Mobile tele-presence system with a microphone system

Information

  • Patent Grant
  • 8170241
  • Patent Number
    8,170,241
  • Date Filed
    Thursday, April 17, 2008
    17 years ago
  • Date Issued
    Tuesday, May 1, 2012
    13 years ago
Abstract
A remote controlled robot system that includes a robot and a remote control station. The robot includes a binaural microphone system that is coupled to a speaker system of the remote control station. The binaural microphone system may include a pair of microphones located at opposite sides of a robot head. The location of the microphones roughly coincides with the location of ears on a human body. Such microphone location creates a mobile robot that more effectively simulates the tele-presence of an operator of the system. The robot may include two different microphone systems and the ability to switch between systems. For example, the robot may also include a zoom camera system and a directional microphone. The directional microphone may be utilized to capture sound from a direction that corresponds to an object zoomed upon by the camera system.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The subject matter disclosed generally relates to the field of mobile two-way teleconferencing.


2. Background Information


Robots have been used in a variety of applications ranging from remote control of hazardous material to assisting in the performance of surgery. For example, U.S. Pat. No. 5,762,458 issued to Wang et al. discloses a system that allows a surgeon to perform minimally invasive medical procedures through the use of robotically controlled instruments. One of the robotic arms in the Wang system moves an endoscope that has a camera. The camera allows a surgeon to view a surgical area of a patient.


Tele-robots such as hazardous waste handlers and bomb detectors may contain a camera that allows the operator to view the remote site. U.S. Pat. No. 6,914,622 issued to Smith et al. and assigned to Telbotics, Inc. (“Telbotics patent”) discloses a teleconferencing platform that has both a camera and a monitor. The platform includes mechanisms to both pivot and raise the camera and the monitor. The Telbotics patent has a microphone and a system that automatically swivels the monitor to the origin of sound so that the user's image as displayed by the robot monitor faces a speaker.


There has been marketed a mobile robot introduced by InTouch Technologies, Inc., the assignee of this application, under the trademarks COMPANION and RP-7. The InTouch robot is controlled by a user at a remote station. The remote station may be a personal computer with a joystick that allows the user to remotely control the movement of the robot. Both the robot and remote station have cameras, monitors, speakers and microphones to allow for two-way video/audio communication. The robot camera provides video images to a screen at the remote station so that the user can view the robot's surroundings and move the robot accordingly. It would be desirable to create a microphone system that more closely simulated sound perceived by human errors so that the user experiences a more realistic auditory presence through the robot.


BRIEF SUMMARY OF THE INVENTION

A remote controlled robot system that includes a robot and a remote control station. The robot includes a monitor and a binaural microphone system. The remote control station includes a speaker system coupled to the binaural microphone system.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is an illustration of a robotic system;



FIG. 1A is an illustration showing the relationship of two microphones relative to a monitor of a robot head;



FIG. 2 is a schematic of an electrical system of a robot;



FIG. 3 is a graphical user interface of a remote station.





DETAILED DESCRIPTION

Disclosed is a remote controlled robot system that includes a robot and a remote control station. The robot includes a binaural microphone system that is coupled to a speaker system of the remote control station. The binaural microphone system may include a pair of microphones located at opposite sides of a robot head. The location of the microphones roughly coincides with the location of ears on a human body. Such microphone location provides the remote operator with a realistic auditory presence including directionality and distance, as if the operator were actually present at the robot location. The robot may include two different microphone systems and the ability to switch between systems. For example, the robot may also include a zoom camera system and a directional microphone. The directional microphone may be utilized to capture sound from a direction that corresponds to an object zoomed upon by the camera system.


Referring to the drawings more particularly by reference numbers, FIG. 1 shows a robotic system 10 that can be used to conduct a remote visit. The robotic system 10 includes a robot 12, a base station 14 and a remote control station 16. The remote control station 16 may be coupled to the base station 14 through a network 18. By way of example, the network 18 may be either a packet switched network such as the Internet, or a circuit switched network such has a Public. Switched Telephone Network (PSTN) or other broadband system. The base station 14 may be coupled to the network 18 by a modem 20 or other broadband network interface device. By way of example, the base station 14 may be a wireless router. Alternatively, the robot 12 may have a direct connection to the network thru for example a satellite.


The remote control station 16 may include a computer 22 that has a monitor 24, a camera 26, a microphone 28 and a speaker 30. The station 16 may also include a headset 31 that can be worn by the user. The computer 22 may have an input device 32 such as a joystick and/or a mouse and a keyboard 33. The control station 16 is typically located in a place that is remote from the robot 12. Although only one remote control station 16 is shown, the system 10 may include a plurality of remote stations. In general any number of robots 12 may be controlled by any number of remote stations 16 or other robots 12. For example, one remote station 16 may be coupled to a plurality of robots 12, or one robot 12 may be coupled to a plurality of remote stations 16, or a plurality of robots 12.


Each robot 12 includes a movement platform 34 that is attached to a robot housing 36. As shown in FIG. 2 each robot 12 may include a monitor 40 that display an image of the operator at the remote control station. The monitor 40 may be part of a robot head 42 that moves relative to the movement platform 34. The head 42 may have a speaker system 44 that generates sound provided by the remote control station.


The robot 12 includes a binaural microphone system 46. The binaural microphone system 46 includes a first microphone 48 located on one side of the head and a second microphone 50 located on another side of the head. The microphones 48 and 50 are located at positions approximately similar to the location of ears on a human body. By way of example, the microphones 48 and 50 can be located about 18 centimeters apart. Utilizing a binaural microphone system 46 creates a robot head that approximates a human head. By way of example, the binaural microphone system 46 may be a matched pair of omni-directional electric condenser microphones. One definition of binaural is that the microphones 48 and 50 are located at positions at approximately equal angles relative to a plane that intersects and is essentially perpendicular to the camera system which is incident with the monitor 40 as shown in FIG. 1A (e.g. θ12).


A matched pair of microphones produce an equal voltage for a given sound pressure. The output signals of the microphones may be processed to produce stereo audio channels. An example of a matched microphone system is a product sold by Sound Professionals under the product designation SP-BMC-12. The speaker system of the remote control station may include headphones as shown in FIG. 1.


The robot 12 may also have a directional microphone 52. The directional microphone 52 can be used to capture sound received in a certain direction(s). For example, the directional microphone 52 may be a barrel-like structure that captures sound traveling along a desired axis but impedes off-axis sound. An example, of such a directional microphone is a product sold by Sennheiser under the product designation ME66/K6.


The robot 12 has a camera system. The camera system may include a first camera 54 and a second camera 56. The second camera 56 may include a zoom len(s) and is utilized when the system is in a zoom mode. The first camera 54 may provide images in a non-zoom mode. The system can be configured so that the sound captured by the directional microphone is the sole or primary sound recreated at the remote control station. Although two cameras are shown and described, it is to be understood that the robot may contain only one camera that has the capability to provide a zoom image and a non-zoom image.


The robot 12 may also have an antenna 58 that is wirelessly coupled to an antenna 60 of the base station 14. The system 10 allows a user at the remote control station 16 to move the robot 12 through operation of the input device 32. The robot cameras 54 and 56 are coupled to the remote monitor 24 so that a user at the remote station 16 can view a patient. Likewise, the robot monitor 40 is coupled to the remote camera 26 so that the patient can view the user. The microphones 28 and 48, 50 and 52, and speakers 30 and 44, allow for audible communication between the patient and the user.


The remote station computer 22 may operate Microsoft OS software and WINDOWS XP or other operating systems such as LINUX. The remote computer 22 may also operate a video driver, a camera driver, an audio driver and a joystick driver. The video images may be transmitted and received with compression software such as MPEG CODEC.



FIG. 2 shows an embodiment of a robot 12. Each robot 12 may include a high level control system 70. The high level control system 50 may include a processor 72 that is connected to a bus 74. The bus 74 is coupled to the cameras 54 and 56 by an input/output (I/O) ports 76 and 78, respectively. The monitor 40 is coupled to the bus 74 by a serial output port 80 and a VGA driver 82. The monitor 40 may include a touchscreen function that allows the patient to enter input by touching the monitor screen.


The microphones 48, 50 and 52 are coupled to the bus 74 by digital to analog converters 84, 86 and 88, respectively. The speaker 44 is coupled to the bus 74 by an analog to digital converter 90. The high level controller 70 may also contain random access memory (RAM) device 92, a non-volatile RAM device 94 and a mass storage device 96 that are all coupled to the bus 74. The mass storage device 96 may contain medical files of the patient that can be accessed by the user at the remote control station 16. For example, the mass storage device 96 may contain a picture of the patient. The user, particularly a health care provider, can recall the old picture and make a side by side comparison on the monitor 24 with a present video image of the patient provided by the camera 38. The robot antennae 58 may be coupled to a wireless transceiver 98. By way of example, the transceiver 98 may transmit and receive information in accordance with IEEE 802.11b.


The controller 70 may operate with a LINUX OS operating system. The controller 70 may also operate MS WINDOWS along with video, camera and audio drivers for communication with the remote control station 16. Video information may be transceived using MPEG CODEC compression techniques. The software may allow the user to send e-mail to the patient and vice versa, or allow the patient to access the Internet. In general the high level controller 50 operates to control communication between the robot 12 and the remote control station 16.


The remote control station 16 may include a computer that is similar to the high level controller 50. The computer would have a processor, memory, I/O, software, firmware, etc. for generating, transmitting, receiving and processing information.


The high level controller 70 may be linked to a low level controller 100 by a serial port 102. The low level controller 100 runs software routines that mechanically actuate the robot 12. For example, the low level controller 100 provides instructions to actuate the movement platform to move the robot 12. The low level controller 52 may receive movement instructions from the high level controller 70. The movement instructions may be received as movement commands from the remote control station or another robot. Although two controllers are shown, it is to be understood that each robot 12 may have one controller, or more than two controllers, controlling the high and low level functions.


The robot 12 may have mechanisms so that the monitor 40, cameras 56 and 58 and microphones 48, 50 and 52 all move together in at least two degrees of freedom. Moving the microphones with the cameras insures that the microphone system provides stereophonic sound for all robot head positions. The system may be the same or similar to a robotic system provided by the assignee InTouch-Health, Inc. of Santa Barbara, Calif. under the name RP-6. The system may also be the same or similar to the system disclosed in U.S. Pat. No. 7,158,859 that issued on Jan. 2, 2007, which is hereby incorporated by reference.



FIG. 3 shows a display user interface (“DUI”) 120 that can be displayed at the remote station 16. The DUI 120 may include a robot view field 122 that displays a video image provided by the camera of the robot. The DUI 120 may also include a station view field 124 that displays a video image provided by the camera of the remote station 16. The DUI 120 may be part of an application program stored and operated by the computer 22 of the remote station 16.


The DUI 120 can include graphical icons 126 and 128 that allow the user to switch between the directional microphone and binaural microphone system, respectively. The DUI 120 may include a graphical overlay 130 in the robot view field 122 that indicates an origin of sound. The position of the overlay 130 corresponds to the sound origin. For example, the position of the overlay 130 shown in FIG. 3 indicates that the origin of sound is to the left of the robot. The user can then move the robot accordingly to improve the volume heard by the microphone system.


The origin of sound can be determined by initially looking at the time of difference between the arrival of sound to both microphones 48 and 50. The peak time td can be found in the correlation function C1,2(t)=X1(i)*X2(i+t) for all i. An estimate for the angle of arrival (a) can be computed from the trig function a=arcsin (v*td/d1,2) where d1,2 is the distance between microphones and v is the velocity of sound.


The system may have an automatic mode such that sound captured by the binaural microphone system is reproduced by the remote station when the camera system is in a non-zoom mode and sound captured by the directional microphone is reproduced by the station when the camera system is in a zoom mode. The user can switch between automatic and manual modes by selecting an icon (not shown). A letter “A” may appear adjacent to the icon when the system is in automatic mode. A letter “M” may appear when the system is in the manual mode.


In operation, the robot 12 may be placed in a home or a facility where one or more patients are to be monitored and/or assisted. The facility may be a hospital or a residential care facility. By way of example, the robot 12 may be placed in a home where a health care provider may monitor and/or assist the patient. Likewise, a friend or family member may communicate with the patient. The cameras and monitors at both the robot and remote control stations allow for teleconferencing between the patient and the person at the remote station(s).


The robot 12 can be maneuvered through the home or a facility by manipulating the input device 32 at a remote station 16. The robot 10 may be controlled by a number of different users. To accommodate for this the robot may have an arbitration system. The arbitration system may be integrated into the operating system of the robot 12. For example, the arbitration technique may be embedded into the operating system of the high-level controller 50.


By way of example, the users may be divided into classes that include the robot itself, a local user, a caregiver, a doctor, a family member, or a service provider. The robot 12 may override input commands that conflict with robot operation. For example, if the robot runs into a wall, the system may ignore all additional commands to continue in the direction of the wall. A local user is a person who is physically present with the robot. The robot could have an input device that allows local operation. For example, the robot may incorporate a voice recognition system that receives and interprets audible commands.


A caregiver is someone who remotely monitors the patient. A doctor is a medical professional who can remotely control the robot and also access medical files contained in the robot memory. The family and service users remotely access the robot. The service user may service the system such as by upgrading software, or setting operational parameters.


The robot 12 may operate in one of two different modes; an exclusive mode, or a sharing mode. In the exclusive mode only one user has access control of the robot. The exclusive mode may have a priority assigned to each type of user. By way of example, the priority may be in order of local, doctor, caregiver, family and then service user. In the sharing mode two or more users may share access with the robot. For example, a caregiver may have access to the robot, the caregiver may then enter the sharing mode to allow a doctor to also access the robot. Both the caregiver and the doctor can conduct a simultaneous tele-conference with the patient.


The arbitration scheme may have one of four mechanisms; notification, timeouts, queue and call back. The notification mechanism may inform either a present user or a requesting user that another user has, or wants, access to the robot. The timeout mechanism gives certain types of users a prescribed amount of time to finish access to the robot. The queue mechanism is an orderly waiting list for access to the robot. The call back mechanism informs a user that the robot can be accessed. By way of example, a family user may receive an e-mail message that the robot is free for usage. Tables I and II, show how the mechanisms resolve access request from the various users.














TABLE I






Access
Medical
Command
Software/Debug
Set


User
Control
Record
Override
Access
Priority







Robot
No
No
Yes (1)
No
No


Local
No
No
Yes (2)
No
No


Caregiver
Yes
Yes
Yes (3)
No
No


Doctor
No
Yes
No
No
No


Family
No
No
No
No
No


Service
Yes
No
Yes
Yes
Yes


















TABLE II









Requesting User













Local
Caregiver
Doctor
Family
Service

















Current User
Local
Not Allowed
Warn current user
Warn current user
Warn current user
Warn current user





of pending user
of pending user
of pending user
of pending user





Notify requesting
Notify requesting
Notify requesting
Notify requesting





user that system is
user that system is
user that system is
user that system is





in use
in use
in use
in use





Set timeout
Set timeout = 5 m
Set timeout = 5 m
No timeout







Call back
Call back



Caregiver
Warn current user
Not Allowed
Warn current user
Warn current user
Warn current user




of pending user.

of pending user
of pending user
of pending user




Notify requesting

Notify requesting
Notify requesting
Notify requesting




user that system is

user that system is
user that system is
user that system is




in use.

in use
in use
in use




Release control

Set timeout = 5 m
Set timeout = 5 m
No timeout






Queue or callback

Callback



Doctor
Warn current user
Warn current user
Warn current user
Notify requesting
Warn current user




of pending user
of pending user
of pending user
user that system is
of pending user




Notify requesting
Notify requesting
Notify requesting
in use
Notify requesting




user that system is
user that system is
user that system is
No timeout
user that system is




in use
in use
in use
Queue or callback
in use




Release control
Set timeout = 5 m
No timeout

No timeout






Callback

Callback



Family
Warn current user
Notify requesting
Warn current user
Warn current user
Warn current user




of pending user
user that system is
of pending user
of pending user
of pending user




Notify requesting
in use
Notify requesting
Notify requesting
Notify requesting




user that system is
No timeout
user that system is
user that system is
user that system is




in use
Put in queue or
in use
in use
in use




Release Control
callback
Set timeout = 1 m
Set timeout = 5 m
No timeout







Queue or callback
Callback



Service
Warn current user
Notify requesting
Warn current user
Warn current user
Not Allowed




of pending user
user that system is
of request
of pending user




Notify requesting
in use
Notify requesting
Notify requesting




user that system is
No timeout
user that system is
user that system is




in use
Callback
in use
in use




No timeout

No timeout
No timeout






Callback
Queue or callback









The information transmitted between the station 16 and the robot 12 may be encrypted. Additionally, the user may have to enter a password to enter the system 10. A selected robot is then given an electronic key by the station 16. The robot 12 validates the key and returns another key to the station 16. The keys are used to encrypt information transmitted in the session.


The robot 12 and remote station 16 transmit commands through the broadband network 18. The commands can be generated by the user in a variety of ways. For example, commands to move the robot may be generated by moving the joystick 32 (see FIG. 1). The commands are preferably assembled into packets in accordance with TCP/IP protocol. Table III provides a list of control commands that are generated at the remote station and transmitted to the robot through the network.









TABLE III







Control Commands









Command
Example
Description





drive
drive 10.0 0.0 5.0
The drive command directs the robot to move




at the specified velocity (in cm/sec) in the




(x, y) plane, and turn its facing at the




specified rate (degrees/sec).


goodbye
goodbye
The goodbye command terminates a user




session and relinquishes control of the




robot


gotoHomePosition
gotoHomePosition 1
The gotoHomePosition command moves the head




to a fixed “home” position (pan and tilt),




and restores zoom to default value. The




index value can be 0, 1, or 2. The exact




pan/tilt values for each index are specified




in robot configuration files.


head
head vel pan 5.0 tilt
The head command controls the head motion.



10.0
It can send commands in two modes,




identified by keyword: either positional




(“pos”) or velocity (“vol”). In velocity




mode, the pan and tilt values are desired




velocities of the head on the pan and tilt




axes, in degree/sec. A single command can




include just the pan section, or just the




tilt section, or both.


keepalive
keepalive
The keepalive command causes no action, but




keeps the communication (socket) link open




so that a session can continue. In scripts,




it can be used to introduce delay time into




the action.


odometry
odometry 5
The odometry command enables the flow of




odometry messages from the robot. The




argument is the number of times odometry is




to be reported each second. A value of 0




turns odometry off.


reboot
reboot
The reboot command causes the robot computer




to reboot immediately. The ongoing session




is immediately broken off.


restoreHeadPosition
restoreHeadPosition
The restoreHeadPosition functions like the




gotoHomePosition command, but it homes the




head to a position previously saved with




gotoHomePosition.


saveHeadPosition
saveHeadPosition
The saveHeadPosition command causes the




robot to save the current head position (pan




and tilt) in a scratch location in temporary




storage so that this position can be




restored. Subsequent calls to




“restoreHeadPosition” will restore this




saved position. Each call to




saveHeadPosition overwrites any previously




saved position.


setCameraFocus
setCameraFocus 100.0
The setCameraFocus command controls focus




for the camera on the robot side. The value




sent is passed “raw” to the video




application running on the robot, which




interprets it according to its own




specification.


setCameraZoom
setCameraZoom 100.0
The setCameraZoom command controls zoom for




the camera on the robot side. The value




sent is passed “raw” to the video




application running on the robot, which




interprets it according to its own




specification.


shutdown
Shutdown
The shutdown command shuts down the robot




and powers down its computer.


stop
stop
The stop command directs the robot to stop




moving immediately. It is assumed this will




be as sudden a stop as the mechanism can




safely accommodate.


timing
Timing 3245629 500
The timing message is used to estimate




message latency. It holds the UCT value




(seconds + milliseconds) of the time the




message was sent, as recorded on the sending




machine. To do a valid test, you must




compare results in each direction (i.e.,




sending from machine A to machine B, then




from machine B to machine A) in order to




account for differences in the clocks




between the two machines. The robot records




data internally to estimate average and




maximum latency over the course of a




session, which it prints to log files.


userTask
userTask “Jane Doe”
The userTask command notifies the robot of



“Remote Visit”
the current user and task. It typically is




sent once at the start of the session,




although it can be sent during a session if




the user and/or task change. The robot uses




this information for record-keeping.









Table IV provides a list of reporting commands that are generated by the robot and transmitted to the remote station through the network.









TABLE IV







Reporting Commands









Command
Example
Description





abnormalExit
abnormalExit
This message informs the user that the robot




software has crashed or otherwise exited




abnormally. Te robot software catches top-




level exceptions and generates this message




if any such exceptions occur.


bodyType
bodyType 3
The bodyType message informs the station




which type body (using the numbering of the




mechanical team) the current robot has.




This allows the robot to be drawn correctly




in the station user interface, and allows




for any other necessary body-specific




adjustments.


driveEnabled
driveEnabled true
This message is sent at the start of a




session to indicate whether the drive system




is operational.


emergencyShutdown
emergencyShutdown
This message informs the station that the




robot software has detected a possible




“runaway” condition (an failure causing the




robot to move out of control) and is




shutting the entire system down to prevent




hazardous motion.


odometry
odometry 10 20 340
The odometry command reports the current




(x, y) position (cm) and body orientation




(degrees) of the robot, in the original




coordinate space of the robot at the start




of the session.


sensorGroup
group_data
Sensors on the robot are arranged into




groups, each group of a single type (bumps,




range sensors, charge meter, etc.) The




sensorGroup message is sent once per group




at the start of each session. It contains




the number, type, locations, and any other




relevant data for the sensors in that group.




The station assumes nothing about the




equipment carried on the robot; everything




it knows about the sensors comes from the




sensorGroup messages.


sensorState
groupName state data
The sensorState command reports the current




state values for a specified group of




sensor. The syntax and interpretation for




the state data is specific to each group.




This message is sent once for each group at




each sensor evaluation (normally several




times per second).


systemError
systemError
This message informs the station user of a



driveController
failure in one of the robot's subsystems.




The error_type argument indicates which




subsystem failed, including driveController,




sensorController, headHome.


systemInfo
systemInfo wireless 45
This message allows regular reporting of




information that falls outside the sensor




system such as wireless signal strength.


text
text “This is some
The text string sends a text string from the



text”
robot to the station, where the string is




displayed to the user. This message is used




mainly for debugging.


version
version 1.6
This message identifies the software version




currently running on the robot. It is sent




once at the start of the session to allow




the station to do any necessary backward




compatibility adjustments.









The processor 72 of the robot high level controller 70 may operate a program that determines whether the robot 12 has received a robot control command within a time interval. For example, if the robot 12 does not receive a control command within 2 seconds then the processor 54 provides instructions to the low level controller 50 to stop the robot 12. Although a software embodiment is described, it is to be understood that the control command monitoring feature could be implemented with hardware, or a combination of hardware and software. The hardware may include a timer that is reset each time a control command is received and generates, or terminates, a command or signal, to stop the robot.


The remote station computer 22 may monitor the receipt of video images provided by the robot camera. The computer 22 may generate and transmit a STOP command to the robot if the remote station does not receive or transmit an updated video image within a time interval. The STOP command causes the robot to stop. By way of example, the computer 22 may generate a STOP command if the remote control station does not receive a new video image within 2 seconds. Although a software embodiment is described, it is to be understood that the video image monitoring feature could be implemented with hardware, or a combination of hardware and software. The hardware may include a timer that is reset each time a new video image is received and generates, or terminates, a command or signal, to generate the robot STOP command.


The robot may be a robot head that can both pivot and spin the camera 38 and the monitor 40. Such a head is described in the '859 patent. The robot head 350 may be in the system either with or instead of the mobile robot 12. The robot head can be particularly useful for doctor proctoring. The head can be located at a medical facility such as an emergency room or a doctor's office. A doctor at the remote location can assist in the diagnosis and medical treatment of a patient located at the robot location. The doctor can move the head to view the patient through control commands from the remote control station. Doctor proctoring can also be performed with a mobile robot 12.


While certain exemplary embodiments have been described and shown in the accompanying drawings, it is to be understood that such embodiments are merely illustrative of and not restrictive on the broad invention, and that this invention not be limited to the specific constructions and arrangements shown and described, since various other modifications may occur to those ordinarily skilled in the art.

Claims
  • 1. A remote controlled robot system, comprising: a robot with a camera system, a directional microphone and a binaural microphone system that captures a sound, said camera system can switch between zoom and non-zoom modes, said directional microphone is utilized when said camera system is in said zoom mode; and,a remote control station that transmits commands to control said robot, said remote control station includes a speaker system that is coupled to said binaural microphone system to generate said sound captured by said binaural microphone and a monitor coupled to said robot camera.
  • 2. The system of claim 1, wherein said camera system and said binaural microphone system are attached to a robot head that can move in at least two degrees of freedom, said binaural microphone system including a first microphone located on a first side of said head and a second microphone located on a second side of said head.
  • 3. The system of claim 1, wherein said binaural microphone system includes a first microphone and a second microphone that are spaced at approximately equal angles relative to a plane that intersects said camera system.
  • 4. The system of claim 1, wherein said remote control station monitor displays a display user interface, said display user interface includes a graphical interface that can be used to switch between said binaural microphone system and said directional microphone.
  • 5. The system of claim 2, wherein said remote control station monitor displays a display user interface, said display user interface provides a graphical depiction of an origin of sound.
  • 6. The system of claim 1, wherein said robot includes a mobile platform.
  • 7. The system of claim 1, wherein said robot includes a monitor that is coupled to a camera of said remote control station.
  • 8. A method for hearing sound produced at a site of a robot, comprising: capturing sound with a binaural microphone system of a robot that has a camera system and a directional microphone;transmitting the sound captured by the binaural microphone system to a remote control station;switching the camera system of the robot between zoom and non-zoom modes;capturing sound with the directional microphone when the camera system is in the zoom mode; and,transmitting the sound captured by the directional microphone to the remote control station.
  • 9. The method of claim 8, further comprising displaying a display user interface on a monitor of the remote control station, the display user interface includes a graphical interface that can be used to switch between the binaural microphone system and the directional microphone.
  • 10. The method of claim 8, further comprising displaying a display user interface on a monitor of the remote control station, the display user interface provides a graphical depiction of an origin of sound.
  • 11. The method of claim 8, further comprising moving the robot across a surface.
  • 12. A method for hearing sound produced at a site of a robot, comprising: capturing sound with a microphone system of a robot that is coupled to a robot head that has a camera system and a directional microphone, said camera system can switch between zoom and non-zoom modes, said directional microphone is utilized when said camera system is in said zoom mode;converting the sound into a plurality of audio channels;transmitting the sound to a remote control station;producing the sound at the remote control station; moving the robot head;switching the camera system of the robot between zoom and non-zoom modes; andproducing the sound captured by the directional microphone when the camera system is in the zoom mode.
  • 13. The method of claim 12, further comprising displaying a display user interface on a monitor of the remote control station, the display user interface provides a graphical depiction of an origin of sound.
  • 14. The method of claim 12, further comprising moving the robot across a surface.
  • 15. A remote controlled robot system, comprising: a robot with a camera system and a microphone system with a directional microphone and a binaural microphone system that capture a sound, said camera system can switch between zoom and non-zoom modes, said directional microphone is utilized when said camera system is in said zoom mode; and,a remote control station that transmits commands to control said robot, said remote control station includes a speaker system that is coupled to said microphone system, said remote control station further includes a monitor that displays a display user interface with a graphical depiction of an origin of sound.
  • 16. The system of claim 15, wherein said camera system and said microphone system are attached to a robot head that can move in at least two degrees of freedom, said microphone system including a first microphone located on a first side of said head and a second microphone located on a second side of said head.
  • 17. The system of claim 16, wherein said first and second microphones are spaced at approximately equal angles relative to a plane that intersects said camera system.
  • 18. The system of claim 15, wherein said display user interface includes a graphical interface that can be used to switch between said binaural microphone system and said directional microphone.
  • 19. The system of claim 15, wherein said robot includes a mobile platform.
  • 20. The system of claim 15, wherein said robot includes a monitor that is coupled to a camera of said remote control station.
  • 21. A remote controlled robot system, comprising: a robot with a camera system, a binaural microphone system and a directional microphone; and,a remote control station that transmits commands to control said robot, said remote control station having a speaker system and switches a speaker output between said binaural microphone system and said directional microphone.
  • 22. The system of claim 21, wherein said binaural microphone system includes a first microphone and a second microphone that are spaced at approximately equal angles relative to a plane that intersects said camera system.
  • 23. The system of claim 21, wherein said robot camera system can switch between zoom and non-zoom modes, said directional microphone is utilized when said camera system is in said zoom mode.
  • 24. The system of claim 21, wherein said remote control station includes a monitor that displays a display user interface, said display user interface includes a graphical interface that can be used to switch between said binaural microphone system and said directional microphone.
  • 25. The system of claim 21, wherein said robot includes a monitor that is coupled to a camera of said remote control station.
  • 26. A remote controlled robot system, comprising: a robot with a camera system, a first microphone system and a second microphone system; and,a remote control station that transmits commands to control said robot, said remote control station having a speaker system and switches a speaker output between said first and second microphone systems, said remote control station includes a monitor that displays a display user interface with a graphical interface that can be used to switch between said first and second microphone systems.
  • 27. The system of claim 26, wherein said first microphone system includes a binaural microphone system and said second microphone system includes a directional microphone.
  • 28. A remote controlled robot system, comprising: a robot with a camera system, a directional microphone and a binaural microphone system that captures a sound, said camera system can switch between zoom and non-zoom modes, said directional microphone is utilized when said camera system is in said zoom mode;a remote control station that transmits commands to control said robot, said remote control station includes a speaker system that is coupled to said binaural microphone system to generate said sound captured by said binaural microphone and a monitor coupled to said robot camera, said monitor displays a display user interface, said display user interface includes a graphical interface that can be used to switch between said binaural microphone system and said directional microphone.
  • 29. The system of claim 28, wherein said monitor displays a display user interface, said display user interface provides a graphical depiction of an origin of sound.
  • 30. A method for hearing sound produced at a site of a robot, comprising: capturing sound with a binaural microphone system of a robot that has a camera system and a directional microphone;transmitting the sound captured by the binaural microphone system to a remote control station;switching the camera system of the robot between zoom and non-zoom modes;capturing sound with the directional microphone when the camera system is in the zoom mode;transmitting the sound captured by the directional microphone to the remote control station; and,displaying a display user interface on a monitor of the remote control station, the display user interface includes a graphical interface that can be used to switch between the binaural microphone system and the directional microphone.
  • 31. The method of claim 30, further comprising displaying a display user interface on a monitor of the remote control station, the display user interface provides a graphical depiction of an origin of sound.
  • 32. A remote controlled robot system, comprising: a robot with a camera system and a microphone system with a directional microphone; and,a remote control station that transmits commands to control said robot, said remote control station includes a speaker system that is coupled to said microphone system, said remote control station further includes a monitor that displays a display user interface with a graphical depiction of an origin of sound, said display user interface includes a graphical interface that can be used to switch between said binaural microphone system and said directional microphone.
  • 33. A remote controlled robot system, comprising: a robot with a camera system, a binaural microphone system and a directional microphone; and,a remote control station that transmits commands to control said robot, said remote control station having a speaker system and switches a speaker output between said binaural microphone system and said directional microphone.
US Referenced Citations (154)
Number Name Date Kind
4413693 Derby Nov 1983 A
4638445 Mattaboni Jan 1987 A
4709265 Silverman et al. Nov 1987 A
4803625 Fu et al. Feb 1989 A
4875172 Kanayama Oct 1989 A
4977971 Crane, III et al. Dec 1990 A
5073749 Kanayama Dec 1991 A
5084828 Kaufman et al. Jan 1992 A
5130794 Ritchey Jul 1992 A
5341242 Gilboa et al. Aug 1994 A
5374879 Pin et al. Dec 1994 A
5441047 David et al. Aug 1995 A
5442728 Kaufman et al. Aug 1995 A
5462051 Oka et al. Oct 1995 A
5544649 David et al. Aug 1996 A
5553609 Chen et al. Sep 1996 A
5572229 Fisher Nov 1996 A
5762458 Wang et al. Jun 1998 A
5786846 Hiroaki Jul 1998 A
5802494 Kuno Sep 1998 A
5917958 Nunally et al. Jun 1999 A
5927423 Wada et al. Jul 1999 A
5959423 Nakanishi et al. Sep 1999 A
5966130 Benman, Jr. Oct 1999 A
6133944 Braun et al. Oct 2000 A
6135228 Asada et al. Oct 2000 A
6211903 Bullister Apr 2001 B1
6219587 Ahlin et al. Apr 2001 B1
6232735 Baba et al. May 2001 B1
6233504 Das et al. May 2001 B1
6256556 Zenke Jul 2001 B1
6259806 Green Jul 2001 B1
6292713 Jouppi et al. Sep 2001 B1
6304050 Skaar et al. Oct 2001 B1
6321137 De Smet Nov 2001 B1
6325756 Webb et al. Dec 2001 B1
6330486 Padula Dec 2001 B1
6330493 Takahashi et al. Dec 2001 B1
6346950 Jouppi Feb 2002 B1
6369847 James et al. Apr 2002 B1
6430471 Kintou et al. Aug 2002 B1
6430475 Okamoto et al. Aug 2002 B2
6438457 Yokoo et al. Aug 2002 B1
6463361 Wang et al. Oct 2002 B1
6466844 Ikeda et al. Oct 2002 B1
6491701 Tierney et al. Dec 2002 B2
6496099 Wang et al. Dec 2002 B2
6507773 Parker et al. Jan 2003 B2
6522906 Salisbury et al. Feb 2003 B1
6532404 Colens Mar 2003 B2
6535182 Stanton Mar 2003 B2
6535793 Allard Mar 2003 B2
6540039 Yu et al. Apr 2003 B1
6543899 Covannon et al. Apr 2003 B2
6549215 Jouppi Apr 2003 B2
6604019 Ahlin et al. Aug 2003 B2
6646677 Noro et al. Nov 2003 B2
6684129 Salisbury et al. Jan 2004 B2
6691000 Nagai et al. Feb 2004 B2
6728599 Wright et al. Apr 2004 B2
6781606 Jouppi Aug 2004 B2
6784916 Smith Aug 2004 B2
6799065 Niemeyer Sep 2004 B1
6799088 Wang et al. Sep 2004 B2
6804656 Rosenfeld et al. Oct 2004 B1
6836703 Wang et al. Dec 2004 B2
6839612 Sanchez et al. Jan 2005 B2
6840904 Goldberg Jan 2005 B2
6845297 Allard Jan 2005 B2
6852107 Wang et al. Feb 2005 B2
6871117 Wang et al. Mar 2005 B2
6879879 Jouppi et al. Apr 2005 B2
6892112 Wang et al. May 2005 B2
6895305 Lathan et al. May 2005 B2
6914622 Smith et al. Jul 2005 B1
6925357 Wang et al. Aug 2005 B2
6995664 Darling Feb 2006 B1
7115102 Abbruscato Oct 2006 B2
7123285 Smith et al. Oct 2006 B2
7129970 James et al. Oct 2006 B2
7151982 Liff et al. Dec 2006 B2
7154526 Foote et al. Dec 2006 B2
7155306 Haitin et al. Dec 2006 B2
7156809 Quy Jan 2007 B2
7161322 Wang et al. Jan 2007 B2
7164969 Wang et al. Jan 2007 B2
7171286 Wang et al. Jan 2007 B2
7174238 Zweig Feb 2007 B1
7184559 Jouppi Feb 2007 B2
7188000 Chiappetta et al. Mar 2007 B2
7215786 Nakadai et al. May 2007 B2
7256708 Rosenfeld Aug 2007 B2
7262573 Wang et al. Aug 2007 B2
20010010053 Ben-Shachar et al. Jul 2001 A1
20010037163 Allard Nov 2001 A1
20010054071 Loeb Dec 2001 A1
20020027597 Sachau Mar 2002 A1
20020057279 Jouppi May 2002 A1
20020058929 Green May 2002 A1
20020063726 Jouppi May 2002 A1
20020120362 Lathan et al. Aug 2002 A1
20020130950 James et al. Sep 2002 A1
20020141595 Jouppi Oct 2002 A1
20020183894 Wang et al. Dec 2002 A1
20030048481 Kobayashi Mar 2003 A1
20030050733 Wang et al. Mar 2003 A1
20030060808 Wilk Mar 2003 A1
20030100892 Morley et al. May 2003 A1
20030114962 Niemeyer Jun 2003 A1
20030135203 Wang et al. Jul 2003 A1
20030144579 Buss Jul 2003 A1
20030144649 Ghodoussi et al. Jul 2003 A1
20030151658 Smith Aug 2003 A1
20030220541 Salisbury et al. Nov 2003 A1
20040019406 Wang et al. Jan 2004 A1
20040088077 Jouppi et al. May 2004 A1
20040117065 Wang et al. Jun 2004 A1
20040143421 Wang et al. Jul 2004 A1
20040162637 Wang et al. Aug 2004 A1
20040167666 Wang et al. Aug 2004 A1
20040167668 Wang et al. Aug 2004 A1
20040174129 Wang et al. Sep 2004 A1
20040215490 Duchon et al. Oct 2004 A1
20050021182 Wang et al. Jan 2005 A1
20050021183 Wang et al. Jan 2005 A1
20050021187 Wang et al. Jan 2005 A1
20050024485 Castles et al. Feb 2005 A1
20050027794 Decker Feb 2005 A1
20050028221 Liu et al. Feb 2005 A1
20050035862 Wildman et al. Feb 2005 A1
20050038416 Wang et al. Feb 2005 A1
20050038564 Burick et al. Feb 2005 A1
20050052527 Remy et al. Mar 2005 A1
20050065438 Miller Mar 2005 A1
20050065659 Tanaka et al. Mar 2005 A1
20050110867 Schulz May 2005 A1
20050204438 Wang et al. Sep 2005 A1
20060007943 Fellman Jan 2006 A1
20060013263 Fellman Jan 2006 A1
20060029065 Fellman Feb 2006 A1
20060047365 Ghodoussi et al. Mar 2006 A1
20060064212 Thorne Mar 2006 A1
20060082642 Wang et al. Apr 2006 A1
20060098573 Beer et al. May 2006 A1
20060104279 Fellman et al. May 2006 A1
20060259193 Wang et al. Nov 2006 A1
20070064092 Sandbeg et al. Mar 2007 A1
20070120965 Sandberg et al. May 2007 A1
20070192910 Vu et al. Aug 2007 A1
20070198128 Ziegler et al. Aug 2007 A1
20070199108 Angle et al. Aug 2007 A1
20070273751 Sachau Nov 2007 A1
20090030552 Nakadai et al. Jan 2009 A1
20100116566 Ohm et al. May 2010 A1
Foreign Referenced Citations (8)
Number Date Country
2289697 Nov 1998 CA
0981905 Jan 2002 EP
07-257422 Oct 1995 JP
08-084328 Mar 1996 JP
2000-032319 Jan 2000 JP
2002-046088 Feb 2002 JP
2002-305743 Oct 2002 JP
WO 2007041295 Apr 2007 WO
Related Publications (1)
Number Date Country
20100019715 A1 Jan 2010 US