Field of the Invention
The present invention relates to a mobile terminal and corresponding method of controlling a mobile terminal.
Discussion of the Related Art
A mobile terminal can perform various functions such as data and voice communications, capturing images and video via a camera, recording audio, playing music files and outputting music via a speaker system, displaying images and video on a display, playing games, etc. Thus, mobile terminals now function as multimedia players. More recently, mobile terminals have been configured to receive broadcast and multicast signals which permit viewing of contents, such as videos and television programs.
Further, many mobile terminals include touchscreens that allow a user to input information by touching the display. Many users thus now input text messages and other data by touching a keypad displayed on the touchscreen. However, the keypad has key buttons of which number or size is smaller than those of a general personal computer. Thus, the user is often inconvenienced when using the keypad on mobile terminals.
Accordingly, one object of the present invention is directed to a mobile terminal and controlling method thereof that substantially obviate one or more problems due to limitations and disadvantages of the related art.
Another object of the present invention is to provide a mobile terminal and controlling method thereof, by which a terminal user is further facilitated to input characters via a keypad provided to a mobile terminal having key buttons of which number or size is smaller than that of key buttons provided to a keyboard of a personal computer.
To achieve these objects and other advantages and in accordance with the purpose of the invention, as embodied and broadly described herein, the present invention provides in one aspect a mobile terminal including a touchscreen configured to display a keypad including a plurality of key buttons having intrinsic alphabets, respectively, and a controller, if a desired one of a plurality of the key buttons is first touched, controlling the intrinsic alphabet of the desired key button to be input, predicting a recommended word starting with a first alphabet equal to the intrinsic alphabet of the desired key button, and if the desired key button is second touched after having been first touched, controlling a second alphabet of the recommended word to be input.
In another aspect, the present invention provides a method of controlling a mobile terminal and which includes displaying a keypad including a plurality of key buttons corresponding to intrinsic alphabets, respectively, on a touchscreen, if a desired one of a plurality of the key buttons is first touched, inputting the intrinsic alphabet of the desired key button, predicting a recommended word starting with a first alphabet equal to the intrinsic alphabet of the desired key button, and if the desired key button is second touched after having been first touched, inputting a second alphabet of the recommended word.
In still another aspect, the present invention provides a mobile terminal including a touchscreen configured to display a keypad including a plurality of key buttons having assigned first alphabet characters, respectively, and a controller configured to receive a first key input of a first key button of the plurality of key buttons, to display a first alphabet character corresponding to the first key input on a display portion of the mobile terminal, to predict a word that starts with the first alphabet character, to receive a second key input of the first key button after the first key input, and to display a second alphabet character included in the predicted word on the display portion based on the second key input.
In another aspect, the present invention provides a method of controlling a mobile terminal, and which includes displaying, on a touchscreen of the mobile terminal, a keypad including a plurality of key buttons having assigned first alphabet characters, respectively; receiving, via a controller on the mobile terminal, a first key input of a first key button of the plurality of key buttons; displaying, on a display portion of the mobile terminal, a first alphabet character corresponding to the first key input; predicting, via the controller, a word that starts with the first alphabet character; receiving, via the controller, a second key input of the first key button after the first key input; and displaying, on the display portion, a second alphabet character included in the predicted word based on the second key input.
It is to be understood that both the foregoing general description and the following detailed description of the present invention are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.
The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this application, illustrate embodiment(s) of the invention and together with the description serve to explain the principle of the invention. In the drawings:
Hereinafter, a mobile terminal relating to embodiments of the present invention will be described below in more detail with reference to the accompanying drawings. Further, the mobile terminal described in the specification can include a cellular phone, a smart phone, a laptop computer, a digital broadcasting terminal, personal digital assistants (PDA), a portable multimedia player (PMP), a navigation system and so on.
In addition, the radio communication unit 110 includes at least one module that enables radio communication between the mobile terminal 100 and a radio communication system or between the mobile terminal 100 and a network in which the mobile terminal 100 is located. For example, in
The broadcasting receiving module 111 receives broadcasting signals and/or broadcasting related information from an external broadcasting management server through a broadcasting channel. Further, the broadcasting channel can include a satellite channel and a terrestrial channel. Also, the broadcasting management server can be a server that generates and transmits broadcasting signals and/or broadcasting related information or a server that receives previously created broadcasting signals and/or broadcasting related information and transmits the broadcasting signals and/or broadcasting related information to a terminal. The broadcasting signals can include not only TV broadcasting signals, radio broadcasting signals and data broadcasting signals, but also signals in the form of a combination of a TV broadcasting signal and a radio broadcasting signal.
In addition, the broadcasting related information can be information on a broadcasting channel, a broadcasting program or a broadcasting service provider. The broadcasting related information can be provided even through a mobile communication network. In this instance, the broadcasting related information can be received by the mobile communication module 112. The broadcasting related information can also exist in various forms. For example, the broadcasting related information can exist in the form of an electronic program guide (EPG) of the digital multimedia broadcasting (DMB) system or in the form of an electronic service guide (ESG) of the digital video broadcast-handheld (DVB-H) system.
In addition, the broadcasting receiving module 111 receives broadcasting signals using various broadcasting systems. In particular, the broadcasting receiving module 111 can receive digital broadcasting signals using digital broadcasting systems such as the digital multimedia broadcasting-terrestrial (DMB-T) system, the digital multimedia broadcasting-satellite (DMB-S) system, the media forward link only (MediaFLO) system, and the DVB-H and integrated services digital broadcast-terrestrial (ISDB-T) system. The broadcasting receiving module 111 can also be constructed to be suited to broadcasting systems providing broadcasting signals other than the above-described digital broadcasting systems. The broadcasting signals and/or broadcasting related information received through the broadcasting receiving module 111 can also be stored in the memory 160.
Further, the mobile communication module 112 transmits/receives a radio signal to/from at least one of a base station, an external terminal, and a server on a mobile communication network. The radio signal can include a voice call signal, a video telephony call signal or data in various forms according to transmission and receiving of text/multimedia messages. The wireless Internet module 113 corresponds to a module for wireless Internet access and can be included in the mobile terminal 100 or externally attached to the mobile terminal 100. Wireless LAN (WLAN) (Wi-Fi), wireless broadband (Wibro), world interoperability for microwave access (Wimax), high speed downlink packet access (HSDPA) and so on can be used as a wireless Internet technique. The local area communication module 114 corresponds to a module for local area communication. Bluetooth, radio frequency identification (RFID), infrared data association (IrDA), ultra wideband (UWB) and ZigBee can be used as a local area communication technique.
In addition, the position information module 115 confirms or obtains the position of the mobile terminal 100. A global positioning system (GPS) module is a representative example of the position information module 115. Further, the GPS module 115 can calculate information on distances between one point (object) and at least three satellites and information on the time when the distance information is measured and apply trigonometry to the obtained distance information to obtain three-dimensional position information on the point (object) according to latitude, longitude and altitude coordinates at a predetermined time. Furthermore, a method of calculating position and time information using three satellites and correcting the calculated position and time information using another satellite is also used. In addition, the GPS module 115 continuously calculates the current position in real time and calculates velocity information using the position information.
Referring to
Further, the microphone 122 receives an external audio signal in a call mode, a recording mode or a speed recognition mode and processes the received audio signal into electric audio data. The audio data can also be converted into a form that can be transmitted to a mobile communication base station through the mobile communication module 112 and output in the call mode. The microphone 122 can employ various noise removal algorithms for removing noise generated when the external audio signal is received.
In addition, the user input unit 130 receives input data for controlling the operation of the terminal from a user. The user input unit 130 can include a keypad, a dome switch, a touch pad (constant voltage/capacitance), jog wheel, jog switch and so on. The sensing unit 140 senses the current state of the mobile terminal 100, such as an open/close state of the mobile terminal 100, the position of the mobile terminal 100, whether a user touches the mobile terminal 100, the direction of the mobile terminal 100 and acceleration/deceleration of the mobile terminal 100 and generates a detection signal for controlling the operation of the mobile terminal 100. For example, the sensing unit 140 can sense whether a slide phone is opened or closed when the mobile terminal 100 is the slide phone. Furthermore, the sensing unit 140 can sense whether the power supply 190 supplies power and whether the interface 170 is connected to an external device. The sensing unit 140 also includes a proximity sensor 141 in
In addition, the output unit 150 generates visual, auditory or tactile output and in
The display 151 can also include at least one of a liquid crystal display, a thin film transistor liquid crystal display, an organic light-emitting diode display, a flexible display and a three-dimensional display. Some of these displays can be of a transparent type or a light transmission type, which is referred to as a transparent display. The transparent display also includes a transparent liquid crystal display. The rear structure of the display unit 151 can also be of the light transmission type. According to this structure, a user can see an object located behind the body of the mobile terminal 100 through an area of the body of the mobile terminal 100, which is occupied by the display 151.
Further, the mobile terminal 100 can include at least two displays 151 according to constitution of the terminal. For example, the mobile terminal 100 can include a plurality of displays that are arranged on a single face at a predetermined distance or integrated. Otherwise, the plurality of displays can be arranged on different sides. In addition, when the display 151 and a sensor sensing touch (referred to as a touch sensor hereinafter) form a layered structure, which is referred to as a touch screen hereinafter, the display 151 can be used as an input device in addition to an output device. The touch sensor can be in the form of a touch film, a touch sheet and a touch pad, for example.
Also, the touch sensor can be constructed such that it converts a variation in pressure applied to a specific portion of the display 151 or a variation in capacitance generated at a specific portion of the display 151 into an electric input signal. The touch sensor can also be constructed such that it can sense pressure of touch as well as the position and area of touch. When touch input is applied to the touch sensor, a signal corresponding to the touch input is transmitted to a touch controller. The touch controller then processes the signal and transmits data corresponding to the processed signal to the controller 180. Accordingly, the controller 180 can detect a touched portion of the display 151.
Referring to
In addition, a capacitive touch screen is constructed such that a proximity of a pointer is detected through a variation in an electric field according to the proximity of the pointer. In this instance, the touch screen (touch sensor) can be classified as a proximity sensor. For convenience of explanation, an action of approaching the pointer to the touch screen while the pointer is not in contact with the touch screen such that the location of the pointer on the touch screen is recognized is referred to as a “proximity touch” and an action of bringing the pointer into contact with the touch screen is referred to as a “contact touch” in the following description. Also, a proximity touch point of the pointer on the touch screen means a point of the touch screen to which the pointer corresponds perpendicularly to the touch screen when the pointer proximity-touches the touch screen.
Further, the proximity sensor 141 senses a proximity touch and a proximity touch pattern (for example, a proximity touch distance, a proximity touch direction, a proximity touch velocity, a proximity touch time, a proximity touch position, a proximity touch moving state, etc.). Information corresponding to the sensed proximity touch action and proximity touch pattern can also be displayed on the touch screen.
Also, the audio output module 152 can output audio data received from the radio communication unit 110 or stored in the memory 160 in a call signal receiving mode, a telephone call mode or a recording mode, a speech recognition mode and a broadcasting receiving mode. The audio output module 152 also outputs audio signals related to functions (for example, a call signal incoming tone, a message incoming tone, etc.) performed in the mobile terminal 100. The audio output module 152 can include a receiver, a speaker, a buzzer, etc.
The alarm 153 outputs a signal for indicating a generation of an event of the mobile terminal 100. Examples of events generated in the mobile terminal 100 include receiving a call signal, receiving a message, inputting a key signal, inputting touch, etc. The alarm 153 can also output signals in forms different from video signals or audio signals, for example, a signal for indicating a generation of an event through vibration. The video signals or the audio signals can also be output through the display unit 151 or the audio output module 152.
In addition, the haptic module 154 generates various haptic effects that the user can feel. A representative example of the haptic effects is vibration. The intensity and pattern of vibration generated by the haptic module 154 can also be controlled. For example, different vibrations can be combined and output or sequentially output. The haptic module 154 can also generate a variety of haptic effects including an effect of stimulus according to an arrangement of pins vertically moving for a contact skin face, an effect of stimulus according to a jet force or sucking force of air through a jet hole or a sucking hole, an effect of stimulus of rubbing the skin, an effect of stimulus according to contact of an electrode, an effect of stimulus using an electrostatic force and an effect according to reproduction of cold and warmth using an element capable of absorbing or radiating heat in addition to vibrations. Further, the haptic module 154 can not only transmit haptic effects through direct contact but also allow the user to feel haptic effects through kinesthetic sense of his or her fingers or arms. The mobile terminal 100 can also include at least two or more haptic modules 154 according to constitution of the mobile terminal.
The projector module 155 is an element for performing an image projector function using the mobile terminal 100. That is, the projector module 155 can display an image, which is identical to or partially different at least from the image displayed on the display 151, on an external surface such as a wall or screen according to a control signal of the controller 180. In particular, the projector module 155 includes a light source generating light (e.g., laser) for projecting an image, an image producing unit for producing an image to be projected using the light generated from the light source, and a lens for enlarging the image to be projected in a predetermined focus distance. In addition, the projector module 155 can include an adjustment device for adjusting an image projected direction by mechanically moving the lens or the whole module.
Further, the projector module 155 can be classified into a CRT (cathode ray tube) module, an LCD (liquid crystal display) module, a DLP (digital light processing) module or the like according to a device type of a display mechanism. In particular, the DLP module is operated by the mechanism of enabling the light generated from the light source to reflect on a DMD (digital micro-mirror device) chip and can be advantageous for the downsizing of the projector module 151. Preferably, the projector module 155 can be provided in a length direction of a lateral, front or backside direction of the mobile terminal 100. The projector module 155 can also be provided to any portion of the mobile terminal 100.
In addition, the memory 160 stores a program for the operation of the controller 180 and temporarily stores input/output data (for example, phone book, messages, still images, moving images, etc.). The memory 160 can also store data about vibrations and sounds in various patterns, which are output when a touch input is applied to the touch screen. The memory 160 can include at least one of a flash memory, a hard disk type memory, a multimedia card micro type memory, a card type memory (for example, SD or XD memory), a random access memory (RAM), a static RAM (SRAM), a read-only memory (ROM), an electrically erasable programmable ROM (EEPROM), a programmable ROM (PROM) magnetic memory, a magnetic disk and an optical disk. The mobile terminal 100 can also operate in relation to a web storage performing the storing function of the memory 160 on the Internet.
Further, the interface 170 serves as a path to all external devices connected to the mobile terminal 100. The interface 170 receives data or power from the external devices and transmits the data or power to the internal components of the mobile terminal 100 or transmits data of the mobile terminal 100 to the external devices. The interface 170 can also include a wired/wireless headset port, an external charger port, a wired/wireless data port, a memory card port, a port for connecting a device having a user identification module, an audio I/O port, a video I/O port, an earphone port, etc., for example.
In addition, an identification module is a chip that stores information for authenticating the authority to use the mobile terminal 100 and can include a user identify module (UIM), a subscriber identify module (SIM) and a universal subscriber identify module (USIM). A device (referred to as an identification device hereinafter) including the identification module can be manufactured in the form of a smart card. Accordingly, the identification device can be connected to the mobile terminal 100 through a port.
Also, the interface 170 can serve as a path through which power from an external cradle is provided to the mobile terminal 100 when the mobile terminal 100 is connected to the external cradle or a path through which various command signals input by the user through the cradle to the mobile terminal 100. The various command signals or power input from the cradle can be used as a signal for confirming whether the mobile terminal 100 is correctly set in the cradle.
The controller 180 controls the overall operation of the mobile terminal. For example, the controller 180 performs control and processing for voice communication, data communication and video telephony. In
Further, various embodiments of the present invention can be implemented in a computer or similar device readable recording medium using software, hardware or a combination thereof, for example. According to a hardware implementation, the embodiments of the present invention can be implemented using at least one of application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), processors, controllers, micro-controllers, microprocessors, electrical units for executing functions. The embodiments can also be implemented by the controller 180.
According to a software implementation, embodiments such as procedures or functions can be implemented with a separate software module executing at least one function or operation. Software codes can be implemented according to a software application written in an appropriate software language. Furthermore, the software codes can be stored in the memory 160 and executed by the controller 180.
Next,
In addition, the terminal body includes a case (a casing, a housing, a cover, etc.) forming the exterior of the terminal 100. In the present embodiment, the case is divided into a front case 101 and a rear case 102. Various electronic components are also arranged in the space formed between the front case 101 and the rear case 102. At least one middle case can be additionally arranged between the front case 101 and the rear case 102. The cases can also be formed of plastics through injection molding or be made of a metal material such as stainless steel (STS) or titanium (Ti).
In addition, the display 151, the audio output unit 152, the camera 121, user input units 131 and 132 of the user input unit 130 (
Further, the user input unit 130 is operated to receive commands for controlling the operation of the handheld terminal 100 and can include the operating units 131 and 132. The operating units 131 and 132 can be referred to as manipulating portions and employ any tactile manner in which a user operates the operating units 131 and 132 while having tactile feeling. The operating units 131 and 132 can also receive various inputs. For example, the operating unit 131 receives commands such as start, end and scroll, and the second operating unit 132 receives commands such as control of the volume of sound output from the audio output unit 152 or conversion of the display 151 to a touch recognition mode.
Next,
A flash bulb 123 and a mirror 124 are also arranged in proximity to the camera 121′. The flash bulb 123 lights an object when the camera 121′ takes a picture of the object, and the mirror 124 is used for the user to look at his/her face in the mirror when the user wants to self-photograph himself/herself using the camera 121′. An audio output unit 152′ is also provided on the rear side of the terminal body. The audio output unit 152′ can thus achieve a stereo function with the audio output unit 152 shown in
A broadcasting signal receiving antenna 124 is also attached to the side of the terminal body in addition to an antenna for telephone calls. The antenna 124 constructing a part of the broadcasting receiving module 111 shown in
The touch pad 135 also operates in connection with the display 151 of the front case 101. The touch pad 135 can be located in parallel with the display 151 behind the display 151, and can be identical to or smaller than the display 151 in size.
Turning, next to
Thus, as shown in
Next, as shown in
In more detail, embodiments of the present invention provide various methods of providing the terminal user with a recommended or predicted word. The following description assumes the recommended word according to the input intrinsic alphabet ‘B’ is ‘BEST’. Then, as shown in
Subsequently, referring to
In this manner, the user can easily input a desired word by simply pressing the first key button 411 four times consecutively. After the desired word has been completely input, the first key button 411 can be changed back to have the identifier of the intrinsic alphabet ‘B’. Thus, referring to
Next,
Subsequently, referring to
Thus, the user can see that if he or she again touches the first key button 411, the character “E” will be input. That is, referring to
Thus, as shown in
Next,
Referring to
Referring to
Thus, in
Next,
Referring to
Referring to
Next,
Referring to
Subsequently, the user again touches the first key button 411, and the second alphabet ‘E’ of the predicted word is input and displayed. In more detail, referring to
Thus, in
Next,
Referring to
That is, referring to
Thus, in
Meanwhile, referring to
Next, and referring to
The above descriptions describe the desired word the terminal user intends to input is equal to the predicted word. However, the predicted word is not always equal to the user-desired word. Accordingly, in the following description, a method of inputting the desired word different from the predicted word is explained with reference to
Further, in the following description, if a desired key button is touched, a corresponding intrinsic alphabet is input. Second or higher-order alphabets of a predicted word, which can be input if the desired key button is re-touched, are provided to the user by one of the methods described with reference to
The following description also assumes the predicted word is ‘BEST’, whereas the desired word is ‘BEAST’. Referring to
Instead, the user touches a fourth key button 414 having the intrinsic alphabet ‘A’. If so, referring to
Based on the input alphabets ‘B’, ‘E’ and ‘A’, the controller 180 predicts a desired word the user intends to input. Thus, the controller 180 is then able to recommend the predicted word to the user. Again, in the following description, for clarity, assume that the recommended word according to the input alphabets ‘B’, ‘E’ and ‘A’ is ‘BEAST’.
As the predicted word is predicted, referring to
Finally, referring to
Meanwhile, when the desired word is ‘BBC’, and if ‘B’ is input by touching the first key button 411, the controller 180 predicts the word ‘BEST’. Subsequently, if the first key button 411 is re-touched, the alphabet ‘E’ will be input. Therefore, the desired word ‘BBC’ is not correctly input. To solve this problem, the following method is further explained with reference to
Referring to
In this instance, a double-touch or a long touch is performed on the first key button 411. Further,
Based on the input alphabets ‘B’ and ‘B’, the controller 180 predicts a desired word the user intends to input. The controller 180 is then able to recommend the predicted word to the user. In the following description, for clarity, the predicted word according to the input alphabets ‘B’ and ‘B’ is ‘BBC’. Finally, an identifier of the third alphabet ‘C’ of the predicted word ‘BBC’ is displayed on the first key button 411.
The following description describes another method of inputting the desired word ‘BBC’ with reference to
Also, assume the user does not touch the keypad 410 during a prescribed period of time (e.g., 0.5 second, 1 second, etc.). If so, the controller 180 controls each corresponding identifier of all alphabet key buttons of the keypad to be restored to identifiers of the original intrinsic alphabets. Therefore, referring to
Referring to
Further, in
Referring to
If so, referring to
Referring to
In this instance, the user performs a double-touch or a long touch operation on the first key button 411.
Subsequently, the user performs a simple or single touch, which is neither a double touch nor a long touch, on the first key button 411 instead of the double or long touch. If so, referring to
If so, referring to
In addition,
In addition, the controller 180 can predict words the user intends to input based on previously input words, based on common words, based on words in a dictionary, based on predetermined words set by a user, etc. Thus, once the user enters the first character, the controller 180 can search words stored in the memory and provide the user with one or more predicted words.
Accordingly, the present invention provides several advantages. For example, according to at least one of the embodiments of the present invention, the user can easily input characters via a keypad on the mobile terminal having key buttons of which number or size is smaller than that of key buttons provided to a keyboard of a personal computer.
In addition, the above-described methods can be implemented in a program recorded medium as computer-readable codes. The computer-readable media include all kinds of recording devices in which data readable by a computer system are stored. The computer-readable media include ROM, RAM, CD-ROM, magnetic tapes, floppy discs, optical data storage devices, and the like for example and also include carrier-wave type implementations (e.g., transmission via the Internet). In addition, the computer can include the controller 180 of the terminal.
It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit or scope of the inventions. Thus, it is intended that the present invention covers the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
10-2009-0111310 | Nov 2009 | KR | national |
This application is a Continuation of co-pending application Ser. No. 14/088,135, filed on Nov. 22, 2013, which is a Continuation of U.S. application Ser. No. 12/824,068, filed on Jun. 25, 2010 (now U.S. Pat. No. 8,612,885 B2), which claims priority under 35 U.S.C. §119(a) to Application No. 10-2009-0111310, filed in Korea on Nov. 18, 2009, all of which are hereby expressly incorporated by reference into the present application.
Number | Name | Date | Kind |
---|---|---|---|
5128672 | Kaehler | Jul 1992 | A |
5748177 | Baker | May 1998 | A |
5920303 | Baker et al. | Jul 1999 | A |
5956021 | Kubota | Sep 1999 | A |
5963671 | Comerford | Oct 1999 | A |
6359572 | Vale | Mar 2002 | B1 |
6724370 | Dutta et al. | Apr 2004 | B2 |
7539472 | Sloo | May 2009 | B2 |
7681145 | Pu | Mar 2010 | B1 |
8018441 | Shin | Sep 2011 | B2 |
8319742 | Doktorova | Nov 2012 | B2 |
8422661 | Suzuki | Apr 2013 | B2 |
8669941 | Sharan | Mar 2014 | B2 |
20020149569 | Dutta | Oct 2002 | A1 |
20030025616 | Bickerton | Feb 2003 | A1 |
20070046641 | Lim | Mar 2007 | A1 |
20070060176 | Sloo | Mar 2007 | A1 |
20090007001 | Morin et al. | Jan 2009 | A1 |
20100026650 | Srivastava | Feb 2010 | A1 |
20100031143 | Rao | Feb 2010 | A1 |
20100039393 | Pratt | Feb 2010 | A1 |
20100225591 | Macfarlane | Sep 2010 | A1 |
20100231523 | Chou | Sep 2010 | A1 |
20110035209 | Macfarlane | Feb 2011 | A1 |
20110074704 | Causey | Mar 2011 | A1 |
20110148787 | Kim | Jun 2011 | A1 |
20110163973 | Ording | Jul 2011 | A1 |
20130176228 | Griffin | Jul 2013 | A1 |
20130285916 | Griffin | Oct 2013 | A1 |
20150029090 | Kim | Jan 2015 | A1 |
Number | Date | Country |
---|---|---|
1731331 | Feb 2006 | CN |
1949158 | Apr 2007 | CN |
2 088 754 | Aug 2009 | EP |
9-160910 | Jun 1997 | JP |
WO 2007047188 | Apr 2007 | WO |
Entry |
---|
Isokoski, “Performance of Menu-Augmented Soft Keyboards”; Apr. 2004, pp. 423-430; http://dl.acm.org/citation.cfm?id=985692.985746. |
TypeBooster, TypeBooster.com; Oct. 17, 2008; pp. 1; http://www.typebooster.com/index.php?page=7. |
Number | Date | Country | |
---|---|---|---|
20160370876 A1 | Dec 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14088135 | Nov 2013 | US |
Child | 15251922 | US | |
Parent | 12824068 | Jun 2010 | US |
Child | 14088135 | US |