “Kir” into a search interface while the user is traveling from Bellevue, Wash. towards Kirkland, Wash., the search term “Kirkland” may be provided as a suggested auto-completion of the user's partially entered search query.
In another particular embodiment, the server 130 or the location prediction service 140 may compute a speed of the mobile computing device 110. For example, each geographic element in the location history 124 may have an associated timestamp representing when the mobile computing device 110 added the geographic element to the location history 124. The speed of the mobile computing device 110 may be computed based on the timestamps and may be used to augment the trajectory-aware search query 132, refine the trajectory-aware search results 162, identify additional search results, or any combination thereof. For example, a user may traverse the same sequence of geographic cells or road segments via a highway or via city streets. The computed speed of the mobile computing device 110 may be greater when the user is on the highway than when the user is on city streets. When the speed indicates that the user is on the highway (e.g., the speed is greater than a threshold), search results close to or associated with one or more exits on the highway may be prioritized. In other embodiments, a predicted location of a mobile computing device may also be used for non-search related purposes. For example, the predicted location may be used to determine traffic conditions en-route to the predicted location, to suggest alternate routes to the predicted location, or for other non-search related purposes.
In operation, the mobile computing device 110 may receive the search terms 122 and may generate the search query 120 based on the search terms 122. The mobile computing device 110 may also add the location history 124 to the search query 120 and transmit the search query 120 with the location history 124 to the server 130. The server 130 may identify the predicted location 142 of the mobile computing device 110 based on the location history 124. For example, the server 130 may transmit the location history 124 to the location prediction service 140 and receive the predicted location 142 from the location prediction service 140. The server may augment the search terms 122 with the predicted location 142 to generate the trajectory-aware search query 132. The server may identify the one or more trajectory-aware search results 162 based on the trajectory-aware search query 132 (e.g., via the search engine server 160). The server 130 may transmit the trajectory-aware search results 162 to the mobile computing device 110.
It will be appreciated that the system 100 of
It should be noted that although the system 100 of
The mobile computing device 200 may integrate the functionality and operations described with reference to the mobile computing device 100, the server 130, and the location prediction service 140 of
The mobile computing device 200 may further include a network interface 250. For example, the network interface 250 may be a wireless interface such as a cellular network interface or Wi-Fi network interface. The network interface 250 may be operable to communicate with network-based entities such as an Internet-accessible search engine. In a particular embodiment, the mobile computing device 200 communicates with the Internet-accessible search engine via an API 202. The mobile computing device 200 may also include an output interface 260 operable to provide output 203 to a user. For example, the output interface 260 may be a display screen. In a particular embodiment, the input interface 210 and the output interface 260 are integrated into a single device, such as a capacitive touchscreen.
The mobile computing device 200 may also include a trajectory-aware search and location prediction module 220. In a particular embodiment, the module 220 is implemented by processor-executable instructions. For example, such instructions may be stored at a memory of the mobile computing device 200 and may be executed by a processor of the mobile computing device 200. It should be noted that although the trajectory-aware search and location prediction module 220 is illustrated in
During operation, the location indicator 230 may be sampled (e.g., periodically) to track a location history 232 of the mobile computing device 200. The input interface 210 may receive the input 201 from a user, where the input 201 represents one or more search terms 212. The search terms 212 may be input into the trajectory-aware search and location prediction module 220. The trajectory-aware search and location prediction module 220 may determine a predicted location of the mobile computing device 200 based on the location history 232. In a particular embodiment, predicting the location includes reference to a database or table of stored travel times 240. For example, the stored travel times 240 may be stored in a non-volatile memory of the mobile computing device 200.
The module 220 may generate a trajectory-aware search query 222 that includes the predicted location. For example, the predicted location may be a predicted destination of the mobile computing device 200 or may be a point on a predicted route of the mobile computing device 222. The trajectory-aware search query 222 may be transmitted to a search engine via the network interface 250. The search engine may return one or more trajectory-aware search results 224 that may be displayed to the user via the output interface 260 as the output 203. For example, the search results 224 may be associated with the predicted location of the mobile computing device 200. Alternately, the trajectory-aware search query 222 may be used to search one or more local data stores (e.g., local databases, files, or applications) at the mobile computing device 200 instead of a search engine.
It will be appreciated that the system 200 of
In a particular embodiment, predicting locations based on location histories includes performing one or more initial (e.g., preparation) operations prior to making any predictions. A geographic area may be divided into a plurality of geographic elements. For example,
The grid 300 may include one or more navigable geographic elements 302 and one or more non-navigable geographic elements 304. In a particular embodiment, the navigable geographic elements 302 represent geographic elements that are within a threshold distance (e.g., 150 meters) from a navigable roadway. When the grid 300 is divided into geographic elements, a corresponding set of geographic elements may be created. A subset of the navigable geographic elements 302 may then be identified (e.g., by removing non-navigable geographic elements from the set) and travel times may be determined between each pair of navigable geographic elements. The travel times may be stored for future reference at one or more data storage devices (e.g., as the stored travel times 150 of
As a mobile computing device (e.g., the mobile computing device 100 of
In a particular embodiment, one or more destination elements are identified, where the destination elements are reachable within a predetermined time from the initial geographic element 310. For example, the predetermined time may be 30 minutes, based on an assumption or an empirical observation that most trips take less than 30 minutes to complete. The destination elements may be identified based on the previously stored travel times. For each such destination geographic element, a probability of whether the destination geographic element is a future location (e.g., destination) of the mobile computing device may be computed. Based on the computed probabilities, one or more of the predicted destination 402 and the predicted route 404 may be determined. The predicted destination 402 and/or the predicted route 404 may be used to identify trajectory-aware search results (e.g., search results near the predicted destination and/or along the predicted route 404).
In another particular embodiment, the predicted destination 402, the predicted route 404, and the computed probabilities may be stored for each user session to improve performance. Thus, when an updated location history is received, the predicted destination 402 and predicted route 404 may be updated without re-computing the probabilities. In another particular embodiment, each geographic element in a location history may be associated with a timestamp (e.g., representing when the mobile computing device entered, exited, or was located in the geographic element). The timestamps may be used to compute a speed of the mobile computing device, and the computed speed may be used to identify additional trajectory-aware search results or may be used to prioritize or refine previously identified search results. For example, when the computed speed is greater than a threshold (e.g., 55 miles per hour), search results associated with highway exits may be identified or prioritized.
It will be appreciated that the location prediction method of
In a particular embodiment, the interface includes a search field 501 and a search control 502. For example, the search field 501 may accept text input corresponding to one or more search terms, and the search control 502 may be a button operable to submit the search query to a trajectory-aware search program. To illustrate, a user presented with the interface 500 may enter a search term “pizza,” indicating that he or she is interested in finding a pizza restaurant. The interface 500 may also include a map area 510. The map area 510 may depict a region surrounding a current location 511 of a mobile computing device. The interface 500 may also include a bulls-eye icon 503 operable to center the map area 510 on the current location 511 and a timer icon 504 operable to view a history of previously conducted searches. Alternately, other icons or text-based controls may be displayed. In a particular embodiment, the map area 510 is interactive and may support panning and zooming operations.
In response to a search query (e.g., “pizza”), one or more search results may be generated and displayed (e.g., overlaid) on the map area 510. For example, the search results may be generated as described with reference to the search results 162 of
In a particular embodiment, each search result is interactive. For example, the user may select the search result 512 “E,” and the associated flag may change from white to black, as illustrated at 513. In addition, an information box 514 may be displayed, where the information block 514 includes information associated with the location or business corresponding to the selected search result 512 “E”. For example, for a pizza restaurant, the information box 514 may include a name, a price range, an address, and a phone number of the pizza restaurant. In other embodiments, the information box 514 may also include or be operable (e.g., via selection) to view reviews of the pizza restaurant submitted by other users.
It should be noted that the retail (e.g., “hardware store”) and restaurant (e.g., “pizza”) searches described herein are for example only. The disclosed mobile search techniques may be applied to any other search domain. For example, trajectory-aware mobile search may be performed on local (e.g., city, state, or municipal) content, web content, advertising, traffic information, friends or friend groups (e.g., in social networks), and other information domains. Moreover, trajectory information may not only be used to identify search results, but also to prioritize or rank search results, to compute information related to the trajectory (e.g., a remaining time to arrival at the predicted destination), and to pre-fetch search results or content likely to be retrieved by a user during subsequent searches or Internet-browsing sessions.
The method 600 may include detecting a start of a trip by a mobile computing device, at 602. For example, in
The method 600 may further include receiving one or more search terms at the mobile computing device while the mobile computing device is at a particular location, at 612. For example, in
The method 600 may also include creating a trajectory-aware search query based on the one or more search terms and the predicted location, at 616. For example, in
The method 600 may include displaying an interface at the mobile computing device that identifies the search result, a 620. For example, in
The method 700 may include dividing a geographic area into a plurality of geographic elements, at 702. For example, in
The method 700 may also include identifying a subset of navigable geographic elements that are within a threshold distance of a navigable roadway, at 704. For example, in
The method 700 may further include determining and storing travel times between each pair of navigable geographic elements, at 706. For example, in
The method 700 may further include computing probabilities of whether the destination geographic elements are a destination of the mobile computing device, at 712, and determining a predicted destination based on the probabilities, at 714. For example, referring to
The method 700 may include creating a trajectory-aware search query based on the one or more search terms and the predicted destination, at 716, and identifying one or more search results in response to the trajectory-aware search query, at 718. For example, in
The computing device 810 includes at least one processor 820 and a system memory 830. For example, the computing device 810 may be a desktop computer, a laptop computer, a tablet computer, a mobile phone, a server, or any other fixed or mobile computing device. Depending on the configuration and type of computing device, the system memory 830 may be volatile (such as random access memory or “RAM”), non-volatile (such as read-only memory or “ROM,” flash memory, and similar memory devices that maintain stored data even when power is not provided), non-transitory, some combination of the three, or some other memory. The system memory 830 may include an operating system 832, one or more application platforms 834, one or more applications 836, and program data 838. In the embodiment illustrated, the system memory 830 includes a trajectory-aware search and location prediction module 837. In an illustrative embodiment, the trajectory-aware search and location prediction module 837 is the trajectory-aware search and location prediction module 220 of
The computing device 810 may also have additional features or functionality. For example, the computing device 810 may also include removable and/or non-removable additional data storage devices such as magnetic disks, optical disks, tape, and memory cards. Such additional storage is illustrated in
The computing device 810 may also have input device(s) 860, such as a keyboard, mouse, pen, voice input device, touch input device, etc. connected via one or more input interfaces. In an illustrative embodiment, the input device(s) 860 include the input interface 210 of
The computing device 810 also contains one or more communication connections 880 that allow the computing device 810 to communicate with other computing devices over a wired or a wireless network. In an illustrative embodiment, the communication connections 880 include the network interface 250 of
It will be appreciated that not all of the components or devices illustrated in
The illustrations of the embodiments described herein are intended to provide a general understanding of the structure of the various embodiments. The illustrations are not intended to serve as a complete description of all of the elements and features of apparatus and systems that utilize the structures or methods described herein. Many other embodiments may be apparent to those of skill in the art upon reviewing the disclosure. Other embodiments may be utilized and derived from the disclosure, such that structural and logical substitutions and changes may be made without departing from the scope of the disclosure. Accordingly, the disclosure and the figures are to be regarded as illustrative rather than restrictive.
Those of skill would further appreciate that the various illustrative logical blocks, configurations, modules, and process steps or instructions described in connection with the embodiments disclosed herein may be implemented as electronic hardware or computer software. Various illustrative components, blocks, configurations, modules, or steps have been described generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the present disclosure.
The steps of a method described in connection with the embodiments disclosed herein may be embodied directly in hardware, in a software module executed by a processor, or in a combination of the two. A software module may reside in computer readable media, such as random access memory (RAM), flash memory, read only memory (ROM), registers, a hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art. An exemplary storage medium is coupled to a processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor or the processor and the storage medium may reside as discrete components in a computing device or computer system.
Although specific embodiments have been illustrated and described herein, it should be appreciated that any subsequent arrangement designed to achieve the same or similar purpose may be substituted for the specific embodiments shown. This disclosure is intended to cover any and all subsequent adaptations or variations of various embodiments.
The Abstract is provided with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. In addition, in the foregoing Detailed Description, various features may be grouped together or described in a single embodiment for the purpose of streamlining the disclosure. This disclosure is not to be interpreted as reflecting an intention that the claimed embodiments require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter may be directed to less than all of the features of any of the disclosed embodiments.
The previous description of the embodiments is provided to enable a person skilled in the art to make or use the embodiments. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without departing from the scope of the disclosure. Thus, the present disclosure is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope possible consistent with the principles and novel features as defined by the following claims.
This patent application is a continuation of, and claims priority to, U.S. patent application Ser. No. 12/970,974, filed on Dec. 17, 2010, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4760530 | Liden | Jul 1988 | A |
5493692 | Theimer et al. | Feb 1996 | A |
5544321 | Theimer et al. | Aug 1996 | A |
5555376 | Theimer et al. | Sep 1996 | A |
5603054 | Theimer et al. | Feb 1997 | A |
5611050 | Theimer et al. | Mar 1997 | A |
5623194 | Boll et al. | Apr 1997 | A |
5781704 | Rossmo | Jul 1998 | A |
5812865 | Theimer et al. | Sep 1998 | A |
5845227 | Peterson | Dec 1998 | A |
5848395 | Edgar et al. | Dec 1998 | A |
5948040 | DeLorme et al. | Sep 1999 | A |
5978732 | Kakitani et al. | Nov 1999 | A |
6078826 | Croft | Jun 2000 | A |
6084543 | Iizuka | Jul 2000 | A |
6092014 | Okada | Jul 2000 | A |
6116363 | Frank | Sep 2000 | A |
6119065 | Shimada et al. | Sep 2000 | A |
6122572 | Yavnai et al. | Sep 2000 | A |
6154745 | Kari | Nov 2000 | A |
6292687 | Lowell | Sep 2001 | B1 |
6298304 | Theimer | Oct 2001 | B1 |
6314347 | Kuroda et al. | Nov 2001 | B1 |
6317718 | Fano | Nov 2001 | B1 |
6321161 | Herbst et al. | Nov 2001 | B1 |
6353398 | Amin et al. | Mar 2002 | B1 |
6356905 | Gershman et al. | Mar 2002 | B1 |
6381522 | Watanabe et al. | Apr 2002 | B1 |
6401085 | Gershman et al. | Jun 2002 | B1 |
6405134 | Smith | Jun 2002 | B1 |
6418424 | Hoffberg | Jul 2002 | B1 |
6446076 | Burkey et al. | Sep 2002 | B1 |
6466232 | Newell et al. | Oct 2002 | B1 |
6480783 | Myr | Nov 2002 | B1 |
6490519 | Lapidot et al. | Dec 2002 | B1 |
6513046 | Abbott et al. | Jan 2003 | B1 |
6526350 | Sekiyama | Feb 2003 | B2 |
6549915 | Abbott et al. | Apr 2003 | B2 |
6574351 | Miyano | Jun 2003 | B1 |
6587785 | Jijina et al. | Jul 2003 | B2 |
6603405 | Smith | Aug 2003 | B2 |
6611754 | Klein | Aug 2003 | B2 |
6615130 | Myr | Sep 2003 | B2 |
6618593 | Drutman et al. | Sep 2003 | B1 |
6622160 | Horvitz | Sep 2003 | B1 |
6668227 | Hamada et al. | Dec 2003 | B2 |
6672506 | Swartz et al. | Jan 2004 | B2 |
6700504 | Aslandogan | Mar 2004 | B1 |
6714967 | Horvitz | Mar 2004 | B1 |
6741188 | Miller et al. | May 2004 | B1 |
6747675 | Abbott et al. | Jun 2004 | B1 |
D494584 | Schlieffers et al. | Aug 2004 | S |
6791580 | Abbott et al. | Sep 2004 | B1 |
6796505 | Pellaumail et al. | Sep 2004 | B2 |
6801223 | Abbott et al. | Oct 2004 | B1 |
6807483 | Chao et al. | Oct 2004 | B1 |
6812937 | Abbott et al. | Nov 2004 | B1 |
6837436 | Swartz et al. | Jan 2005 | B2 |
6842877 | Robarts et al. | Jan 2005 | B2 |
6845324 | Smith | Jan 2005 | B2 |
6845370 | Burkey et al. | Jan 2005 | B2 |
RE38724 | Peterson | Apr 2005 | E |
6889382 | Anderson | May 2005 | B1 |
6892196 | Hughes | May 2005 | B1 |
6931598 | Price et al. | Aug 2005 | B2 |
6954735 | Djupsjobscka et al. | Oct 2005 | B1 |
7010501 | Roslak et al. | Mar 2006 | B1 |
7040541 | Swartz et al. | May 2006 | B2 |
7054938 | Sundqvist et al. | May 2006 | B2 |
7058506 | Kawase et al. | Jun 2006 | B2 |
7063263 | Swartz et al. | Jun 2006 | B2 |
7069310 | Bartholomew | Jun 2006 | B1 |
7071842 | Brady, Jr. | Jul 2006 | B1 |
7103470 | Mintz | Sep 2006 | B2 |
7130743 | Kudo et al. | Oct 2006 | B2 |
7149741 | Burkey et al. | Dec 2006 | B2 |
7171378 | Petrovich et al. | Jan 2007 | B2 |
7195157 | Swartz et al. | Mar 2007 | B2 |
7200394 | Aoki | Apr 2007 | B2 |
7200566 | Moore et al. | Apr 2007 | B1 |
7227498 | Soliman | Jun 2007 | B2 |
7233861 | Van Buer et al. | Jun 2007 | B2 |
7245925 | Zellner | Jul 2007 | B2 |
7246007 | Ferman | Jul 2007 | B2 |
7385501 | Miller et al. | Jun 2008 | B2 |
7386477 | Fano | Jun 2008 | B2 |
7389179 | Jin et al. | Jun 2008 | B2 |
7403774 | Chandra et al. | Jul 2008 | B2 |
7451041 | Laumeyer et al. | Nov 2008 | B2 |
7463890 | Herz et al. | Dec 2008 | B2 |
7512462 | Nichols et al. | Mar 2009 | B2 |
7536258 | Kudo et al. | May 2009 | B2 |
7565157 | Ortega et al. | Jul 2009 | B1 |
7577522 | Rosenberg | Aug 2009 | B2 |
7589628 | Brady, Jr. | Sep 2009 | B1 |
7590589 | Hoffberg | Sep 2009 | B2 |
7596513 | Fargo | Sep 2009 | B2 |
7603229 | Goldberg et al. | Oct 2009 | B2 |
7610151 | Letchner et al. | Oct 2009 | B2 |
7617042 | Horvitz et al. | Nov 2009 | B2 |
7630828 | Tajima et al. | Dec 2009 | B2 |
7630986 | Herz et al. | Dec 2009 | B1 |
7634463 | Katragadda et al. | Dec 2009 | B1 |
7636707 | Chaudhuri | Dec 2009 | B2 |
7676583 | Eaton et al. | Mar 2010 | B2 |
7698055 | Horvitz et al. | Apr 2010 | B2 |
7706964 | Horvitz et al. | Apr 2010 | B2 |
7720715 | Nemer | May 2010 | B1 |
7739040 | Horvitz | Jun 2010 | B2 |
7743048 | Baldwin | Jun 2010 | B2 |
7743056 | Meisels | Jun 2010 | B2 |
7774002 | Ortega | Aug 2010 | B1 |
7774003 | Ortega | Aug 2010 | B1 |
7783423 | Verma et al. | Aug 2010 | B2 |
7788030 | Kato et al. | Aug 2010 | B2 |
7797267 | Horvitz | Sep 2010 | B2 |
7813870 | Downs et al. | Oct 2010 | B2 |
7835859 | Bill | Nov 2010 | B2 |
7835939 | Karlsson | Nov 2010 | B1 |
7885761 | Tajima et al. | Feb 2011 | B2 |
7899611 | Downs et al. | Mar 2011 | B2 |
7912628 | Chapman et al. | Mar 2011 | B2 |
7912637 | Horvitz et al. | Mar 2011 | B2 |
7925426 | Koebler et al. | Apr 2011 | B2 |
7941269 | Laumeyer et al. | May 2011 | B2 |
7962156 | Robertson | Jun 2011 | B2 |
7991718 | Horvitz et al. | Aug 2011 | B2 |
8005822 | Rechis et al. | Aug 2011 | B2 |
8020104 | Robarts | Sep 2011 | B2 |
8024112 | Krumm et al. | Sep 2011 | B2 |
8027788 | Miyata | Sep 2011 | B2 |
8090530 | Horvitz | Jan 2012 | B2 |
8121891 | Handel et al. | Feb 2012 | B2 |
8126641 | Horvitz | Feb 2012 | B2 |
8131467 | Yoshioka et al. | Mar 2012 | B2 |
8165773 | Chavez et al. | Apr 2012 | B1 |
8166392 | Horvitz et al. | Apr 2012 | B2 |
8190362 | Barker et al. | May 2012 | B2 |
8473197 | Horvitz | Jun 2013 | B2 |
8533097 | Maass | Sep 2013 | B2 |
8615254 | Jamtgaard | Dec 2013 | B2 |
8639803 | Moritz et al. | Jan 2014 | B2 |
8754777 | Mendis | Jun 2014 | B1 |
8981995 | Schlesinger et al. | Mar 2015 | B2 |
9134137 | Brush et al. | Sep 2015 | B2 |
9163952 | Viola et al. | Oct 2015 | B2 |
20010030664 | Shulman et al. | Oct 2001 | A1 |
20010040590 | Abbott et al. | Nov 2001 | A1 |
20010040591 | Abbott et al. | Nov 2001 | A1 |
20010043231 | Abbott et al. | Nov 2001 | A1 |
20010043232 | Abbott et al. | Nov 2001 | A1 |
20010055165 | McCarthy et al. | Dec 2001 | A1 |
20020002504 | Engel et al. | Jan 2002 | A1 |
20020032689 | Abbott et al. | Mar 2002 | A1 |
20020044152 | Abbott et al. | Apr 2002 | A1 |
20020052786 | Kim et al. | May 2002 | A1 |
20020052930 | Abbott et al. | May 2002 | A1 |
20020052963 | Abbott et al. | May 2002 | A1 |
20020054130 | Abbott et al. | May 2002 | A1 |
20020054174 | Abbott et al. | May 2002 | A1 |
20020067289 | Smith | Jun 2002 | A1 |
20020078204 | Newell et al. | Jun 2002 | A1 |
20020080155 | Abbott et al. | Jun 2002 | A1 |
20020080156 | Abbott et al. | Jun 2002 | A1 |
20020083025 | Robarts | Jun 2002 | A1 |
20020083158 | Abbott et al. | Jun 2002 | A1 |
20020087525 | Abbott et al. | Jul 2002 | A1 |
20020099817 | Abbott et al. | Jul 2002 | A1 |
20020107618 | Deguchi et al. | Aug 2002 | A1 |
20020194061 | Himmel et al. | Dec 2002 | A1 |
20030036842 | Hancock | Feb 2003 | A1 |
20030042051 | Kriger et al. | Mar 2003 | A1 |
20030046401 | Abbott et al. | Mar 2003 | A1 |
20030069683 | Lapidot et al. | Apr 2003 | A1 |
20030135304 | Sroub et al. | Jul 2003 | A1 |
20030139863 | Toda et al. | Jul 2003 | A1 |
20030153338 | Herz et al. | Aug 2003 | A1 |
20030154009 | Basir et al. | Aug 2003 | A1 |
20030154476 | Abbott et al. | Aug 2003 | A1 |
20030172368 | Alumbaugh et al. | Sep 2003 | A1 |
20030195700 | Hamada et al. | Oct 2003 | A1 |
20030229471 | Gurainik et al. | Dec 2003 | A1 |
20030229895 | Jasinschi et al. | Dec 2003 | A1 |
20040015557 | Horvitz | Jan 2004 | A1 |
20040017392 | Welch | Jan 2004 | A1 |
20040019603 | Haigh et al. | Jan 2004 | A1 |
20040068364 | Zhao et al. | Apr 2004 | A1 |
20040070602 | Kobuya et al. | Apr 2004 | A1 |
20040090121 | Simonds et al. | May 2004 | A1 |
20040090346 | Simonds et al. | May 2004 | A1 |
20040092253 | Simonds et al. | May 2004 | A1 |
20040093154 | Simonds et al. | May 2004 | A1 |
20040093155 | Simonds et al. | May 2004 | A1 |
20040125144 | Yoon | Jul 2004 | A1 |
20040128066 | Kudo et al. | Jul 2004 | A1 |
20040153445 | Horvitz et al. | Aug 2004 | A1 |
20040166877 | Spain et al. | Aug 2004 | A1 |
20040172457 | Horvitz | Sep 2004 | A1 |
20040172483 | Horvitz | Sep 2004 | A1 |
20040176211 | Kitajima et al. | Sep 2004 | A1 |
20040180671 | Spain, Jr. | Sep 2004 | A1 |
20040181340 | Smith | Sep 2004 | A1 |
20040189475 | Cooper | Sep 2004 | A1 |
20040201500 | Miller | Oct 2004 | A1 |
20040260457 | Kawase et al. | Dec 2004 | A1 |
20040267965 | Vasudevan et al. | Dec 2004 | A1 |
20040268403 | Krieger et al. | Dec 2004 | A1 |
20050021417 | Kassan | Jan 2005 | A1 |
20050034078 | Abbott et al. | Feb 2005 | A1 |
20050046584 | Breed | Mar 2005 | A1 |
20050049900 | Hirose | Mar 2005 | A1 |
20050086004 | Smith | Apr 2005 | A1 |
20050091118 | Fano | Apr 2005 | A1 |
20050097005 | Fargo | May 2005 | A1 |
20050125148 | Van Buer et al. | Jun 2005 | A1 |
20050131607 | Breed | Jun 2005 | A1 |
20050144318 | Chang | Jun 2005 | A1 |
20050149253 | Nambata | Jul 2005 | A1 |
20050182645 | Ehlis | Aug 2005 | A1 |
20050197775 | Smith | Sep 2005 | A1 |
20050216186 | Dorfman et al. | Sep 2005 | A1 |
20050219120 | Chang | Oct 2005 | A1 |
20050228553 | Tryon | Oct 2005 | A1 |
20050240378 | Smith | Oct 2005 | A1 |
20050256866 | Lu et al. | Nov 2005 | A1 |
20050266858 | Miller | Dec 2005 | A1 |
20050272442 | Miller | Dec 2005 | A1 |
20050283503 | Hancock et al. | Dec 2005 | A1 |
20060015254 | Smith | Jan 2006 | A1 |
20060019676 | Miller | Jan 2006 | A1 |
20060022048 | Johnson | Feb 2006 | A1 |
20060047416 | Goldberg et al. | Mar 2006 | A1 |
20060070012 | Milener et al. | Mar 2006 | A1 |
20060138219 | Brzeznizk et al. | Jun 2006 | A1 |
20060146834 | Baker et al. | Jul 2006 | A1 |
20060195789 | Rogers et al. | Aug 2006 | A1 |
20060241862 | Ichihara et al. | Oct 2006 | A1 |
20060271277 | Hu et al. | Nov 2006 | A1 |
20060271286 | Rosenberg | Nov 2006 | A1 |
20060277474 | Robarts et al. | Dec 2006 | A1 |
20060286988 | Blume | Dec 2006 | A1 |
20060294084 | Patel et al. | Dec 2006 | A1 |
20070008927 | Herz et al. | Jan 2007 | A1 |
20070010942 | Bill | Jan 2007 | A1 |
20070011148 | Burkey et al. | Jan 2007 | A1 |
20070033516 | Khosla et al. | Feb 2007 | A1 |
20070042790 | Mohi et al. | Feb 2007 | A1 |
20070060108 | East et al. | Mar 2007 | A1 |
20070083497 | Martinez | Apr 2007 | A1 |
20070088683 | Feroglia et al. | Apr 2007 | A1 |
20070106465 | Adam et al. | May 2007 | A1 |
20070118279 | Kudo | May 2007 | A1 |
20070124157 | Laumeyer et al. | May 2007 | A1 |
20070129072 | Yamato et al. | Jun 2007 | A1 |
20070150369 | Zivin | Jun 2007 | A1 |
20070156334 | Vu | Jul 2007 | A1 |
20070162942 | Hamynen et al. | Jul 2007 | A1 |
20070208619 | Branam et al. | Sep 2007 | A1 |
20070208991 | Rider | Sep 2007 | A1 |
20070214180 | Crawford | Sep 2007 | A1 |
20070219706 | Sheynblat | Sep 2007 | A1 |
20070255621 | Mason | Nov 2007 | A1 |
20080004794 | Horvitz | Jan 2008 | A1 |
20080004802 | Horvitz | Jan 2008 | A1 |
20080004926 | Horvitz et al. | Jan 2008 | A1 |
20080005055 | Horvitz | Jan 2008 | A1 |
20080016055 | Riise et al. | Jan 2008 | A1 |
20080021628 | Tryon | Jan 2008 | A1 |
20080027632 | Mauderer | Jan 2008 | A1 |
20080033646 | Morgan et al. | Feb 2008 | A1 |
20080070593 | Altman et al. | Mar 2008 | A1 |
20080088424 | Imura et al. | Apr 2008 | A1 |
20080090591 | Miller | Apr 2008 | A1 |
20080091347 | Tashiro | Apr 2008 | A1 |
20080091537 | Miller | Apr 2008 | A1 |
20080104225 | Zhang et al. | May 2008 | A1 |
20080109307 | Ullah | May 2008 | A1 |
20080126191 | Schiavi | May 2008 | A1 |
20080140712 | Weber et al. | Jun 2008 | A1 |
20080161018 | Miller | Jul 2008 | A1 |
20080215436 | Roberts | Sep 2008 | A1 |
20080243370 | Loera et al. | Oct 2008 | A1 |
20080247377 | Van Horn et al. | Oct 2008 | A1 |
20080248815 | Busch | Oct 2008 | A1 |
20080249667 | Horvitz | Oct 2008 | A1 |
20080261516 | Robinson | Oct 2008 | A1 |
20080263036 | Yamamoto | Oct 2008 | A1 |
20080268870 | Houri | Oct 2008 | A1 |
20080275632 | Cummings | Nov 2008 | A1 |
20080288494 | Brogger et al. | Nov 2008 | A1 |
20080311947 | Soerensen et al. | Dec 2008 | A1 |
20080319658 | Horvitz et al. | Dec 2008 | A1 |
20080319660 | Horvitz et al. | Dec 2008 | A1 |
20090003252 | Salomone | Jan 2009 | A1 |
20090005067 | Ernst et al. | Jan 2009 | A1 |
20090006297 | Horvitz et al. | Jan 2009 | A1 |
20090036148 | Yach | Feb 2009 | A1 |
20090037838 | Gedye et al. | Feb 2009 | A1 |
20090040954 | Usuba | Feb 2009 | A1 |
20090125226 | Laumeyer et al. | May 2009 | A1 |
20090125380 | Otto et al. | May 2009 | A1 |
20090143082 | Begeja et al. | Jun 2009 | A1 |
20090174540 | Smith | Jul 2009 | A1 |
20090265096 | Haatainen | Oct 2009 | A1 |
20090319672 | Reisman | Dec 2009 | A1 |
20100010733 | Krumm | Jan 2010 | A1 |
20100036601 | Ozawa et al. | Feb 2010 | A1 |
20100070160 | Haatainen | Mar 2010 | A1 |
20100070171 | Barbeau et al. | Mar 2010 | A1 |
20100070334 | Monteverde | Mar 2010 | A1 |
20100082247 | Klein et al. | Apr 2010 | A1 |
20100082436 | Maghoul et al. | Apr 2010 | A1 |
20100094707 | Freer | Apr 2010 | A1 |
20100106603 | Dey et al. | Apr 2010 | A1 |
20100153007 | Crowley | Jun 2010 | A1 |
20100185388 | Horvitz | Jul 2010 | A1 |
20100188575 | Salomons et al. | Jul 2010 | A1 |
20100198860 | Burnett et al. | Aug 2010 | A1 |
20100214942 | Du et al. | Aug 2010 | A1 |
20100248746 | Saavedra et al. | Sep 2010 | A1 |
20100250348 | Dunbar | Sep 2010 | A1 |
20100250578 | Athsani et al. | Sep 2010 | A1 |
20100255856 | Kansal et al. | Oct 2010 | A1 |
20100305848 | Stallman | Dec 2010 | A1 |
20100317374 | Alpert et al. | Dec 2010 | A1 |
20100323715 | Winters | Dec 2010 | A1 |
20100332315 | Kamar et al. | Dec 2010 | A1 |
20100333137 | Hamano et al. | Dec 2010 | A1 |
20110004513 | Hoffberg | Jan 2011 | A1 |
20110022464 | Dunn et al. | Jan 2011 | A1 |
20110075598 | Jalfon et al. | Mar 2011 | A1 |
20110085447 | Kholaif et al. | Apr 2011 | A1 |
20110137895 | Petrou et al. | Jun 2011 | A1 |
20110150107 | Jung et al. | Jun 2011 | A1 |
20110151839 | Bolon et al. | Jun 2011 | A1 |
20110208430 | Tun et al. | Aug 2011 | A1 |
20110238289 | Lehmann | Sep 2011 | A1 |
20110246059 | Tokashiki | Oct 2011 | A1 |
20110282571 | Krumm et al. | Nov 2011 | A1 |
20110219094 | Usui et al. | Dec 2011 | A1 |
20120020522 | Soderstrom | Jan 2012 | A1 |
20120026992 | Navda et al. | Feb 2012 | A1 |
20120089322 | Horvitz | Apr 2012 | A1 |
20120184323 | Hara et al. | Jul 2012 | A1 |
20120299724 | Kuper et al. | Nov 2012 | A1 |
20130006754 | Horvitz et al. | Jan 2013 | A1 |
20130018581 | Sidhu | Jan 2013 | A1 |
20130018629 | Sidhu | Jan 2013 | A1 |
20130077546 | Liu et al. | Mar 2013 | A1 |
20130110454 | Sidhu | May 2013 | A1 |
20130158867 | Sidhu | Jun 2013 | A1 |
20130195091 | Gibbs et al. | Aug 2013 | A1 |
20130223308 | Chandra et al. | Aug 2013 | A1 |
20140024354 | Haik et al. | Jan 2014 | A1 |
20140070991 | Liu et al. | Mar 2014 | A1 |
20150018008 | Schlesinger et al. | Jan 2015 | A1 |
Number | Date | Country |
---|---|---|
1280438 | Jan 2001 | CN |
1609793 | Apr 2005 | CN |
1779672 | May 2006 | CN |
1828599 | Sep 2006 | CN |
101164059 | Apr 2008 | CN |
101286173 | Oct 2008 | CN |
101690106 | Mar 2010 | CN |
10042983 | Mar 2002 | DE |
1085484 | Mar 2001 | EP |
1929456 | Jun 2008 | EP |
2114103 | Nov 2009 | EP |
2293016 | Mar 2011 | EP |
2293233 | Mar 2011 | EP |
2431261 | Oct 2006 | GB |
07-083678 | Mar 1995 | JP |
08-271277 | Oct 1996 | JP |
10-132593 | May 1998 | JP |
11-153446 | Jun 1999 | JP |
2002-41612 | Feb 2002 | JP |
2002-328035 | Nov 2002 | JP |
2004-317160 | Nov 2004 | JP |
2009-116472 | May 2009 | JP |
2009-543191 | Dec 2009 | JP |
19970006207 | Feb 1997 | KR |
1019970071404 | Nov 1997 | KR |
1020040033141 | Apr 2004 | KR |
1020040050550 | Jun 2004 | KR |
20040078955 | Sep 2004 | KR |
10-2005-0035336 | Apr 2005 | KR |
10-2005-0045716 | May 2005 | KR |
10-2005-0105139 | Nov 2005 | KR |
10-2010-0072795 | Jul 2010 | KR |
200912781 | Mar 2009 | TW |
9800787 | Jan 1998 | WO |
01009753 | Aug 2001 | WO |
2004044605 | May 2004 | WO |
2005024688 | Mar 2005 | WO |
2007040891 | Apr 2007 | WO |
Entry |
---|
Beard et al., “Estimating Positions and Paths of Moving Objects”, Seventh International Worskshop on Temporal Representation and Reasoning (TIME 2000), Jul. 2000, 8 pages. |
Billinghurst, Mark, “Research Directions in Wearable Computing”, University of Washington, May 1998, retrieved at <<http://www.hitl.washington.edu/consortium/mark598/sld001.htm>> on Apr. 4, 2005, 48 pages. |
Choi et al., “Performance Evaluation of Traffic Control Based on Geographical Information”, IEEE International conference on Intelligent Computing and Intelligent Systems (ICIS2009), Dec. 2009, 5 pages. |
Froehlich et al., “Route Prediction from Trip Observations”, Society of Automotive Engineers (SAE) World Congress, 2008, Detroit MI, USA, 13 pages. |
Harter et al., “A Distributed Location System for the Active Office”, IEEE Network, Jan./Feb. 1994, 9 pages. |
Horvitz et al., “Attention-Sensitive Altering in Computing Systems”, Microsoft Research, Aug. 1999, 26 pages. |
Horvitz et al., “Bayesphone: Precomputation of Context-Sensitive Polices for Inquiry and Action in Mobile Devices”, Proceedings of the Tenth Conference on User Modeling (UM 2005), Jul. 2005, Edinburgh, Scotland, 10 pages. |
Lamb et al., “Avoiding Explicit Map-Matching in Vehicle Location”, <http://users.rsise.anu.edu.au/˜thiebaux/papers/its99.doc> retrieved on May 14, 2008, 9 pages. |
Lee et al., “Design and implementation of a movement history analysis framework for the taxi telematics system”, Proceedings of the 14th Asia-Pacific Conference on Communications (APCC2008), Oct. 2008, 4 pages. |
Liu et al., “Remaining Delivery Time Estimations based Routing for Intermittently Connected Mobile Networks”, 28th International Conference on Distributed Computing Systems Workshops, Jun. 2008, 6 pages. |
Losee, Robert M., “Minimizing information overload: the ranking of electronic messages”, Journal of Information Science 15, Elsevier Science Publishers BV, Jun. 1989, 11 pages. |
Miyashita et al., “A Map Matching Algorithm for Car Navigation Systems that Predict User Destination”, Advanced Information Networking and Applications (AINAW) Workshops 2008, Mar. 2008, 7 pages. |
Ye et al., “Predict Personal Continuous Route”, Proceedings of the 11th International IEEE Conference on Intelligent Transportation Systems, Oct. 2008, 6 pages. |
Rhodes, Bradley J., “The wearable remembrance agent: A system for augmented memory”, The Proceedings of the First International Symposium on Wearable Computers, Oct. 1997, 9 pages. |
Schilit et al., “Disseminating Active Map Information to Mobile Hosts”, IEEE Network, Sep.-Oct. 1994, vol. 8, No. 5, 23 pages. |
Schilit et al., “The Parctab Mobile Computing System”, IEEE WWOS-IV, Oct. 1993, 4 pages. |
Schilit, William N., “A System Architecture for Context-Aware Mobile Computing”, Columbia University, 1995, 153 pages. |
Sananmongkhonchai et al., “Cell-based Traffic Estimation from Multiple GPS-Equipped Cars”, IEEE Region 10 conference, TENCON 2009, Jan. 2009, 6 pages. |
Spreitzer et al., “Architectural Considerations for Scalable, Secure, Mobile Computing with Location Information”, The 14th International Conference on Distributed Computing Systems, Jun. 1994, 10 pages. |
Spreitzer et al., “Scalable, Secure, Mobile Computing with Location Information”, Communications of the ACM, Jul. 1993, vol. 36, No. 7, p. 27. |
Starner, Thad, “Wearable Computing and Contextual Awareness”, Massachusetts Institute of Technology, Jun. 1999, 248 pages. |
Terada et al., “Design of a Car Navigation System that Predicts User Destination”, Proceedings of the 7th International Conference on Mobile Data management (MDM'06), May 2006, 6 pages. |
Theimer et al., “Operating System Issues for PDAs”, Fourth Workshop on Workstation Operating Systems, Oct. 1993, 7 pages. |
Vaughan-Nichols, Steven, “Will Mobile Computing's Future be Location, Location, Location?” Computer, vol. 42, Issue 2, Feb. 2009, 4 pages. |
Want et al., “Active Badges and Personal Interactive Computing Objects”, IEEE Transactions on Consumer Electronics, Feb. 1992, vol. 38, No. 1, 11 pages. |
Wei et al., “Development of Freeway Travel Time Forecasting Models by Intregating Different Sources of Traffic Data”, IEEE Transactions on Vehicular Technology, vol. 56, No. 6, Nov. 2007, 13 pages. |
Weiser, Mark, “The Computer for the 21st Century”, Scientific American, Sep. 1991, 8 pages. |
Workshop on Wearable Computer Systems, Aug. 19-21, 1996, 3 pages. |
Xie et al., “Development of Navigation System for Autonomous Vehicle to Meet the DARPA Urban Grand Challenge”, Proceedings of the IEEE Intelligent Transportation Systems Conference, Sep. / Oct. 2007, 6 pages. |
Response filed Feb. 18, 2016 to the Non-Final Office Action dated Nov. 20, 2015 from U.S. Appl. No. 12/170,068, 23 pages. |
Smailagic et al., “Location Sensing and Privacy in a Context-Aware Computing Environment,” IEEE Wireless Communications, Oct. 2002, 8 pages. |
Wei et al., “PATS: A Framework of Pattern-Aware Trajectory Search,” IEEE Eleventh International Conference on Mobile Data Management, 2010 6 pages. |
U.S. Appl. No. 60/721,879 titled “Predestination,” filed Sep. 29, 2005 by Horvitz et al., 31 pages. |
Non-Final Office Action dated Mar. 6, 2013 from U.S. Appl. No. 12/970,974, 20 pages. |
Response filed Jul. 8, 2013 to Non-Final Office Action dated Mar. 6, 2013 from U.S. Appl. No. 12/970,974, 15 pages. |
Final Office Action dated Sep. 12, 2013 from U.S. Appl. No. 12/970,974, 17 pages. |
Response filed Jan. 10, 2014 to Final Office Action dated Sep. 12, 2013 from U.S. Appl. No. 12/970,974, 9 pages. |
Non-Final Office Action dated Jun. 9, 2014 from U.S. Appl. No. 12/970,974, 18 pages. |
Response filed Aug. 29, 2014 to Non-Final Office Action dated Jun. 9, 2014 from U.S. Appl. No. 12/970,974, 9 pages. |
Notice of Allowance dated Oct. 3, 2014 from U.S. Appl. No. 12/970,974, 9 pages. |
Notice of Allowance dated Jan. 22, 2015 from U.S. Appl. No. 12/970,974, 13 pages. |
Notice of Allowance dated May 11, 2015 from U.S. Appl. No. 12/970,974, 14 pages. |
Dissanayake et al., “A Solution to the Simultaneous Localization and Map Building (SLAM) Problem”, IEEE Transactions on Robotics and Automation, vol. 17, No. 3, Jun. 2001, 13 pages. |
Rhodes, Bradley J., “The wearable remembrance agent: A system for augmented memory”, Personal Technologies Journal Special Issue on Wearable Computing, 1997, 12 pages. |
Angermann et al., “Software Representation for Heterogeneous Location Data Sources Using Probability Density Functions,” International Symposium on Location Based Services for Cellular Users (LOCELLUS), May 2001, Munich, Germany, 10 pages. |
Cheng et al., “Location Prediction Algorithms for Mobile Wireless Systems,” Wireless Internet Handbook: Technologies, Standards, and Applications, 2003, CRC Press, Boca Raton, FL, 17 pages. |
Elfes, Alberto, “Using Occupancy Grids for Mobile Robot Perception and Navigation,” IEEE Computer, 1989, 22(6), pp. 46-57, 12 pages. |
Gogate, et al., “Modeling Transportation Routines using Hybrid Dynamic Mixed Networks,” Uncertainty in Artificial Intelligence (UAI), 2005, 8 pages. |
Hariharan, et al., “Project Lachesis: Parsing and Modeling Location Histories,” Geographic Information Science: Third International Conference, GI Science 2004, Adelphi, MD, Springer-Verlag GmbH, 19 pages. |
Krumm, John, “A Markov Model for Driver Turn Prediction,” Paper No. 2008-01-0195, SAE 2008, 7 pages. |
Liao, et al., “Learning and Inferring Transportation Routines,” Proceedings of the 19th National Conference on Artificial Intelligence (AAAI), 2004, San Jose, CA, 6 pages. |
U.S. Department of the Interior, U.S. Geological Survey web page, Sep. 10, 2005 publication captured by the internet archive, retrieved at <<http://landcover.usgs.gov/ftpdownload.asp>> on Dec. 20, 2015, 2 pages. |
Request for Examination and Voluntary Amendment filed Sep. 2, 2011 from Canada Patent Application No. 2,620,587, 51 pages. |
Office Action dated Mar. 20, 2009 from China Patent Application No. 200680036290.9, 10 pages. |
Response filed Jul. 22, 2009 to the Office Action dated Mar. 20, 2009 from China Patent Application No. 200680036290.9, 71 pages. |
Second Office Action dated Sep. 4, 2009 from China Patent Application No. 200680036290.9, 7 pages. |
Notice on Grant dated Jan. 22, 2010 from China Patent Application No. 200680036290.9, 4 pages. |
Extended European Search Report dated Jun. 14, 2012 from European Patent Application No. 06802991.7, 6 pages. |
Notice of Rejection dated May 31, 2011 from Japan Patent Application No. 2008-533377, 6 pages. |
Response filed Aug. 25, 2011 from Japan Patent Application No. 2008-533377, 13 pages. |
Notice of Allowance dated Dec. 16, 2011 from Japan Patent Application No. 2008-533377, 6 pages. |
Request for Examination and Amendment filed Aug. 26, 2011 from Korea Patent Application No. 10-2008-7007693, 22 pages. |
Response filed Sep. 26, 2012 to the Office Action dated Jul. 31, 2012 from Malaysia Patent Application No. PI 20080636, 9 pages. |
Notice of Allowance dated Aug. 30, 2013 from Malaysia Patent Application No. PI 20080636, 2 pages. |
Examination Report dated Oct. 12, 2009 from New Zealand Patent Application No. 566701, 2 pages. |
Response filed Apr. 29, 2010 to the Examination Report dated Oct. 12, 2009 from New Zealand Patent Application No. 566701, 17 pages. |
Examination Report dated May 18, 2010 from New Zealand Patent Application No. 566701, 1 page. |
Response filed May 24, 2010 to the Examination Report dated May 18, 2010 from New Zealand Patent Application No. 566701, 4 pages. |
Examination Report and Notice of Acceptance dated Jun. 11, 2010 from New Zealand Patent Application No. 566701, 1 page. |
Office Action dated Sep. 9, 2011 from Philippine Patent Application No. 1-2008-500513, 1 page. |
Office Action dated Mar. 30, 2010 from Russia Patent Application No. 20081121996, 4 pages. |
Response filed May 13, 2010 to the Office Action dated Mar. 30, 2010 from Russia Patent Application No. 20081121996, 8 pages. |
Decision on Grant dated Jun. 8, 2010 from Russia Patent Application No. 20081121996, 15 pages. |
Amendment filed Apr. 9, 2009 from South Africa Patent Application No. 2008/02681, 3 pages. |
Pre-Appeal Brief Request and Notice of Appeal filed Apr. 28, 2015 from U.S. Appl. No. 13/190,121, 8 pages. |
Notice of Panel Decision from Pre-Appeal Brief Review dated May 19, 2015 from U.S. Appl. No. 13/190,121, 2 pages. |
Final Office Action dated Jan. 28, 2015 from U.S. Appl. No. 13/190,121, 12 pages. |
Response/Amendment and Reply filed Sep. 30, 2014 to the Non-Final Office Action dated Jul. 1, 2014 from U.S. Appl. No. 13/190,121, 15 pages. |
Non-Final Office Action dated Jul. 1, 2014 from U.S. Appl. No. 13/190,121, 11 pages. |
Response/Amendment and Reply filed Apr. 15, 2014 to the Non-Final Office Action dated Jan. 15, 2014 from U.S. Appl. No. 13/190,121, 14 pages. |
Non-Final Office Action dated Jan. 15, 2014 from U.S. Appl. No. 13/190,121, 9 pages. |
Response/Amendment and Reply filed Sep. 25, 2013 to the Non-Final Office Action dated Jun. 27, 2013 from U.S. Appl. No. 13/190,121, 11 pages. |
Non-Final Office Action dated Jun. 27, 2013 from U.S. Appl. No. 13/190,121, 10 pages. |
Response/Amendment and Reply filed Mar. 11, 2013 to the Non-Final Office Action dated Dec. 12, 2012 from U.S. Appl. No. 13/190,121, 11 pages. |
Non-Final Office Action dated Dec. 12, 2012 from U.S. Appl. No. 13/190,121, 15 pages. |
Notice of Allowance dated Sep. 4, 2012 from U.S. Appl. No. 13/190,121, 8 pages. |
Response/Amendment and Reply filed Apr. 19, 2012 to the Non-Final Office Action dated Jan. 19, 2012 from U.S. Appl. No. 13/190,121, 9 pages. |
Non-Final Office Action dated Jan. 19, 2012 from U.S. Appl. No. 13/190,121, 13 pages. |
Requirement for Restriction/Election dated Sep. 16, 2011 from U.S. Appl. No. 12/170,068, 5 pages. |
Response filed Oct. 17, 2011 to Requirement for Restriction/Election dated Sep. 16, 2011 from U.S. Appl. No. 12/170,068, 3 pages. |
Non-Final Office Action dated Nov. 29, 2011 from U.S. Appl. No. 12/170,068, 10 pages. |
Response filed Feb. 28, 2012 to Non-Final Office Action dated Nov. 29, 2011 from U.S. Appl. No. 12/170,068, 10 pages. |
Final Office Action dated Aug. 2, 2012 from U.S. Appl. No. 12/170,068, 40 pages. |
Response filed Nov. 2, 2012 to Final Office Action dated Aug. 2, 2012 from U.S. Appl. No. 12/170,068, 11 pages. |
Non-Final Office Action dated Dec. 20, 2013 from U.S. Appl. No. 12/170,068, 9 pages. |
Response filed Mar. 20, 2014 to Non-Final Office Action dated Dec. 20, 2013 from U.S. Appl. No. 12/170,068, 15 pages. |
Non-Final Office Action dated Aug. 13, 2014 from U.S. Appl. No. 12/170,068, 15 pages. |
Applicant-Initiated Interview Summary dated Nov. 19, 2014 from U.S. Appl. No. 12/170,068, 3 pages. |
Response filed Dec. 31, 2014 to Non-Final Office Action dated Aug. 13, 2014 from U.S. Appl. No. 12/170,068, 22 pages. |
Response/Amendment and Reply filed Dec. 8, 2015 to Non-Final Office Action dated Sep. 8, 2015 from U.S. Appl. No. 13/190,121, 15 pages. |
Final Office Action dated May 12, 2015 from U.S. Appl. No. 12/170,068, 22 pages. |
Response filed Aug. 5, 2015 to Final Office Action dated May 12, 2015 from U.S. Appl. No. 12/170,068, 31 pages. |
Non-Final Office Action dated Sep. 8, 2015 from U.S. Appl. No. 13/190,121, 13 pages. |
Shanmugan, Sam K. And A.M. Breipohl, “Random Signals: Detection, Estimation and Data Analysis,” Wiley and Sons, 1988, 664 pages. |
Requirement for Restriction/Election dated Apr. 7, 2010 from U.S. Appl. No. 11/428,228, 8 pages. |
Response filed May 6, 2010 to the Requirement for Restriction/Election dated Apr. 7, 2010 from U.S. Appl. No. 11/428,228, 2 pages. |
Non-Final Office Action dated Jun. 8, 2010 from U.S. Appl. No. 11/428,228, 26 pages. |
Response filed Sep. 8, 2010 to the Non-Final Office Action dated Jun. 8, 2010 from U.S. Appl. No. 11/428,228, 9 pages. |
Final Office Action dated Nov. 18, 2010 from U.S. Appl. No. 11/428,228, 18 pages. |
Response filed Feb. 18, 2011 to the Final Office Action dated Nov. 18, 2010 from U.S. Appl. No. 11/428,228, 20 pages. |
Non-Final Office Action dated Aug. 14, 2013 from U.S. Appl. No. 11/428,228, 34 pages. |
Response filed Dec. 16, 2013 to the Non-Final Office Action dated Aug. 14, 2013 from U.S. Appl. No. 11/428,228, 14 pages. |
Final Office Action dated Jan. 14, 2014 from U.S. Appl. No. 11/428,228, 60 pages. |
Response filed Apr. 14, 2014 to the Final Office Action dated Jan. 14, 2014 from U.S. Appl. No. 11/428,228, 13 pages. |
Non-Final Office Action dated Sep. 24, 2014 from U.S. Appl. No. 11/428,228, 33 pages. |
Applicant-Initiated Interview Summary dated Mar. 11, 2015 from U.S. Appl. No. 11/428,228, 3 pages. |
Response filed Mar. 23, 2015 to the Non-Final Office Action dated Sep. 24, 2014 from U.S. Appl. No. 11/428,228, 16 pages. |
Final Office Action dated Jun. 4, 2015 from U.S. Appl. No. 11/428,228, 14 pages. |
Non-Final Office Action dated Mar. 29, 2013 from U.S. Appl. No. 13/088,040, 43 pages. |
Response filed Aug. 29, 2013 to the Non-Final Office Action dated Mar. 29, 2013 from U.S. Appl. No. 13/088,040, 13 pages. |
Final Office Action dated Oct. 10, 2013 from U.S. Appl. No. 13/088,040, 15 pages. |
Response filed Jan. 10, 2014 to the Final Office Action dated Oct. 10, 2013 from U.S. Appl. No. 13/088,040, 17 pages. |
Notice of Allowance dated Jun. 17, 2015 from U.S. Appl. No. 13/088,040, 25 pages. |
Requirement for Restriction/Election dated May 20, 2013 from U.S. Appl. No. 13/174,329, 8 pages. |
Response filed Jun. 20, 2013 to the Requirement for Restriction/Election dated May 20, 2013 from U.S. Appl. No. 13/174,329, 10 pages. |
Non-Final Office Action dated Aug. 26, 2013 from U.S. Appl. No. 13/174,329, 54 pages. |
Response filed Feb. 25, 2014 to the Non-Final Office Action dated Aug. 26, 2013 from U.S. Appl. No. 13/174,329, 17 pages. |
Final Office Action dated Apr. 9, 2014 from U.S. Appl. No. 13/174,329, 24 pages. |
Response filed Jul. 9, 2014 to the Final Office Action dated Apr. 9, 2014 from U.S. Appl. No. 13/174,329, 15 pages. |
Non-Final Office Action dated Mar. 24, 2016 from U.S. Appl. No. 13/174,329, 30 pages. |
Response filed Jun. 24, 2016 to the Non-Final Office Action dated Mar. 24, 2016 from U.S. Appl. No. 13/174,329, 22 pages. |
Applicant-Initiated Interview Summary dated Jun. 27, 2016 from U.S. Appl. No. 13/174,329, 3 pages. |
Final Office Action dated Aug. 31, 2016 from U.S. Appl. No. 13/174,329, 23 pages. |
Preliminary Amendment filed Jan. 31, 2013 from U.S. Appl. No. 13/407,181, 3 pages. |
Requirement for Restriction/Election dated Dec. 17, 2013 from U.S. Appl. No. 13/407,181, 7 pages. |
Response filed Jan. 17, 2014 to the Requirement for Restriction/Election dated Dec. 17, 2013 from U.S. Appl. No. 13/407,181, 4 pages. |
Non-Final Office Action dated Aug. 28, 2014 from U.S. Appl. No. 13/407,181, 49 pages. |
Response filed Nov. 26, 2014 to the Non-Final Office Action dated Aug. 28, 2014 from U.S. Appl. No. 13/407,181, 19 pages. |
Final Office Action and Applicant-Initiated Interview Summary dated Mar. 27, 2015 from U.S. Appl. No. 13/407,181, 24 pages. |
Response filed Jun. 9, 2015 to the Final Office Action dated Mar. 27, 2015 from U.S. Appl. No. 13/407,181, 19 pages. |
Non-Final Office Action dated Nov. 18, 2015 from U.S. Appl. No. 13/407,181, 25 pages. |
Response filed Feb. 11, 2016 to the Non-Final Office Action dated Nov. 18, 2015 from U.S. Appl. No. 13/407,181, 17 pages. |
Final Office Action dated May 26, 2016 from U.S. Appl. No. 13/407,181, 21 pages. |
Response filed Aug. 1, 2016 to the Final Office Action dated May 26, 2016 from U.S. Appl. No. 13/407,181, 15 pages. |
Non-Final Office Action dated Nov. 23, 2016 from U.S. Appl. No. 13/407,181, 24 pages. |
International Search Report and Written Opinion dated Apr. 26, 2013 from PCT Patent Application No. PCT/US2013/024246, 9 pages. |
International Preliminary Report on Patentability dated Sep. 12, 2014 from PCT Patent Application No. PCT/US2013/024246, 6 pages. |
Voluntary Amendment filed Feb. 12, 2015 from Chinese Patent Application No. 201380011451.9, 10 pages. |
Partial Supplementary Search Report dated Jan. 22, 2015 from European Patent Application No. 13754084.5, 5 pages. |
Supplementary Search Report dated May 18, 2015 from European Patent Application No. 13754084.5, 5 pages. |
Examination Report dated Jun. 9, 2015 from European Patent Application No. 13754084.5, 6 pages. |
Response filed Sep. 30, 2015 to the Examination Report dated Jun. 9, 2015 from European Patent Application No. 13754084.5, 14 pages. |
Intention to Grant dated May 6, 2016 from European Patent Application No. 13754084.5, 48 pages. |
Decision to Grant dated Sep. 15, 2016 from European Patent Application No. 13754084.5, 2 pages. |
Written Opinion dated Dec. 11, 2007 from PCT Patent Application No. PCT/US2007/014405, 7 pages. |
International Preliminary Report on Patentability dated Jan. 15, 2009 from PCT Patent Application No. PCT/US2007/014405, 6 pages. |
Tanaka et al., “A Destination Prediction Method Using Driving Contexts and Trajectory for Car Navigation Systems,” The ACM Symposium on Applied Computing, Mar. 8-12, 2009, Honolulu, HI, U.S.A. 6 pages. |
Van Setten et al., “Context-Aware Recommendations in the Mobile Tourist Application Compass,” Adaptive Hypermedia and Adaptive Web-Based Systems in Adaptive Hypermedia and Adaptive Web-Based Systems, 2004, Enschede, The Netherlands, 10 pages. |
Coyne et al., “Comparison of Differentially Corrected GPS Sources for Support of Site-Specific Management in Agriculture”, Jul. 2003, Kansas State University Agricultural Experiment Station and Cooperative Extension Service, 35 pages. |
Hu et al., “Summary of Travel Trends”, 2001 National Household Travel Survey, Dec. 2004, U.S. Department of Transportation, U.S. Federal Highway Administration, 135 pages. |
Krumm et al., “The Microsoft Multiperson Location Survey”, (MSR-TT-2005-103), Aug. 2005, Microsoft Research, 4 pages. |
Marmasse et al., “A User-Centered Location Model”, Personal and Ubiquitous Computing, 2002(6), 4 pages. |
Patterson et al., “Opportunity Knocks: a System to Provide Cognitive Assistance with Transportation Services”, UbiComp 2004: Ubiquitous Computing, 2004, Nottingham, UK, Springer, 18 pages. |
Rish, Irina, “An empirical study of the naive Bayes classifier”, IJCAI-01 Workshop on Empirical Methods in AI, Nov. 2, 2001, 7 pages. |
Non-Final Office Action dated Nov. 20, 2015 from U.S. Appl. No. 12/170,068, 17 pages. |
“Coactive TV, Teleshuttle” captured by the Internet archive at <<http://teleshuttle.com/CoTV/>> on Jan. 29, 2011, 2 pages. |
Bhawalkar et al., “ScheduleNanny: Using GPS to Learn the User's Significant Locations, Travel Times and Schedule”, retrieved at <<http://arxiv.org/ftp/cs/papers/0409/0409003.pdf>>, Sep. 2, 2004, 7 pages. |
Biegel et al., “A Framework for Developing Mobile, Context-aware Applications”, Proceedings of the Second IEEE Annual Conference on Pervasive Computing and Communications, 2004, Mar. 14-17, 2004, 5 pages. |
Billinghurst et al., “An Evaluation of Wearable Information Spaces”, Proceedings of the Virtual Reality Annual International Symposium, Mar. 1998, 8 pages. |
Billinghurst et al., “Wearable Devices New Ways to Manage Information”, IEEE Computer Society, Jan. 1999, 8 pages. |
Bisdikian et al., “Intelligent Pervasive Middleware for Context-Based and Localized Telematics Services”, Sep. 2002, 11 pages. |
Brilingaite et al., “Online Route Prediction for Automotive Applications,” retrieved at <<http://cs.aau.dk/˜csj/Papers/Files/2006_brilingaiteITSS.pdf>> on May 14, 2008, 8 pages. |
Chen et al., “A Survey of Context-Aware Mobile Computing Research”, Dartmouth Computer Science Technical Report, Nov. 2000, 16 pages. |
Falaki Mohammad Hossein, “WLAN Interface Management on Mobile Devices”, (thesis) University of Waterloo, Waterloo, Ontario, Canada, 2008, 88 pages. |
Horvitz et al., “Attention-Sensitive Altering”, Proceedings of the UAI' 99 Conference on Uncertainty and Artificial Intelligence, Jul. 1999, 10 pages. |
Krumm et al., “Map Matching with Travel Time Constraints in Society of Automotive Engineers”, (SAE) 2007 World Congress, 2007, Paper 2007-01-1102, Detroit, MI, 11 pages. |
Krumm et al., “Predestination : Where Do You Want to Go Today?”, Computer, vol. 40, Issue 4, Apr. 2007, 3 pages. |
Laasonen, Kari, “Route Prediction from Cellular Data” <<http://www.cs.helsinki.fi/group/context/pubs/caps05.pdf>> retrieved on May 14, 2008, 10 pages. |
Patterson et al., “Inferring High-Level Behavior from Low-Level Sensors”, UbiComp 2003: Ubiquitous Computing, 2003, Springer, Seattle WA, 16 pages. |
Schilit et al., “Context-Aware Computing Applications”, Proceedings of the Workshop on Mobile Computing Systems and Applications, Dec. 1994, 7 pages. |
Schilit et al., “Customizing Mobile Applications”, Proceedings USENIX Symposium on Mobile Location Independent computing, Aug. 1993, 9 pages. |
Simmons et al., “Learning to Predict Driver Route and Destination Intent”, 2006 IEEE Intelligent Transportation Systems Conference, 2006, Toronto, Canada, 6 pages. |
Spreitzer et al., “Providing Location Information in a Ubiquitous Computing Environment”, SIGOPS '93, Dec. 1993, 14 pages. |
Want et al., “The Active Badge Location System”, ACM Transactions on Information Systems, Jan. 1992, vol. 10, No. 1, 12 pages. |
Weiser et al., “Some Computer Science Issues in Ubiquitous Computing”, Communications of the ACM, Jul. 1993, vol. 36, No. 7, 10 pages. |
Wu et al., “A Dynamic Navigation Scheme for Vehicular Ad Hoc Networks”, Latest Trends on Communications, Aug. 2010, 6 pages. |
Benzoon, “SmartWiFi for Blackberry: A Batter Power Optimizer”, Jun. 3, 2011, retrieved at <<http://www.blackberryinsight.com/2011/06/03smartwifi-for-blackberry-a-battery-power-optimizer/>> on Dec. 18, 2015, 3 pages. |
Chen et al., “HarplaGrid: A Reliable Grid-based Routing Protocol for Vehicular Ad Hoc Networks,” 11th International IEEE Conference on Intelligent Transportation Systems 2008 (ITSC 2008), pp. 383-388. |
Goldstone et al., “Group Path Formation,” IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans, IEEE Conference on Communications, 2006, vol. 36, Issue 3, pp. 611-620. |
Hu et al., “Simulation-Assignment-based Travel Time Prediction Model for Traffic Corridors,” IEEE Transactions on Intelligent Transportation Systems, vol. 13, Issue 3, 2012, 10 pages. |
Kanoh, Hitoshi and Tomohiro Nakamura, “Knowledge Based Genetic Algorithm for Dynamic Route Selection,” Proceedings of the Fourth International Conference on Knowledge Based Intelligent Engineering Systems and Allied Technologies 2000, vol. 2, 2000, 4 pages. |
Kanoh, Hitoshi and Hideki Kozuka “Evaluation of GA-based Dynamic Route Guidance for Car Navigation Using Cellular Automata,” Intelligent Vehicle Symposium 2002, IEEE vol. 1, pp. 178-183. |
Kanoh, Hitoshi and Tomohiro Nakamura, “Route Guidance with Unspecified Staging Posts Using Generic Algorithm for Car Navigation Systems,” Proceedings of Intelligent Transportation Systems, IEEE 2000, pp. 119-124. |
Lai et al., “Hierarchical Incremental Path Planning and Situation-Dependent Optimized Dynamic Motion Planning considering Accelerations,” IEEE Transactions on Systems, Man, and Cybernetics—Part B, Cybernetics, vol. 37, Issue 6, Dec. 2007, pp. 1541-1554. |
Samaan, Nancy and Ahmed Karmouch, “A User Centric Mobility Prediction Approach Based on Spatial Conceptual Maps,” IEEE International Conference on Communications 2005, ICC 2005, vol. 2, pp. 1413-1417. |
Vanajakshi et al., “Support Vector Machine Technique for the Short Term Prediction of Travel Time,” 2007 IEEE Intelligent Vehicles Symposium, Jun. 13-15, 2007, pp. 600-605. |
“Changes to Lists on Spaces with the last release”, The Space Craft, retrieved on Apr. 9, 2008 at <<http://thespacecraft.spaces.live.com/blog/cns!8AA773FEOA1289E3!36522.entry>>, 4 pages. |
“Mapquest.com Features,” retrieved at <<http://features.mapquest.com/>> on Oct. 27, 2010, 3 pages. |
“Nagra's cross-device user experience wins, “Advanced User Interface” Award at TV 3.0 conference,” retrieved at <<http://www.advanced-television.tv/index.php/2010/12/21/nagra%E2%80%99s-cross-device-user-experience-wins-% E2%80%9Cadvanced-user-interface%E2%80%9D-award-at-tv-3-0-conference/>> on Mar. 28, 2011, 4 pages. |
Orebaugh et al., “Wireless Sniffing with Wireshark”, Wireshark & Ethereal Network Protocol Analyzer Toolkit, Chapter 6, Sep. 2006, 104 pages. |
“Publicis & Yahoo Team for Cross-Carrier Marketing,” published Jul. 17, 2008, retrieved at <<http://mobilemarketingwatch.com/tag/cross-device-marketing/>> on Mar. 28, 2011, 4 pages. |
Rhodes, Bradley J. and Thad Starner, “Remembrance Agent: A continuously running automated information retrieval system”, Proceedings of the First International Conference on The Practical Application of Intelligent Agents and Multi Agent Technology (PAAM '96), Apr. 1996, 8 pages. |
Final Office Action dated Mar. 4, 2016 from U.S. Appl. No. 13/190,121, 14 pages. |
Pre-Appeal Brief Request and Notice of Appeal filed Apr. 19, 2016 from U.S. Appl. No. 13/190,121, 10 pages. |
Final Office Action dated Jun. 16, 2016 from U.S. Appl. No. 12/170,068, 9 pages. |
Response filed Sep. 16, 2016 to the Final Office Action dated Jun. 16, 2016 from U.S. Appl. No. 12/170,068, 17 pages. |
Non-Final Office Action dated Nov. 17, 2016 from U.S. Appl. No. 12/170,068, 13 pages. |
Appeal Brief filed Sep. 6, 2016 from U.S. Appl. No. 13/190,121, 116 pages. |
Pre-Brief Appeal Conference Decision dated Jun. 8, 2016 from U.S. Appl. No. 13/190,121, 2 pages. |
First Office Action dated Jul. 29, 2010 from Chinese Patent Application No. 200780024347.8, 10 pages. |
Extended European Search Report dated Oct. 12, 2011 from European Patent Application No. 07796299.1, 7 pages. |
Communication pursuant to Rules 70)2) and 70a(2) EPC dated Oct. 31, 2011 from European Patent Application No. 07796299.1, 1 page. |
Response filed Feb. 10, 2012 to the Communication pursuant to Rules 70)2) and 70a(2) EPC dated Oct. 31, 2011 from European Patent Application No. 07796299.1, 17 pages. |
International Search Report and Written Opinion dated Nov. 28, 2012 from PCT Patent Application No. PCT/US2012/043413, 8 pages. |
International Preliminary Report on Patentability dated Jan. 16, 2014 from PCT Patent Application No. PCT/US2012/043413, 5 pages. |
Office Action and Search Report dated Dec. 24, 2015 from Taiwan Patent Application No. 101115394, 9 pages. |
Amended Claims filed Jun. 22, 2016 to the Office Action dated Apr. 27, 2016 from Taiwan Patent Application No. 101115394, 9 pages. |
First Office Action and Search Report dated Feb. 24, 2016 from Chinese Patent Application No. 201280032542.6, 13 pages. |
Response filed Jul. 11, 2016 to the First Office Action and Search Report dated Feb. 24, 2016 from Chinese Patent Application No. 201280032542.6, 13 pages. |
Office Action dated Aug. 29, 2016 from China Patent Application No. 201280032542.6, 10 pages. |
Response filed Nov. 14, 2016 to the Office Action dated Aug. 29, 2016 from China Patent Application No. 201280032542.6, 7 pages. |
Extended European Search Report dated Nov. 20, 2014 from European Patent Application No. 12803616.7, 6 pages. |
Communication pursuant to Rules 70)2) and 70a(2) EPC dated Dec. 9, 2014 from European Patent Application No. 12803616.7, 1 page. |
Response filed Jun. 12, 2015 to the Communication pursuant to Rules 70(2) and 70a(2) EPC dated Dec. 9, 2014 from European Patent Application No. 12803616.7, 12 pages. |
Examination Report dated Jul. 27, 2016 from European Patent Application No. 12803616.7, 4 pages. |
Response filed Sep. 7, 2016 to the Communication pursuant to Rule 71 (3) dated Jul. 27, 2016 from European Patent Application No. 12803616.7, 10 pages. |
Summons to attend oral proceedings mailed Nov. 8, 2016 from European Patent Application No. 12803616.7, 5 pages. |
Request for Examination and Preliminary Amendment filed May 26, 2015 from Japanese Patent Application No. 2014-518652, 8 pages. |
Office Action dated May 31, 2016 from Japanese Patent Application No. 2014-518652, 6 pages. |
Response filed Aug. 30, 2016 to the Office Action dated May 31, 2016 from Japanese Patent Application No. 2014-518652, 13 pages. |
Examiner's Answer dated Dec. 15, 2016 to the Appeal Brief filed Sep. 6, 2016 from U.S. Appl. No. 13/190,121, 7 pages. |
Decision on Rejection dated Dec. 12, 2016 from China Patent Application No. 201280032542.6, 6 pages. |
McGinty et al., “Personalised Route Planning: A Case-Based Approach,” Advances in Case-Based Reasoning, Springer Berlin Heidelberg, 2000, pp. 431-443, 13 pages. |
McGinty et al., “Shared Experiences in Personalized Route Planning,” FLAIRS-02 Conference, May 2002, pp. 111-115, 5 pages. |
International Search Report dated Sep. 29, 2003 from PCT Patent Application No. PCT/US00/20685, 3 pages. |
International Search Report and Written Opinion dated Nov. 8, 2013 from PCT Patent Application No. PCT/US2013/050963, 13 pages. |
Horvitz et al., “Coordinate: Probablistic Forecasting of Presence and Availability”, Eighteenth Conference on Uncertainty in Artificial Intelligence, Jul. 2002, 10 pages. |
Horvitz et al., “Display of Information for Time-Critical Decision Making”, Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence, Aug. 1995, 10 pages. |
Horvitz et al., “In Pursuit of Effective Handsfree Decision Support : Coupling Bayesian Inference, Speech Understanding, and User Models”, retrieved at <<research.microsoft.com/en-us/um/people/horvitz/speechcontext.pdf>>, 1995, 8 pages. |
Horvitz et al., “Learning and Reasoning about Interruption”, Fifth International Conference on Multimodal Interfaces, Nov. 2003, 8 pages. |
Horvitz et al., “Mobile Opportunistic Planning: Methods and Models”, Proceedings of the Eleventh Conference on User Modeling (UM 2005), Jun. 2007, Corfu, Greece, 10 pages. |
Joachims, Thorsten, “Text Categorization with Support Vector Machines: Learning with Many Relevant Features”, Machine Learning, European Conference on Machine Learning, Apr. 21, 1998, 6 pages. |
Kamar et al., “Mobile Opportunistic Commerce: Mechanisms, Architecture, and Application”, Proceedings of AAMAS 2008, Estoril, Portugal, May 2008, 8 pages. |
Karbassi et al., “Vehicle Route Prediction and Time of Arrival Estimation Techniques for Improved Transportation System Management”, Intelligent Vehicles Symposium, 2003, 6 pages. |
Kargl et al., “Smart Reminder—Personal Assistance in a Mobile Computing Environment”, Pervasive 2002, Zurich, Switzerland, Aug. 26-28, 2002, 6 pages. |
Kostov et al., “Travel Destination Prediction Using Frequent Crossing Pattern from Driving History”, Proceedings of the 8th International IEEE Conference on Intelligent Transportation Systems, Vienna, Austria, Sep. 13-16, 2005, 8 pages. |
Letchner et al., “Trip Router with Individualized Preferences (TRIP): Incorporating Personalization into Route Planning”, Eighteenth Conference on Innovative Applications of Artificial Intelligence, Jul. 2006, 6 pages. |
Torkkola et al., “Traffic Advisories Based on Route Prediction”, Workshop on Mobile Interaction with the Real World (MIR W 2007), 2007, Singapore, 4 pages. |
“About Project Playlist,” captured by the Internet archive at <<http://www.playlist.com/static/node/491.html>> on May 16, 2008, 3 pages. |
“Configuring Multiple SSIDs,” Cisco IOS Software Configuration Guide for Cisco Aironet Access Points 12.3(7)JA, captured by the Internet archive at <<http://www.cisco.com/en/US/docs/wireless/access_point/12.3_7_JA/configuration/guide/s37ssid.html>> on Oct. 24, 2011, 5 pages. |
“Smart WiFi for Android,” S4BB Limited, captured by the Internet archive at <<http://www.s4bb.com/software/smartwifi/smartwifi-for-android/>> on Oct. 14, 2011, 5 pages. |
International Search Report dated Jan. 15, 2007 from PCT Patent Application No. PCT/US2006/034608, 2 pages. |
International Preliminary Report on Patentability dated Apr. 1, 2008 from PCT Patent Application No. PCT/US2006/034608, 5 pages. |
Amin et al., “Fancy a Drink in Canary Wharf?: A user study on location-based mobile search,” Interact 2009—Proceedings of the 12th IFIP TC 13 International Conference on Human-Computer Interaction: Part 1, Aug. 24, 2009, 14 pages. |
Ashbrook et al., “Using GPS to Learn Significant Locations and Predict Movement Across Multiple Users,” Proceedings of Personal and Ubiquitous Computing, vol. 7, No. 5, Oct. 2003, 15 pages. |
Console et al., “Adaptation and Personalization on Board Cars: A Framework and Its Application to Tourist Services,” Adaptive Hypermedia and Adaptive Web-Based Systems, Lecture Notes in Computer Science, vol. 2347-2006, Springer-Veriag Berlin Heidelberg 2002, 10 pages. |
Krumm, John C., “Real Time Destination Prediction Based on Efficient Routes,” retrieved at <<http://research.microsoft.com/enus/um/people/jckrumm/Publications%202006/efficient%20routes%20camera%20ready.pdf>>, Society of Automotive Engineers (SAE) World Congress, Apr. 2006, 6 pages. |
Krumm et al., “Predestination: Inferring Destinations from Partial Trajectories,” Eighth International Conference on Ubiquitous Computing, Sep. 17-21, Orange County, CA, U.S.A., 2006, 18 pages. |
Krumm, John C., “Where will they turn: predicting turn proportions at intersections,” Personal and Ubiquitous Computing, vol. 13, Issue 7, Received Jan. 16, 2009, Accepted Jul. 8, 2009, Published Online Aug. 20, 2009, Springer-Verlag, London Limited, 2009, 9 pages. |
Liu et al., “Location Awareness Through Trajectory Prediction,” retrieved at <<http://www.sis.pitt.edu/˜xliu/papers/ceus.pdf>>, Computers, Environment and Urban Systems, vol. 30, No. 6, 2006, Pittsburgh, PA, U.S.A., 38 pages. |
Persad-Maharaj et al., “Real-Time Travel Path Prediction Using GPS-Enabled Mobile Phones,” retrieved at <<http://www.csee.usf.edu/REU/REU_2008/publications?Persad%20Maharaj%20-%20PathPrediction%20-%20july%2031.pdf>> 15th World Congress on Intelligent Transportation Systems, Nov. 16-20, 2008, Tampa, FL, 12 pages. |
Non-Final Office Action dated Sep. 3, 2009 from U.S. Appl. No. 11/426,540, 8 pages. |
Response filed Nov. 24, 2009 to the Non-Final Office Action dated Sep. 3, 2009 from U.S. Appl. No. 11/426,540, 9 pages. |
Non-Final Office Action dated Apr. 6, 2010 from U.S. Appl. No. 11/426,540, 11 pages. |
Response filed Jul. 6, 2010 to the Non-Final Office Action dated Apr. 6, 2010 from U.S. Appl. No. 11/426,540, 11 pages. |
Non-Final Office Action dated Oct. 14, 2010 from U.S. Appl. No. 11/426,540, 36 pages. |
Response filed Jan. 25, 2011 to the Non-Final Office Action dated Oct. 14, 2010 from U.S. Appl. No. 11/426,540, 12 pages. |
Notice of Allowance dated Apr. 15, 2011 from U.S. Appl. No. 11/426,540, 11 pages. |
Reply Brief filed Feb. 15, 2017 from U.S. Appl. No. 13/190,121, 12 pages. |
Response filed Feb. 7, 2017 to the Non-Final Office Action dated Nov. 17, 2016 from U.S. Appl. No. 12/170,068, 16 pages. |
Final Office Action dated May 4, 2017 from U.S. Appl. No. 12/170,068, 15 pages. |
Response filed Aug. 3, 2017 to the Final Office Action dated May 4, 2017 from U.S. Appl. No. 12/170,068, 9 pages. |
Notice of Allowance dated Aug. 17, 2017 from U.S. Appl. No. 12/170,068, 9 pages. |
Response filed Feb. 23, 2017 to the Non-Final Office Action dated Nov. 23, 2016 from U.S. Appl. No. 13/407,181, 14 pages. |
Notice of Allowance dated May 30, 2017 from U.S. Appl. No. 13,407,181, 18 pages. |
Number | Date | Country | |
---|---|---|---|
20150339397 A1 | Nov 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12970974 | Dec 2010 | US |
Child | 14820423 | US |