The present disclosure relates generally to transferring dry bulk materials, and more particularly, to a portable support structure for receiving containers of bulk material and routing bulk material from the containers.
During the drilling and completion of oil and gas wells, various wellbore treating fluids are used for a number of purposes. For example, high viscosity gels are used to create fractures in oil and gas bearing formations to increase production. High viscosity and high density gels are also used to maintain positive hydrostatic pressure in the well while limiting flow of well fluids into earth formations during installation of completion equipment. High viscosity fluids are used to flow sand into wells during gravel packing operations. The high viscosity fluids are normally produced by mixing dry powder and/or granular materials and agents with water at the well site as they are needed for the particular treatment. Systems for metering and mixing the various materials are normally portable, e.g., skid- or truck-mounted, since they are needed for only short periods of time at a well site.
The powder or granular treating material is normally transported to a well site in a commercial or common carrier tank truck. Once the tank truck and mixing system are at the well site, the dry powder material (bulk material) must be transferred or conveyed from the tank truck into a supply tank for metering into a blender as needed. The bulk material is usually transferred from the tank truck pneumatically. More specifically, the bulk material is blown pneumatically from the tank truck into an on-location storage/delivery system (e.g., silo). The storage/delivery system may then deliver the bulk material onto a conveyor or into a hopper, which meters the bulk material through a chute into a blender tub.
Recent developments in bulk material handling operations involve the use of portable containers for transporting dry material about a well location. The containers can be brought in on trucks, unloaded, stored on location, and manipulated about the well site when the material is needed. The containers are generally easier to manipulate on location than a large supply tank trailer. The containers are eventually emptied by dumping the contents thereof onto a mechanical conveying system (e.g., conveyor belt, auger, bucket lift, etc.). The conveying system then moves the bulk material in a metered fashion to a desired destination at the well site.
For a more complete understanding of the present disclosure and its features and advantages, reference is now made to the following description, taken in conjunction with the accompanying drawings, in which:
Illustrative embodiments of the present disclosure are described in detail herein. In the interest of clarity, not all features of an actual implementation are described in this specification. It will of course be appreciated that in the development of any such actual embodiment, numerous implementation specific decisions must be made to achieve developers' specific goals, such as compliance with system related and business related constraints, which will vary from one implementation to another. Moreover, it will be appreciated that such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking for those of ordinary skill in the art having the benefit of the present disclosure. Furthermore, in no way should the following examples be read to limit, or define, the scope of the disclosure.
Certain embodiments according to the present disclosure may be directed to systems and methods for efficiently managing bulk material (e.g., bulk solid or liquid material). Bulk material handling systems are used in a wide variety of contexts including, but not limited to, drilling and completion of oil and gas wells, concrete mixing applications, agriculture, and others. The disclosed embodiments are directed to systems and methods for efficiently moving bulk material into a blender inlet of a blender unit at a job site. The systems may include a portable support structure used to receive one or more portable containers of bulk material and output bulk material from the containers directly into the blender inlet. The disclosed techniques may be used to efficiently handle any desirable bulk material having a solid or liquid constituency including, but not limited to, sand, proppant, gel particulate, diverting agent, dry-gel particulate, liquid additives and others.
In currently existing on-site bulk material handling applications, dry material (e.g., sand, proppant, gel particulate, or dry-gel particulate) may be used during the formation of treatment fluids. In such applications, the bulk material is often transferred between transportation units, storage tanks, blenders, and other on-site components via pneumatic transfer, sand screws, chutes, conveyor belts, and other components. Recently, a new method for transferring bulk material to a hydraulic fracturing site involves using portable containers to transport the bulk material. The containers can be brought in on trucks, unloaded, stored on location, and manipulated about the site when the material is needed. These containers generally include a discharge gate at the bottom that can be actuated to empty the material contents of the container at a desired time.
In existing systems, the containers are generally supported above a mechanical conveying system (e.g., moving belt, auger, bucket lift, etc.) prior to releasing the bulk material. The discharge gates on the containers are opened to release the bulk material via gravity onto the moving mechanical conveying system. The mechanical conveying system then directs the dispensed bulk material toward a desired destination, such as a hopper on a blender unit. Unfortunately, this process can release a relatively large amount of dust into the air and result in unintended material spillage. In addition, the mechanical conveying system is generally run on auxiliary power and, therefore, requires an external power source to feed the bulk material from the containers to the blender.
The material handling systems having the portable support structure disclosed herein are designed to address and eliminate the shortcomings associated with existing container handling systems. The portable support structure may include a frame for receiving and holding one or more portable bulk material containers in an elevated position proximate the blender inlet (e.g., blender hopper or mixer inlet), as well as one or more gravity feed outlets for routing the bulk material from the containers directly into the blender inlet. In some embodiments, the portable support structure may be transported to the well site on a trailer, unloaded from the trailer, and positioned proximate the blender unit. In other embodiments, the portable support structure may be a mobile support structure that is integrated into a trailer unit. The portable support structure may be designed with an open space at one side so that the blender unit can be backed up until the blender inlet is in position directly under the gravity feed outlet(s) of the support structure.
The disclosed portable support structure may provide an elevated location for one or more bulk material containers to be placed while the proppant (or any other liquid or solid bulk material used in the fluid mixtures at the job site) is transferred from the containers to the blender. The support structure may elevate the bulk material containers to a sufficient height above the blender inlet and route the bulk material directly from the containers to the blender inlet. This may eliminate the need for any subsequent pneumatic or mechanical conveyance of the bulk material (e.g., via a separate mechanical conveying system) from the containers to the blender. This may improve the energy efficiency of bulk material handling operations at a job site, since no auxiliary power sources are needed to move the material from the containers into the blender inlet. In addition, the portable support structure may simplify the operation of transferring bulk material, reduce material spillage, and decrease dust generation.
Turning now to the drawings,
As illustrated, the blender unit 20 may include a hopper 22 and a mixer 24 (e.g., mixing compartment). The blender unit 20 may also include a metering mechanism 26 for providing a controlled, i.e. metered, flow of bulk material from the hopper 22 to the mixer 24. However, in other embodiments the blender unit 20 may not include the hopper 22, such that the outlet 18 of the support structure 14 may provide bulk material directly into the mixer 20.
Water and other additives may be supplied to the mixer 24 (e.g., mixing compartment) through a fluid inlet 28. As those of ordinary skill in the art will appreciate, the fluid inlet 28 may comprise more than the one input flow line illustrated in
It should be noted that the disclosed container 12 may be utilized to provide bulk material for use in a variety of treating processes. For example, the disclosed systems and methods may be utilized to provide proppant materials into fracture treatments performed on a hydrocarbon recovery well. In other embodiments, the disclosed techniques may be used to provide other materials (e.g., non-proppant) for diversions, conductor-frac applications, cement mixing, drilling mud mixing, and other fluid mixing applications.
As illustrated, the container 12 may be elevated above an outlet location via the frame 16. The support structure 14 is designed to elevate the container 12 above the level of the blender inlet (e.g., blender hopper 22 and/or mixing tub 24) to allow the bulk material to gravity feed from the container 12 to the blender unit 20. This way, the container 12 is able to sit on the frame 16 of the support structure 14 and output bulk material directly into the blender unit 20 via the gravity feed outlet 18 of the support structure 14.
Although shown as supporting a single container 12, other embodiments of the frame 16 may be configured to support multiple containers 12. The exact number of containers 12 that the support structure 14 can hold may depend on a combination of factors such as, for example, the volume, width, and weight of the containers 12 to be disposed thereon.
In any case, the container(s) 12 may be completely separable and transportable from the frame 16, such that any container 12 may be selectively removed from the frame 16 and replaced with another container 12. That way, once the bulk material from the container 12 runs low or empties, a new container 12 may be placed on the frame 16 to maintain a steady flow of bulk material to an outlet location. In some instances, the container 12 may be closed before being completely emptied, removed from the frame 16, and replaced by a container 12 holding a different type of bulk material to be provided to the outlet location.
A portable bulk storage system 32 may be provided at the site for storing one or more additional containers 12 of bulk material to be positioned on the frame 16 of the support structure 14. The bulk material containers 12 may be transported to the desired location on a transportation unit (e.g., truck). The bulk storage system 32 may be the transportation unit itself or may be a skid, a pallet, or some other holding area. One or more containers 12 of bulk material may be transferred from the storage system 32 onto the support structure 14, as indicated by arrow 34. This transfer may be performed by lifting the container 12 via a hoisting mechanism, such as a forklift, a crane, or a specially designed container management device.
When the one or more containers 12 are positioned on the support structure 14, discharge gates on one or more of the containers 12 may be opened, allowing bulk material to flow from the containers 12 into the outlet 18 of the support structure 14. The outlet 18 may then route the flow of bulk material directly into a blender inlet (e.g., into the hopper 22 or mixer 24) of the blender unit 20.
After one or more of the containers 12 on the support structure 14 are emptied, the empty container(s) 12 may be removed from the support structure 14 via a hoisting mechanism. In some embodiments, the one or more empty containers 12 may be positioned on another bulk storage system 32 (e.g., a transportation unit, a skid, a pallet, or some other holding area) until they can be removed from the site and/or refilled. In other embodiments, the one or more empty containers 12 may be positioned directly onto a transportation unit for transporting the empty containers 12 away from the site. It should be noted that the same transportation unit used to provide one or more filled containers 12 to the location may then be utilized to remove one or more empty containers 12 from the site.
As illustrated, the support structure 14 may be equipped with a plurality of locator pins 52 disposed on top of the frame 16 for locating and holding the containers on the frame 16. The containers may include complementary engagement features designed to interface with the locator pins 52, thus enabling a precise placement of the containers into desired locations on the frame 16. In the illustrated embodiment, the locator pins 52 are generally disposed at the corners on the upper face of each cubic/rectangular support 50. However, other placements of the locator pins 52 along the upper surface of the support structure 16 may be utilized in other embodiments.
The support structure 14 may also include one or more actuators 54 designed to aid in actuation of a discharge gate of the one or more containers disposed on the frame 16. In the illustrated embodiment, the actuators 54 may be rotary actuators designed to rotate into engagement with a discharge gate of a container to transition the gate between a closed position and an open position. In other embodiments, the actuators 54 may be linear actuators designed to interface with the gates of the containers to selectively open and close the gates. In some embodiments, the actuators 54 may include a set of two actuators (disposed on opposite sides of the frame 16) for actuating the discharge gate of a single container disposed on the frame 16. In such an arrangement, one of the actuators 54 may transition the gate from closed to open, while the opposite actuator 54 may transition the gate from open to closed.
The illustrated support structure 14 may be transportable to and from a desired location on a flatbed trailer or some other transportation unit. Once at location, a hoisting mechanism (e.g., forklift, crane, etc.) may be used to remove the support structure 14 from the transportation system unit and to place the support structure 14 into a desired position. To that end, the support structure may include slots 56 that a forklift can engage to lift and manipulate the portable support structure 14 about the site. In the illustrated embodiment, the slots 56 are formed in a section of the frame 16 that is slightly elevated above a lower edge of the support structure 14. This may enable relatively easy release of the forklift from the support structure 14 once the structure 14 is positioned on the ground. The slots 56 may be formed through a central portion (e.g., central cubic/rectangular support 50B) of the elongated support structure 14 to keep the weight of the support structure evenly distributed during its movement at the site. In other embodiments, the support structure 14 may include other types of mechanical features for interfacing with another type of hoisting mechanism. For example, the support structure 14 may include one or more lifting eyes (not shown) for interfacing with a crane used to position the support structure 14 as needed at the site.
Once the forklift (or other hoisting mechanism) brings the support structure 14 to a desired location at the site, the hoisting mechanism may lower the support structure 14 onto the ground or a relatively flat loading area proximate the ground level. The frame may 16 include corner supports 58 for distributing a weight of the support structure 14 (and any containers disposed thereon) along the ground surface. As shown, the corner supports 58 may be disposed along the lower surface of the frame 16 at various corners of the cubic/rectangular supports 50. In the illustrated embodiment, for example, the corner supports 58 may be disposed at the lower corners of the two outside cubic/rectangular supports 50A and 50C, since the lower surface of the central support 50B is slightly elevated above the ground level.
As described above, the support structure 14 may include several gravity feed outlets 18 for routing bulk material directly from one or more containers disposed on the frame 16 into a blender inlet. The term “blender inlet” used herein may refer to any number of inlets to tubs, hoppers, mixers, and other areas where bulk material is needed. As mentioned above, the blender inlet may be associated with a blender disposed at a job site (e.g., at a well site). For example, the blender inlet may be a blender hopper (e.g., hopper 22 of
In the illustrated embodiment, the blender unit 20 and support structure 14 may be designed such that the support structure 14 is used to route bulk material directly from containers into the blender hopper 22. That is, the “blender inlet” in this embodiment may correspond to the blender hopper 22. In
The gravity feed outlets 18A, 18B, and 18C may be used to deliver a flow of bulk material to the blender hopper 22 (or other blender inlet) from each of three respective containers disposed on the frame 16. In some embodiments, the support structure 14 may also include individual hoppers 60A, 60B, and 60C at the top of the frame 16 for funneling bulk material from the discharge gate of the corresponding containers into the gravity feed outlets 18A, 18B, and 18C, respectively.
The gravity feed outlets 18A, 18B, and 18C may be chutes positioned so that the upper end of each chute is disposed beneath a discharge gate of a corresponding container (or one of the hoppers 60) on the frame 16. The gravity feed outlets 18 may be positioned such that the lower end of each chute is disposed fully within the blender hopper 22. This allows the gravity feed outlets 18 to provide bulk material from all of the containers positioned on the frame 16 into the same blender inlet (e.g., blender hopper 22) at the same time. The outlets 18 are able to provide a gravity feed where an angle of repose of the bulk material exiting the chutes is able to choke the flow of bulk material through the chutes. As bulk material is metered from the blender hopper 22 into another portion of the blender (e.g., mixer), additional bulk material is able to flow via gravity into the hopper 22 directly from the one or more outlets 18. In embodiments where the gravity feed outlets 18 are positioned to route bulk material directly from the containers into an inlet of the mixer of the blender unit, the outlets 18 and/or the blender inlet may feature a metering gate/valve used to regulate the amount of bulk material provided into the mixer (e.g., instead of separate sand screws)
The disclosed gravity feed outlets 18 provide a more controlled output of bulk material to the blender inlet (e.g., blender hopper 22) than would be available through the use of mechanical conveying systems to drop bulk material into the hopper. In addition, the choke feed of bulk material through the outlets 18 and into the blender inlet may reduce an amount of dust generated at a well site, as compared to existing pneumatic or mechanical conveying systems. Further, the gravity feed outlets 18 are able to route the bulk material directly into the blender inlet from the containers without the use of pneumatic or mechanical conveyance equipment operating on auxiliary power. This makes the process of moving the bulk material more efficient than would be possible using a separate pneumatic or mechanical conveyor between the containers and the blender.
It may be desirable for the outlets 18 to be angled by a certain amount so that the lower ends of the outlets 18 interface directly with the blender hopper 22. In some embodiments, the angle of inclination of each gravity feed outlet 18 from a horizontal plane may be between approximately 25 and 55 degrees, between approximately 30 and 50 degrees, between approximately 35 and 45 degrees, or equal to approximately 40 degrees. As shown, it may be desirable to angle the outlets 18 such that outlets 18 direct the bulk material toward a central collection point proximate a center portion (e.g., support 50B) of the support structure 14.
Although illustrated in
In some instances, the support structure 14 may be equipped with a set of outriggers 64 to increase the stability of the portable support structure 14. The outriggers 64 may help to keep the support structure 14 stable in the event of high winds or the support structure 14 being impacted by a container, forklift, blender, or other pieces of equipment at the job site. In addition, the outriggers 64 on the support structure 14 may be used for interfacing with the blender to bring the blender inlet into a desired position or alignment within the opening 62 of the support structure 14.
To further improve the mobility, transportability, and rig-up speed at the job site, the portable support structure 14 may be integrated into a specialized support structure trailer unit 70, as shown in
Having the support structure 14 integrated into a separate mobile unit (70) may improve the reliability of the various components that make up the support structure 14 and increase the life of the unit. This is because every time the support structure 14 is lifted or moved via a hoisting mechanism, for example, the frame 16, electronics, controls, and/or outlets 18 can be negatively impacted. Shock from movement of the relatively large support structure about a site can lead to undesirable operations of the support structure components. With the support structure 14 integrated into the trailer unit 70, the shock due to loading/unloading the portable support structure 14 itself is minimized.
In some embodiments, the support structure trailer unit 70 may also include an air suspension system or other components to reduce shock on the support structure 14 during transportation of the trailer unit 70 (e.g., traveling along a road). The suspension system may help to further isolate the electronics and controls of the support structure from shock loading during transportation of the support structure trailer unit 70 along the road.
Having discussed the mechanical components that make up various embodiments of the portable support structure 14, a more detailed discussion of various electronics and controls that may be used within or communicatively coupled to the support structure 14 will be provided.
The portable support structure 14 may include a number of electronic components, and these components may be communicatively coupled (e.g., via a wired connection or wirelessly) to one or more controllers 90 (e.g., automated control system) at the well site. The control system 90 may be communicatively coupled to several other well site components including, but not limited to, the blender unit 20, a hoisting mechanism (e.g., forklift) 92, and various sensors 94.
The control system 90 utilizes at least a processor component 96 and a memory component 98 to monitor and/or control various operations and bulk material inventory at the well site. For example, one or more processor components 96 may be designed to execute instructions encoded into the one or more memory components 98. Upon executing these instructions, the processors 96 may provide passive logging of certain operations at the well site, as well as the amount, type, and location of bulk materials at the well site. In some embodiments, the one or more processors 96 may execute instructions for controlling operations of certain well site components (e.g., support structure electronics, blender unit 20, hoisting mechanism 92, etc.). This may help to control transportation and placement of the support structure 14 relative to the blender inlet, as well as bulk material transfer at the well site. For example, the processors 96 may output signals at a user interface 99 for instructing operators to remove an empty container from the support structure 14 and replace the container with a new container holding a certain type of bulk material needed for the well treatment. Other types of instructions for inventory control/monitoring may be provided through the disclosed systems.
As shown, the support structure 14 itself may include a number of electronic components such as, for example, the automated actuators 54 described above with reference to
In addition, the support structure 14 may include various sensors designed to take measurements and provide sensor feedback to the control system 90. For example, the support structure 14 may include cameras 102 (e.g., all-weather cameras) to provide optical feedback of certain operations involving the support structure 14. One or more cameras 102 may be positioned to look out toward where the hoisting mechanism 92 is manipulated to engage the portable support structure 14 (e.g., proximate the slots 56 of
Additional cameras 102 may be used to control a position of the blender unit 20 relative to the support structure 14 during set up of the system at a desired location. For example, the cameras 102 may detect a proximity of the blender inlet (e.g., hopper or mixing vessel) to the support structure 14 as the blender unit 20 is backing toward the support structure 14 (or as the support structure 14 is being lowered over the blender unit 20 via the hoisting mechanism 92). The controller may output signals to control an alignment and proximity of the blender unit 20 relative to the support structure 14, based on the optical feedback received from the cameras 102.
The support structure 14 may also include fill level sensors 104 (e.g., cameras, guided wave radar sensors, sonar sensors, array or level switches, or any other type of level sensing devices) pointed toward the blender hopper and used to detect a level of the bulk material present in the blender hopper. The controller 90 may output control signals to one or more actuators 54 on the support structure 14 to initiate filling of the blender hopper with additional bulk material from one or more containers on the support structure 14, based on the received fill level sensor signals. That is, when the blender hopper is running low, the controller 90 may actuate additional containers into the open position to maintain a steady flow of bulk material to the blender hopper.
The support structure 14 may also include load cells 106 for detecting the presence and/or weight of the one or more containers disposed on the frame of the support structure 14. By detecting the weight of the containers, the load cells 106 may provide the controller 90 with information regarding the number of containers disposed on the support structure 14 as well as the fill level of bulk material within the individual containers on the support structure 14.
Other sensors 107 may be present throughout the support structure 14. In some embodiments, for example, the support structure 14 may include additional sensors 107 for detecting the presence and/or location of one or more containers disposed atop the frame of the support structure 14. When fewer than the maximum capacity of containers are disposed on the support structure 14, the controller 90 may output a command for an operator or automated system to position a new filled container of bulk material onto the support structure 14, based on the received signal from the sensors 107.
The controller 90, the support structure electronics, or both, may utilize power from an external power source 108, as shown. In other embodiments, the support structure 14 may include its own power source 108 for operating the onboard electronics and sensors.
As mentioned above, the controller 90 may be communicatively coupled to various other sensors 94 disposed about the well site. In some embodiments, these sensors 94 may include one or more load cells or bin full switches for tracking a level of bulk material in a portable container and indicating whether the container is empty, full, or partially full. Such sensors 94 may be used for any given container, the blender hopper, a silo (not shown), or any other component at the well site. In addition, in some embodiments the sensors 94 may include RFID tags used to provide an indication of the particle size, bulk volume, weight, type, material, and/or supplier of the bulk material disposed in a certain container. In such instances, the controller 90 may be communicatively coupled to an RFID reader disposed in proximity to the containers being moved about the well site.
Although the present disclosure and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the disclosure as defined by the following claims.
The present application is a Continuation of U.S. patent application Ser. No. 15/522,601 filed Apr. 27, 2017, which is a U.S. National Stage Application of International Application No. PCT/US2015/041543 filed Jul. 22, 2015, both of which are incorporated herein by reference in their entirety for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
710611 | Ray | Oct 1902 | A |
802254 | John et al. | Oct 1905 | A |
917646 | Otto | Apr 1909 | A |
1519153 | Mitton | Dec 1924 | A |
1726603 | Allen | Sep 1929 | A |
1795987 | Adams | Mar 1931 | A |
2172244 | Grundler | Jun 1936 | A |
2138172 | Johnson | Nov 1938 | A |
2231911 | Hitt et al. | Feb 1941 | A |
2281497 | Hyson et al. | Apr 1942 | A |
2385245 | Willoughby | Sep 1945 | A |
2415782 | Zademach et al. | Feb 1947 | A |
2513012 | Dugas | Jun 1950 | A |
2563470 | Kane | Aug 1951 | A |
2652174 | Shea | Sep 1953 | A |
2670866 | Glesby | Mar 1954 | A |
2678737 | Mangrum | May 1954 | A |
2703659 | Hutchins | Mar 1955 | A |
2756073 | Bridge | Jul 1956 | A |
2759737 | Manning | Aug 1956 | A |
2802603 | McCray | Aug 1957 | A |
2867336 | Soldini et al. | Jan 1959 | A |
2873036 | Noble | Feb 1959 | A |
3049248 | Heltzel et al. | Aug 1962 | A |
3083879 | Coleman | Apr 1963 | A |
3151779 | Rensch et al. | Oct 1964 | A |
3203370 | Friedrich et al. | Aug 1965 | A |
3217927 | Bale, Jr. et al. | Nov 1965 | A |
3315826 | Gardner | Apr 1967 | A |
3318473 | Jones et al. | May 1967 | A |
3326572 | Murray | Jun 1967 | A |
3343688 | Ross | Sep 1967 | A |
3354918 | Coleman | Nov 1967 | A |
3404963 | Fritsche et al. | Oct 1968 | A |
3432151 | O'Loughlin et al. | Mar 1969 | A |
3467408 | Regalia | Sep 1969 | A |
3476270 | Cox et al. | Nov 1969 | A |
3602400 | Cooke | Aug 1971 | A |
3627555 | Driscoll | Dec 1971 | A |
3698693 | Poncet | Oct 1972 | A |
3785534 | Smith | Jan 1974 | A |
3802584 | Sackett, Sr. et al. | Apr 1974 | A |
3856275 | Dydzyk | Dec 1974 | A |
3986708 | Heltzel et al. | Oct 1976 | A |
4023719 | Noyon | May 1977 | A |
4058239 | Van Mill | Nov 1977 | A |
4138163 | Calvert et al. | Feb 1979 | A |
4178117 | Brugler | Dec 1979 | A |
4204773 | Bates | May 1980 | A |
4248337 | Zimmer | Feb 1981 | A |
4258953 | Johnson | Mar 1981 | A |
4313708 | Tiliakos | Feb 1982 | A |
4395052 | Rash | Jul 1983 | A |
4398653 | Daloisio | Aug 1983 | A |
4423884 | Gevers | Jan 1984 | A |
4544279 | Rudolph | Oct 1985 | A |
4548507 | Mathis et al. | Oct 1985 | A |
4583663 | Bonerb | Apr 1986 | A |
4626166 | Jolly | Dec 1986 | A |
4701095 | Berryman et al. | Oct 1987 | A |
4806065 | Holt et al. | Feb 1989 | A |
4850702 | Arribau et al. | Jul 1989 | A |
4856681 | Murray | Aug 1989 | A |
4900157 | Stegemoeller et al. | Feb 1990 | A |
4919540 | Stegemoeller et al. | Apr 1990 | A |
4953752 | Tousignant et al. | Sep 1990 | A |
4956821 | Fenelon | Sep 1990 | A |
4993883 | Jones | Feb 1991 | A |
4997335 | Prince | Mar 1991 | A |
5036979 | Selz | Aug 1991 | A |
5096096 | Calaunan | Mar 1992 | A |
5114169 | Botkin et al. | May 1992 | A |
5149192 | Hamm et al. | Sep 1992 | A |
5303998 | Whitlatch et al. | Apr 1994 | A |
5339996 | Dubbert et al. | Aug 1994 | A |
5343813 | Septer | Sep 1994 | A |
5375730 | Bahr et al. | Dec 1994 | A |
5401129 | Eatinger | Mar 1995 | A |
5413154 | Hurst, Jr. et al. | May 1995 | A |
5415323 | Fenelon | May 1995 | A |
5426137 | Allen | Jun 1995 | A |
5441321 | Karpisek | Aug 1995 | A |
5443350 | Wilson | Aug 1995 | A |
5445289 | Owen | Aug 1995 | A |
5590976 | Kilheffer et al. | Jan 1997 | A |
5722552 | Olson | Mar 1998 | A |
5772390 | Walker | Jun 1998 | A |
5806441 | Chung | Sep 1998 | A |
5913459 | Gill et al. | Jun 1999 | A |
5915913 | Greenlaw et al. | Jun 1999 | A |
5927356 | Henderson | Jul 1999 | A |
5944470 | Bonerb | Aug 1999 | A |
5971600 | Paterson et al. | Oct 1999 | A |
5997099 | Collins | Dec 1999 | A |
6059372 | McDonald et al. | May 2000 | A |
6112946 | Bennett et al. | Sep 2000 | A |
6126307 | Black et al. | Oct 2000 | A |
6193402 | Grimland et al. | Feb 2001 | B1 |
6247594 | Garton | Jun 2001 | B1 |
6379086 | Goth | Apr 2002 | B1 |
6425627 | Gee | Jul 2002 | B1 |
6491421 | Rondeau et al. | Dec 2002 | B2 |
6517232 | Blue | Feb 2003 | B1 |
6536939 | Blue | Mar 2003 | B1 |
6537015 | Lim et al. | Mar 2003 | B2 |
6568567 | McKenzie et al. | May 2003 | B2 |
6622849 | Sperling | Sep 2003 | B1 |
6655548 | McClure et al. | Dec 2003 | B2 |
6876904 | Oberg et al. | Apr 2005 | B2 |
6980914 | Bivens et al. | Dec 2005 | B2 |
7008163 | Russell | Mar 2006 | B2 |
7086342 | O'Neall et al. | Aug 2006 | B2 |
7100896 | Cox | Sep 2006 | B1 |
7114905 | Dibdin | Oct 2006 | B2 |
7252309 | Eng Soon et al. | Aug 2007 | B2 |
7284579 | Elgan | Oct 2007 | B2 |
7351025 | Galijan | Apr 2008 | B2 |
7451015 | Mazur et al. | Nov 2008 | B2 |
7475796 | Garton | Jan 2009 | B2 |
7500817 | Furrer et al. | Mar 2009 | B2 |
7513280 | Brashears et al. | Apr 2009 | B2 |
7665788 | Dibdin et al. | Feb 2010 | B2 |
7762281 | Schuld | Jul 2010 | B2 |
7997213 | Gauthier et al. | Aug 2011 | B1 |
8387824 | Wietgrefe | Mar 2013 | B2 |
8434990 | Claussen | May 2013 | B2 |
D688349 | Oren et al. | Aug 2013 | S |
D688350 | Oren et al. | Aug 2013 | S |
D688351 | Oren et al. | Aug 2013 | S |
D688772 | Oren et al. | Aug 2013 | S |
8505780 | Oren | Aug 2013 | B2 |
8545148 | Wanek-Pusset et al. | Oct 2013 | B2 |
8573917 | Renyer | Nov 2013 | B2 |
8585341 | Oren | Nov 2013 | B1 |
8607289 | Brown et al. | Dec 2013 | B2 |
8616370 | Allegretti et al. | Dec 2013 | B2 |
8622251 | Oren | Jan 2014 | B2 |
8662525 | Dierks et al. | Mar 2014 | B1 |
8668430 | Oren et al. | Mar 2014 | B2 |
D703582 | Oren | Apr 2014 | S |
8827118 | Oren | Sep 2014 | B2 |
8834012 | Case et al. | Sep 2014 | B2 |
8887914 | Allegretti et al. | Nov 2014 | B2 |
RE45713 | Oren et al. | Oct 2015 | E |
9162603 | Oren | Oct 2015 | B2 |
RE45788 | Oren et al. | Nov 2015 | E |
9248772 | Oren | Feb 2016 | B2 |
RE45914 | Oren et al. | Mar 2016 | E |
9296518 | Oren | Mar 2016 | B2 |
9322138 | Villalobos Davila | Apr 2016 | B2 |
9340353 | Oren et al. | May 2016 | B2 |
9358916 | Oren | Jun 2016 | B2 |
9394102 | Oren et al. | Jul 2016 | B2 |
9403626 | Oren | Aug 2016 | B2 |
9421899 | Oren | Aug 2016 | B2 |
9440785 | Oren et al. | Sep 2016 | B2 |
9446801 | Oren | Sep 2016 | B1 |
9475661 | Oren | Oct 2016 | B2 |
9511929 | Oren | Dec 2016 | B2 |
9522816 | Taylor | Dec 2016 | B2 |
9527664 | Oren | Dec 2016 | B2 |
9580238 | Friesen et al. | Feb 2017 | B2 |
RE46334 | Oren et al. | Mar 2017 | E |
9617065 | Allegretti et al. | Apr 2017 | B2 |
9617066 | Oren | Apr 2017 | B2 |
9624030 | Oren et al. | Apr 2017 | B2 |
9624036 | Luharuka et al. | Apr 2017 | B2 |
9643774 | Oren | May 2017 | B2 |
9650216 | Allegretti | May 2017 | B2 |
9656799 | Oren et al. | May 2017 | B2 |
9669993 | Oren et al. | Jun 2017 | B2 |
9670752 | Glynn et al. | Jun 2017 | B2 |
9676554 | Glynn et al. | Jun 2017 | B2 |
9682815 | Oren | Jun 2017 | B2 |
9694970 | Oren et al. | Jul 2017 | B2 |
9701463 | Oren et al. | Jul 2017 | B2 |
9718609 | Oren et al. | Aug 2017 | B2 |
9718610 | Oren | Aug 2017 | B2 |
9725233 | Oren | Aug 2017 | B2 |
9725234 | Oren et al. | Aug 2017 | B2 |
9738439 | Oren et al. | Aug 2017 | B2 |
RE46531 | Oren et al. | Sep 2017 | E |
9758081 | Oren | Sep 2017 | B2 |
9758993 | Allegretti et al. | Sep 2017 | B1 |
9771224 | Oren et al. | Sep 2017 | B2 |
9783338 | Allegretti et al. | Oct 2017 | B1 |
9796319 | Oren | Oct 2017 | B1 |
9796504 | Allegretti et al. | Oct 2017 | B1 |
9809381 | Oren et al. | Nov 2017 | B2 |
9828135 | Allegretti et al. | Nov 2017 | B2 |
9840366 | Oren et al. | Dec 2017 | B2 |
9969564 | Oren et al. | May 2018 | B2 |
9988182 | Allegretti et al. | Jun 2018 | B2 |
10059246 | Oren | Aug 2018 | B1 |
10081993 | Walker et al. | Sep 2018 | B2 |
10150612 | Pham | Dec 2018 | B2 |
10189599 | Allegretti et al. | Jan 2019 | B2 |
10207753 | O'Marra et al. | Feb 2019 | B2 |
10287091 | Allegretti | May 2019 | B2 |
10308421 | Allegretti | Jun 2019 | B2 |
10486854 | Allegretti et al. | Nov 2019 | B2 |
10518828 | Oren et al. | Dec 2019 | B2 |
10604338 | Allegretti | Mar 2020 | B2 |
20020121464 | Soldwish-Zoole et al. | Sep 2002 | A1 |
20030159310 | Hensley et al. | Aug 2003 | A1 |
20040008571 | Coody et al. | Jan 2004 | A1 |
20040031335 | Fromme et al. | Feb 2004 | A1 |
20040206646 | Goh et al. | Oct 2004 | A1 |
20040258508 | Jewell | Dec 2004 | A1 |
20050219941 | Christenson et al. | Oct 2005 | A1 |
20060013061 | Bivens et al. | Jan 2006 | A1 |
20070014185 | Diosse et al. | Jan 2007 | A1 |
20070201305 | Heilman et al. | Aug 2007 | A1 |
20080187423 | Mauchle | Aug 2008 | A1 |
20080294484 | Furman et al. | Nov 2008 | A1 |
20090078410 | Krenek et al. | Mar 2009 | A1 |
20090129903 | Lyons, III | May 2009 | A1 |
20090292572 | Alden et al. | Nov 2009 | A1 |
20090314791 | Hartley et al. | Dec 2009 | A1 |
20100319921 | Eia et al. | Dec 2010 | A1 |
20110272155 | Warren | Nov 2011 | A1 |
20120017812 | Renyer et al. | Jan 2012 | A1 |
20120018093 | Zuniga et al. | Jan 2012 | A1 |
20120037231 | Janson | Feb 2012 | A1 |
20120181093 | Fehr et al. | Jul 2012 | A1 |
20120219391 | Teichrob et al. | Aug 2012 | A1 |
20130135958 | O'Callaghan | May 2013 | A1 |
20130142601 | McIver et al. | Jun 2013 | A1 |
20130206415 | Sheesley | Aug 2013 | A1 |
20130284729 | Cook et al. | Oct 2013 | A1 |
20140023463 | Oren | Jan 2014 | A1 |
20140023464 | Oren et al. | Jan 2014 | A1 |
20140044508 | Luharuka et al. | Feb 2014 | A1 |
20140083554 | Harris | Mar 2014 | A1 |
20140216736 | Leugemors et al. | Aug 2014 | A1 |
20140299226 | Oren et al. | Oct 2014 | A1 |
20140305769 | Eiden, III et al. | Oct 2014 | A1 |
20140377042 | McMahon | Dec 2014 | A1 |
20150003943 | Oren et al. | Jan 2015 | A1 |
20150003955 | Oren et al. | Jan 2015 | A1 |
20150016209 | Barton et al. | Jan 2015 | A1 |
20150183578 | Oren et al. | Jul 2015 | A9 |
20150191318 | Martel | Jul 2015 | A1 |
20150284194 | Oren et al. | Oct 2015 | A1 |
20150353293 | Richard | Dec 2015 | A1 |
20150366405 | Manchuliantsau | Dec 2015 | A1 |
20150368052 | Sheesley | Dec 2015 | A1 |
20150375930 | Oren et al. | Dec 2015 | A1 |
20160031658 | Oren et al. | Feb 2016 | A1 |
20160039433 | Oren et al. | Feb 2016 | A1 |
20160046438 | Oren et al. | Feb 2016 | A1 |
20160046454 | Oren et al. | Feb 2016 | A1 |
20160068342 | Oren et al. | Mar 2016 | A1 |
20160096154 | Hideaki Kuada | Apr 2016 | A1 |
20160130095 | Oren et al. | May 2016 | A1 |
20160244279 | Oren et al. | Aug 2016 | A1 |
20160264352 | Oren | Sep 2016 | A1 |
20160332809 | Harris | Nov 2016 | A1 |
20160332811 | Harris | Nov 2016 | A1 |
20170021318 | McIver et al. | Jan 2017 | A1 |
20170129696 | Oren | May 2017 | A1 |
20170144834 | Oren et al. | May 2017 | A1 |
20170203915 | Oren | Jul 2017 | A1 |
20170217353 | Vander Pol et al. | Aug 2017 | A1 |
20170217671 | Allegretti | Aug 2017 | A1 |
20170225883 | Oren | Aug 2017 | A1 |
20170240350 | Oren et al. | Aug 2017 | A1 |
20170240361 | Glynn et al. | Aug 2017 | A1 |
20170240363 | Oren | Aug 2017 | A1 |
20170267151 | Oren | Sep 2017 | A1 |
20170283165 | Oren et al. | Oct 2017 | A1 |
20170313497 | Schaffner et al. | Nov 2017 | A1 |
20170327326 | Lucas et al. | Nov 2017 | A1 |
20170349226 | Oren et al. | Dec 2017 | A1 |
20180028992 | Stegemoeller et al. | Feb 2018 | A1 |
20180257814 | Allegretti et al. | Sep 2018 | A1 |
20190009231 | Warren et al. | Jan 2019 | A1 |
20190111401 | Lucas et al. | Apr 2019 | A1 |
20200062448 | Allegretti et al. | Feb 2020 | A1 |
Number | Date | Country |
---|---|---|
2937826 | Oct 2015 | EP |
2066220 | Jul 1981 | GB |
2204847 | Nov 1988 | GB |
2008239019 | Oct 2008 | JP |
10-2012-0006262 | Jan 2012 | KR |
2008012513 | Jan 2008 | WO |
2013095871 | Jun 2013 | WO |
2013142421 | Sep 2013 | WO |
2014018129 | Jan 2014 | WO |
2014018236 | May 2014 | WO |
2015119799 | Aug 2015 | WO |
2015191150 | Dec 2015 | WO |
2015192061 | Dec 2015 | WO |
2016044012 | Mar 2016 | WO |
2016160067 | Oct 2016 | WO |
Entry |
---|
International Search Report and Written Opinion issued in related PCT Application No. PCT/US2015/041543 dated Jun. 21, 2016, 15 pages. |
International Preliminary Report on Patentability issued in related PCT Application No. PCT/US2015/041543 dated Feb. 1, 2018 (12 pages). |
Number | Date | Country | |
---|---|---|---|
20200095060 A1 | Mar 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15522601 | US | |
Child | 16695723 | US |