The invention relates to temporary support apparatuses, particular apparatuses used to support high-weight structures during a construction process.
Typically, large-scale construction requires the use of expensive and bulky equipment to provide temporary support for structures as they are being constructed or renovated. Overhead cranes and gantry cranes require extensive setup time and are highly limited in that they cannot be used where there is insufficient overhead clearance for positioning of the lifting apparatus. Overhead cranes and gantry cranes have the additional disadvantages of requiring substantial ground clearance or other support bases on the sides of the structure that is to be supported. These cranes are also prohibitively expensive to purchase or rent, and due to their large size, are very difficult to transport and operate.
Vehicle-mounted cranes are limited in that they require substantial clearance for positioning of the vehicle chassis adjacent to the work zone, and additional clearance for proper extension of the outriggers. Vehicle-mounted cranes are also highly limited in their lifting capacity, and are very expensive to purchase, rent, and maintain. Further, these cranes require substantially level ground for setup of the vehicle chassis, and require extensive setup time before they can be used. They also suffer from the same drawback as do overhead cranes and gantry cranes with respect to the requirement of sufficient overhead clearance.
Existing multi-stage and telescoping support apparatuses do not have high weight capacity, and are not mobile. In addition to also having a high purchase cost, these apparatuses are bulky and difficult to transport.
Accordingly, there is a need for a low cost, mobile support apparatus that can be quickly set up in the desired location and raised into position to temporarily support a high-weight structure.
In one respect the invention is an apparatus comprising a support structure comprising a plurality of vertical support members, each of the plurality of vertical support members having a load-engaging portion located at an upper end, a ground-engaging portion located at a lower end, and a telescoping portion that enables the load-engaging portion to be raised and lowered relative to the ground-engaging portion, wherein the load-engaging portion, ground-engaging portion, and telescoping portion are vertically aligned and the telescoping portion is releasably connectable to the ground-engaging portion and moveable with respect to the ground-engaging portion, and at least one extension and retraction device that is adapted to releasably engage the telescoping portion and to cause the telescoping portion to extend and retract with respect to the ground-engaging portion.
In another respect the invention is an apparatus comprising a support structure comprising a plurality of vertical support members, each of the plurality of vertical support members having a load-engaging portion located at a top end of a telescoping portion and a ground-engaging portion located at a bottom end of said vertical support member, each of the telescoping portions being shaped to alternately nest within and be retracted from the ground-engaging portion of the respective vertical support member, a support portion-engaging unit having a plurality of sleeves, wherein each of the plurality of sleeves circumferentially surrounds one of the telescoping portions, at least one extension and retraction device that is attached at a first end to the support structure and attached at a second end to the support portion-engaging unit, and a locking structure having a locked configuration in which the position of the support portion-engaging unit is fixed relative to the telescoping portion and an unlocked configuration in which the support portion-engaging unit is vertically movable relative to the telescoping portion.
In yet another respect the invention is a method comprising: (a) positioning a support apparatus on a support surface and beneath a load that is located above the support surface, the support apparatus comprising a support structure having a plurality of vertical support members, each of the vertical support members having a telescoping portion, a load-engaging portion, and a ground-engaging portion, wherein each of the telescoping portions is releasably connectable to and vertically aligned with the ground-engaging portion of a respective one of said vertical support members and vertically aligned with the load-engaging portion of said respective one of said vertical support members; (b) engaging the support surface with the ground-engaging portion of each of the plurality of vertical support members; (c) extending each of the telescoping portions of each of the plurality of vertical support members; and (d) locking the position of each of the telescoping portions relative to the ground-engaging portion thereof.
The foregoing summary, as well as the following detailed description of the invention, will be better understood when read in conjunction with the appended drawings. For the purpose of illustrating the invention, there are shown in the drawings certain embodiments of the present invention. It should be understood, however, that the invention is not limited to the precise arrangements and instrumentalities shown. In the drawings, the same reference numerals are employed for designating the same elements throughout the several figures. In the drawings:
The ensuing detailed description provides preferred exemplary embodiments only, and is not intended to limit the scope, applicability, or configuration of the invention. Rather, the ensuing detailed description of the preferred exemplary embodiments will provide those skilled in the art with an enabling description for implementing the preferred exemplary embodiments of the invention. It being understood that various changes may be made in the function and arrangement of elements without departing from the spirit and scope of the invention, as set forth in the appended claims.
To aid in describing the invention, directional terms are used in the specification and claims to describe portions of the present invention (e.g., upper, lower, left, right, etc.). These directional definitions are merely intended to assist in describing and claiming the invention and are not intended to limit the invention in any way. In addition, reference numerals that are introduced in the specification in association with a drawing figure may be repeated in one or more subsequent figures without additional description in the specification in order to provide context for other features.
Referring generally to
In this embodiment, the tower 10 is manually positioned into the desired location. Other means for moving the tower 10 are envisioned within the scope of this invention. For example, the tower 10 could be self-propelled (e.g., by a hydrostatic drive system for the wheels 16a-16d) or the chassis 12 could be mounted to a trailer (not shown). In self-propelled embodiments, movement of the tower 10 could be automated via a remote control device (wired or wireless) and processing means (not shown) or other known vehicle-control methods. Such a remote control device could also be used to actuate the hydraulic cylinders, the operation of which are discussed in greater detail herein.
In this embodiment, a ground-engaging portion 20 is connected to the chassis 12. The ground-engaging portion 20 is comprised of ground supports or outriggers 22a-22d. The extension length of the outriggers 22a-22d is adjusted, respectively, by outrigger cranks 28a-28d, and the outriggers 22a-22d are held in position, respectively, by outrigger pins 24a-24d (24c and 24d not labeled). In this embodiment, the outriggers 22a-22d are each fitted with multiple outrigger pin holes, e.g. pin hole 26, which allow for the respective outrigger 22a-22d to be set to the desired length via the insertion of the respective outrigger pin 24a-24d.
While the tower 10 is being transported, the outriggers 22a-22d are retracted such that they do not make contact with the ground. After the tower 10 has been positioned in the desired location, the outriggers 22a-22d can then be extended. As best seen in
In alternate embodiments (not shown), outriggers that are extendable outwardly from the chassis 12 (like those used to stabilize cranes, ladder trucks and aerial booms) may be included that provide increased stability to the tower 10 when it is positioned and operated. A secondary hydraulic unit, as described in greater detail below, may also be used to properly balance the tower 10 once it has been positioned in its desired location.
In the embodiment illustrated in the Figures, the dunnage 48 is wooden blocks with cross sections that are approximately 12 inches by 12 inches in size. It should be understood that many other types of dunnage could be used to stabilize the ground-engaging portions 56a-56d where the ground is unlevel or uneven, such as for example one or more sandbags, or blocks or shims made of wood, metal, rubber, or other suitable material. Regardless of what material is selected for the dunnage, it is desirable that the dunnage be arranged such that the tower 10 is as level as possible with the load to be engaged thereby, i.e. the top surface of the chassis beams 14a, 14b should be substantially parallel with the bottom surface of the load to be engaged by the tower 10. This parallel arrangement not only minimizes the risk that the tower 10 will become accidentally disengaged from the load, but also maximizes the lifting capacity of the tower 10, since the lifting force provided by the tower 10 is in a generally vertical direction. Preferably, the lifting force provided by the tower 10 is in a precise upward direction. The dunnage 48 also serves to distribute the weight of the tower 10 (and any load engaged thereby) over a larger surface area of the ground than would be engaged by the ground-engaging portions 56a-56d of the vertical members 54a-54d alone.
The tower 10 further comprises a power source 30, which in this embodiment is a gas-powered engine that drives a hydraulic pump 33. Other sources of power are envisioned within the scope of this invention, for example battery or plug-in electric power, or engines that consume other types of fossil fuels. A hydraulic fluid chamber 32 is operably connected to the hydraulic pump 33, and is further operably connected to a hydraulic cylinder control means 31 (see
In this embodiment, the tower 10 comprises a first support portion 50. The first support portion 50 is comprised of vertical beams 54a-54d, which terminate at their respective bottom ends at ground-engaging portions 56a-56d. In this embodiment, the vertical beams 54a-54d are arranged such that when viewed in cross-section from above they form the corners of a rectangle. It should be understood that other cross-sectional shapes for the first support portion are suitable, for example square or triangular. In this embodiment, adjacent vertical beams are joined by one or more horizontal supports, such as for example horizontal beams 52a-52b, which join together vertical beams 54a and 54d (see
In this embodiment, the vertical beams 54a-54d are joined to the transport chassis 12 via brackets 51a-51d (bracket 51c is shown in
Where reference is made in this application to the connectivity and functionality of hydraulic cylinder 36a, it should be understood that hydraulic cylinder 36b functions identically thereto. Referring now to
In an alternate embodiment (not shown), the first connection point 38a of the hydraulic cylinder 36a could be free to shift upwards after an initial extension motion, thereby retracting the piston rod 37a while bringing the bottom of the hydraulic cylinder 36a to a raised position approximately level to the top of the first support portion 50. The first connection point 38a could then be supported at this level, via a support pin or other suitable means, and the piston rod 37a could again be extended such that the third support portion 70 is raised out of its nested position within the first support portion 50. In this embodiment, the support portion-engaging unit 42 could be eliminated, and the second connection point 40a could be located directly on the bottom surface of a load-engaging portion 80.
Returning to the embodiment shown in the attached Figures, support portion-engaging unit 42 is comprised of two beams 43a, 43b (see
In
Referring now to
When the maximum, or desired, height of the second support portion 60 has been reached, the user inserts support pins 68a-68d into pin-receiving holes 66a-66d (see
Referring now to
Because the vertical beams 62a-62d rest at the bottom of the respective ground-engaging portions 56a-56d, the vertical beams 62a-62d are approximately the same length as the respective ground-engaging portions 56a-56d, and full extension of the vertical beams 62a-62d almost doubles the height of the tower 10, thereby allowing the tower 10 to support a load that is located significantly higher than the height of the tower 10 when the vertical beams 62a-62d are at the bottom of the respective ground-engaging portions 56a-56d. Conversely, because the height of the tower 10, when the vertical beams 62a-62d are at the bottom of the respective ground-engaging portions 56a-56d, is only about half the height of the tower 10 when the vertical beams 62a-62d are fully extended from the respective ground-engaging portions 56a-56d, the tower 10 can be transported under most road overpasses without difficulty.
When the maximum, or desired, height of the third support portion 70 has been reached, the user reinserts support pins 68a-68d into pin-receiving holes 66a-66d, respectively. Support pins 68a-68d are again inserted entirely through the respective vertical beam 62a-62d, such that the weight of the second support portion 60, third support portion 70, the load-engaging portion 80, and any load engaged thereby can be supported by the support pins 68a-68d. The support pins 64a-64d may then be removed such that the support portion-engaging unit 42 is disengaged from the vertical beams 62a-62d, allowing the piston rod 37a of the hydraulic cylinder 36a to be fully retracted. More preferably, for added structural rigidity, the hydraulic cylinder 36a is maintained in a fully extended position and the support portion-engaging unit 42 is maintained in engagement with the vertical beams 62a-62d via support pins 68a-68d, respectively.
As can be seen in
It should be noted that when the tower 10 is in a fully-extended position, the box-like structure of the support portion-engaging unit 42 adds a significant amount of lateral stability to the beams 62a-62d. This enables the tower 10 to support much larger loads than would be possible without the support portion-engaging unit 42.
When the user desires to remove the tower 10 from the extended height, the second 60 and/or third 70 support portions may be lowered back into a nested position within the first support portion 50 by substantially reversing the lifting process as described above. The tower 10 can then be quickly moved to another location and re-extended for continued use.
Referring again to
It should also be understood that the load-engaging portion may comprise any number of alternate structures, such as for example where the load-engaging portion comprises a structure with a wider load-contacting area or a structure that is specifically shaped, sized, or configured in order to more effectively engage the load. The load-engaging portion could also be changeable, such that a user could quickly replace the load-engaging portion with a structure having a desired shape, size, or configuration. Storage areas for alternate load-engaging portions could be provided on or in engagement with the body of the apparatus.
In the embodiment as substantially shown in
In the alternative, other suitable materials, for example metals or plastics, may be used to construct some or all of the weight-bearing components of the apparatus.
In an alternative embodiment (not shown), the tower 10 could include a secondary extension and retraction means, which may be a secondary hydraulic unit. The secondary hydraulic unit may, in one embodiment, be located between the load-engaging portion 80 and the top of the vertical beams 62a-62d. In the alternative, the secondary hydraulic unit could be located below the first support portion 50. Other locations for the secondary hydraulic unit are also envisioned within the scope of this invention.
Preferably, the secondary hydraulic unit is comprised of one or more hydraulic cylinders that are shorter in length and/or greater in diameter—and have a greater lifting capacity—than the hydraulic cylinders 36a, 36b. In one embodiment, the hydraulic cylinders 36a, 36b would provide the means for adjusting the tower 10 to the proper height, i.e. would be used to move the load-engaging portion 80 into contact with the load 84. Once the load 84 has been placed adjacent to the load-engaging portion 80, the tower 10 would be secured by support pins 64a-64d and 68a-68d as substantially described above. The secondary hydraulic unit could then be used to perform the function of displacing the load 84.
In addition, the secondary hydraulic unit could be used in addition to, or instead of, the outriggers 22a-22d to raise the wheels 16a-16d off of the ground so that the ground-engaging portion 20 is placed in contact with the ground and/or dunnage 48. Where the secondary hydraulic unit is comprised of more than one hydraulic cylinder, the separate cylinders could be operated independently to assist in leveling the tower 10.
In an alternate embodiment, the tower 10 could be operated entirely via hydraulic means. The wheels 16a-16d, outriggers 22a-22d, outrigger pins 24a-24d, and support pins 64a-64d, and 68a-68d, for example, could be adjusted, positioned, engaged, and/or disengaged via hydraulic control means.
Referring to the flowchart 800 of
In step 810, the vertical beams 62a-d are telescopically extended vertically to engage the load. In step 812, the vertical beams 62a-d are securely locked into the vertical members 54a-d, respectively. Optionally, in step 814, if the load is too high, the sleeves 74a-d are released from the vertical beams 62a-d and in step 816, the sleeves 74a-d are lowered. In step 818, the sleeves are re-engaged with the vertical beams 62a-d and, repeating step 810, the sleeves 74a-d are extended until they engage and support the load-engaging portion 80.
An embodiment of a tower 110 according to an alternative exemplary embodiment of the present invention is illustrated in
Tower 110 includes an elongated chassis 112 comprised of a pair of horizontal chassis beams (only one chassis beam 114a shown in
Each of the first support portions 150a, 150b, 150c supports a respective second support portion 160a, 160b, 160c in the same manner that second support portion 60 is supported by first support portion 50 as described above. A load-engaging portion 180a, 180b, 180c, respectively, is supported by a respective second support portion 160a, 160b, 160c in the same manner that load-engaging portion 80 is supported by second support portion 60 as described above.
A power source 130 is operably connected to a hydraulic cylinder control means 131. Hydraulic cylinder control means 131 is used to independently operate each of the second support portions 160a, 160b, 160c to raise and lower the second support portions 160a, 160b, 160c from within the first support portions 150a, 150b, 150c, respectively, in a manner similar to operation of the tower 10 described above.
While the principles of the invention have been described above in connection with preferred embodiments, it is to be clearly understood that this description is made only by way of example and not as a limitation of the scope of the invention.
Number | Date | Country | |
---|---|---|---|
20150233134 A1 | Aug 2015 | US |
Number | Date | Country | |
---|---|---|---|
61226490 | Jul 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13645630 | Oct 2012 | US |
Child | 14703007 | US | |
Parent | 12833087 | Jul 2010 | US |
Child | 13645630 | US |