The technology of the disclosure relates generally to displays in vehicles.
Current generations of automobiles rely heavily on computers and sensors to evaluate the general “health” and operation of the automobile. While sensors and gauges have existed in automobiles for many years allowing operators to know fuel levels, speed, engine temperature, battery level, and the like, the days of analog gauges are fading, and now such information is digitized and presented to an operator through a display. The display may be a simple backlit image or a video capable display or some combination of the two. Sensors may register faults or conditions and store data related to such faults or conditions in a memory device. Concurrently, information related to the fault or condition may be presented to the operator through the use of a telltale. Typically such telltales are provided on a display in the dashboard, where the display is in line with the steering wheel so that an operator may readily perceive the telltale. The operator may act on the telltale after recognizing the condition. In some instances, the memory device may be accessed through a diagnostic device to receive further information about the condition which triggered the telltale.
Currently, telltales have a failsafe operation profile. That is, the sensors are made as robust as possible to operate in any reasonably expected environmental or driving conditions, and the communication links are protected from such as well. Despite these precautions, failures do occur. Such failures may be as simple as a blown fuse, a burnt out light bulb, or the like. However, such failures may also be related to the communication link, the display, the sensor, or other point of failure. Currently, when such a failure occurs, the operator may be unaware of the failure, and more importantly, may be unaware of any condition which would otherwise be reported through such a failed telltale. The parent disclosure introduced the concept of using alternate displays to provide telltales to operators, but there remains room to explore various ways that mobile terminals may be used to provide telltales to operators. Accordingly, there may be opportunities to improve the ability to present telltales to operators.
Aspects disclosed in the detailed description include mobile terminal display options for vehicle telltales. In an exemplary aspect, a fault condition in a telltale is detected, and the telltale is presented through a secondary display system in the vehicle, where the secondary display system is a mobile terminal within the vehicle. The mobile terminal may be wirelessly connected to a vehicle control system or may be connected through a wire-based connector. By presenting the telltale on a mobile terminal display, the operator remains informed of sensor conditions in the automobile and may take remedial action to fix the fault condition as well as any conditions which trigger a telltale.
In this regard in one aspect, a method for controlling displays in a vehicle is disclosed. The method includes sending data from a first controller to a cluster display embedded control unit (ECU) of a vehicle for display on a cluster display within the cluster display ECU. The method also includes detecting a fault associated with the cluster display ECU of the vehicle or a communication path from the first controller to the cluster display ECU. The method also includes sending, from the first controller, cluster display information including at least one telltale to a secondary display on a mobile terminal in the vehicle.
In another aspect, an ECU is disclosed. The ECU includes a vehicle network interface configured to be coupled to a vehicle network. The ECU also includes a first cable interface configured to be coupled to a first cable. The ECU also includes a wireless connectivity module. The ECU also includes a control system including a system on a chip (SoC). The control system is configured to detect a fault in a cluster display ECU through the first cable. The control system is also configured to route cluster display information including a telltale to a mobile terminal through the wireless connectivity module.
In another aspect, an ECU is disclosed. The ECU includes a vehicle network interface configured to be coupled to a vehicle network. The ECU also includes a first cable interface configured to be coupled to a first cable. The ECU also includes a modem. The ECU also includes a control system including a system on a chip (SoC). The control system is configured to detect a fault in a cluster display ECU through the first cable. The control system is also configured to route cluster display information including a telltale to a mobile terminal through the modem.
In another aspect, an automobile is disclosed. The automobile includes a cluster display ECU. The cluster display ECU includes a cluster display. The cluster display ECU also includes a cluster microcontroller unit (MCU). The cluster display ECU also includes a first cable input configured to receive a first cable. The automobile also includes a control system ECU including a control MCU configured to detect a fault in the cluster display ECU and route telltale information to a mobile terminal.
With reference now to the drawing figures, several exemplary aspects of the present disclosure are described. The word “exemplary” is used herein to mean “serving as an example, instance, or illustration.” Any aspect described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects.
Aspects disclosed in the detailed description include mobile terminal display options for vehicle telltales. In an exemplary aspect, a fault condition in a telltale is detected, and the telltale is presented through a secondary display system in the vehicle, where the secondary display system is a mobile terminal within the vehicle. The mobile terminal may be wirelessly connected to a vehicle control system or may be connected through a wire-based connector. By presenting the telltale on a mobile terminal display, the operator remains informed of sensor conditions in the automobile and may take remedial action to fix the fault condition as well as any conditions which trigger a telltale.
The discussion from the parent disclosure is provided with reference to
As used herein, a mobile terminal may be a cellular phone, a smartphone, a tablet, a phablet, a laptop computer, an entertainment unit, a navigation device, a communications device, a mobile location data unit, a global positioning system (GPS) device, a mobile phone, a portable computer, a mobile computing device, a wearable computing device (e.g., a smart watch, a health or fitness tracker, eyewear, etc.), a personal digital assistant (PDA), a radio, a satellite radio, a music player, a digital music player, a portable music player, a digital video player, a video player, a digital video disc (DVD) player, a portable digital video player, and the like. In relevant part, the mobile terminal needs to have the ability to receive signals and display telltales, and thus, a simplified block diagram of an exemplary mobile terminal is provided below with reference to
While the present disclosure is presented with reference to an automobile, other vehicles such as boats, motorcycles, planes, and the like could benefit from the present disclosure and the particular environment is not limited to automobiles. However, for simplicity, the following discussion is provided with reference to an automobile.
In this regard,
It should be appreciated that many vehicles may have other displays and/or be connected to one or more mobile terminals. In this regard, a vehicle 120 is illustrated in
As used herein, a telltale is an indicator of a malfunction of a system within a motor vehicle by an illuminated symbol or text legend. Exemplary telltales are illustrated in the instrument cluster display 104 in
In normal operation, the instrument cluster display 104 is responsive to a local cluster microcontroller unit (MCU), and the second display 112 is responsive to a local infotainment system or second MCU. The local MCUs may communicate with a controller though a cable or through the vehicle network. This arrangement is illustrated with reference to
The ECU 308 may include a serializer/deserializer 310 and a cluster MCU 312. The cluster MCU 312 may sometimes be referred to as a system on a chip (SoC) or application processor (AP). The cluster MCU 312 may further communicate over the CAN 314 or other vehicle network. The serializer/deserializer 310 primarily serializes signals such as pixel data, horizontal and vertical timing control, and additional information, such as CRC information, for transmission over the cable 306 to the ECU 300, but may receive backchannel information from the ECU 300. Part of the backchannel information may include signals that act as a heartbeat signal that can be monitored by the cluster MCU 312 to indicate the data path to the instrument cluster display 104 is operational. Note that this data path includes the serializer/deserializer 310, the cable 306 connecting the ECU 308 and the ECU 300, the serializer/deserializer 304, and the instrument cluster display 104.
Note that the cable 306 may be a coaxial cable, a twisted pair, or the like and generally is configured to carry a differential signal and have sufficient bandwidth to carry video signals specifically. Note further that the CAN 314 may be a bi-directional communication bus and may sometimes be referred to herein as a vehicle network. Current CAN implementations are typically two-wire cables, but it should be appreciated that a vehicle network is not limited to such two-wire cables and the term vehicle network includes CANs, Ethernet-based networks, wireless networks, USB, Peripheral Component Interconnect (PCI) express (PCIE), Converged Input/Output (CIO), and the like with sufficient bandwidth to handle video signals.
With continued reference to
In practice, the cluster MCU 312 receives reports from sensors about the health and operation of components of the vehicle such as tire pressure, oil pressure, fuel level, and the like. Based on these reports, the cluster MCU 312 may send the display image pixel data or other signal to the instrument cluster display 104 to update the status of one or more telltales on the instrument cluster display 104.
While
In normal operation, sensors associated with the vehicle monitor environmental and operational conditions and provide input to the cluster SoC 312 (or the cluster/infotainment SoC 410). If there is a telltale update, the cluster SoC 312 (or the cluster/infotainment SoC 410) sends the pixel data to be displayed to the instrument cluster display 104 or otherwise communicates with the MCU 302 to cause illumination of the telltale on the instrument cluster display 104. However, when a fault is present in the pixel data path (or general communication path) to the ECU 300, the instrument cluster display 104 is not updated with the correct telltale state to be observed by the driver/user. Exemplary aspects of the present disclosure recognize the fault in the path to the instrument cluster display 104 and cause the telltale status to be shown on the second display 112 or other secondary display such as the seat back displays 122(1)-122(N) and/or the mobile terminal 128. In some cases the pixel stream is duplicated for the second display 112, but it is also possible that instructions are sent which cause a telltale to appear on the second display 112. Additionally, or alternatively, an audible telltale is provided to the operator. This process is illustrated in
The process 500 begins with a condition being sensed (block 502) that triggers a telltale. For example, tire pressure may be low in one or more of the tires of the vehicle. In normal operation, the telltales are presented to the user (operator) (block 504). When the instrument cluster display 104 and/or the pixel data path to the instrument cluster display 104 is determined to be non-functional (e.g., as a result of the instrument cluster display 104 being non-functional, the serializer/deserializer 304 being non-functional, or the serializer/deserializer 310 being non-functional) (block 506), a warning, such as an audio tone, may be provided to indicate failure and cluster display information is moved to a secondary display, which may be the second display 112 (block 508), another display within the vehicle such as the backseat displays 122(1)-122(N), and/or the mobile terminal 128. Any of the secondary displays may duplicate the instrument cluster display 104 such that the telltales are presented on this secondary display (block 510). In an alternate aspect, the instrument cluster display 104 may be duplicated on multiple secondary displays. Note that the detection of the non-functionality may be effectuated by loss of the heartbeat signal, detection of corruption, detection of a blown fuse, a line fault error, or other mechanism as needed or desired.
The presentation of the cluster data on the second display 112 is effectuated by providing or broadcasting the data that would be sent to the ECU 300 to the ECU 316 or an ECU controlling the secondary display. This broadcast may be done concurrently such that both the ECU 300 and the ECU 316 receive the data, or the initial data stream to the ECU 300 is terminated. Depending on the whether there is a single SoC controlling both displays (e.g., the cluster/infotainment SoC 410) or two SoCs controlling individual displays (e.g., the cluster SoC 312 and the infotainment SoC 328), there are different ways of sending the information to the ECU 316.
In this regard,
An alternate technique is to route the cluster data from the ECU 300 to the ECU 316 through a serializer/deserializer 700 and cable 702 as illustrated in
While not illustrated, another possibility would be to route the cluster error signal from the cluster SoC 312 to the infotainment SoC 328 and also send the cluster data from the cluster SoC 312 to the infotainment SoC 328, and allow the infotainment SoC 328 to send the cluster data to the ECU 316 through the cable 322. Such an arrangement may impose an additional burden on the vehicle network or require additional serializer/deserializers to allow the coupling between the cluster SoC 312 and the infotainment SoC 328.
If there is a single SoC such as the cluster/infotainment SoC 410 that serves both the ECU 300 and the ECU 316, then the signaling is simplified as illustrated in
As another alternative, the ECU 400 may include a serializer 900 that is capable of providing two (or more) outputs and broadcasting the data from the single serializer 900 to both the ECU 300 and the ECU 316 as illustrated in
As alluded to above, while
Likewise, the present disclosure does not need to pre-empt completely the data otherwise being provided through the secondary display. There are various ways the telltale data may be added to the content being presented on the secondary display. Such display stacking techniques are explored in co-owned U.S. Provisional Patent Application Ser. No. 62/624,780, filed Jan. 31, 2018 and entitled “DRIVING MULTIPLE DISPLAYS WITH A SINGLE DISPLAY PORT,” which is hereby incorporated by reference in its entirety.
While the parent disclosure contemplated sending information to mobile terminals, there are myriad ways in which this data transfer may occur. Accordingly, the following discussion is provided to illustrate specific aspects. In particular,
The mobile terminal 1000 includes an antenna 1006, a wireless connectivity module 1008, an application processor 1010, and a display (also labeled LCD in
Similarly, the wireless connectivity module may be incorporated into the cluster SoC, as illustrated in
While the aspects described with reference to
It should also be appreciated that aspects of the present disclosure also work where the cluster and infotainment displays are controlled by a single SoC such as illustrated in
Likewise, as illustrated in
While wireless implementations are specifically contemplated, the present disclosure is not so limited. Some mobile terminals may be mobile computing devices with a display but lack a wireless connectivity module (e.g., certain ebook readers, some tablets, music players, navigation devices, or the like). These devices may still be coupled to a vehicle through a wired connection such as a USB cable, USB Type-C cable, LIGHTNING cable, DISPLAYPORT cable, or the like.
While there are myriad ways in which the telltales may be presented to a vehicle occupant and/or operator, there may be a hierarchy that dictates an order or preference for certain presentations. An exemplary process implementing such a hierarchy is provided in process 1600 illustrated in
In any of the aspects disclosed herein, the user may be alerted to the existence of a fault through an audible tone at fault detection, when the telltale is routed to a secondary display (e.g., a mobile terminal or the infotainment display), or the audible tone may be generated by the mobile terminal on receipt of the telltale to display.
In this regard,
With continued reference to
With continued reference to
Those of skill in the art will further appreciate that the various illustrative logical blocks, modules, circuits, and algorithms described in connection with the aspects disclosed herein may be implemented as electronic hardware, instructions stored in memory or in another computer readable medium and executed by a processor or other processing device, or combinations of both. The devices described herein may be employed in any circuit, hardware component, integrated circuit (IC), or IC chip, as examples. Memory disclosed herein may be any type and size of memory and may be configured to store any type of information desired. To clearly illustrate this interchangeability, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. How such functionality is implemented depends upon the particular application, design choices, and/or design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the present disclosure.
The various illustrative logical blocks, modules, and circuits described in connection with the aspects disclosed herein may be implemented or performed with a processor, a Digital Signal Processor (DSP), an Application Specific Integrated Circuit (ASIC), a Field Programmable Gate Array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration).
The aspects disclosed herein may be embodied in hardware and in instructions that are stored in hardware, and may reside, for example, in Random Access Memory (RAM), flash memory, Read Only Memory (ROM), Electrically Programmable ROM (EPROM), Electrically Erasable Programmable ROM (EEPROM), registers, a hard disk, a removable disk, a CD-ROM, or any other form of computer readable medium known in the art. An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. The processor and the storage medium may reside in an ASIC. The ASIC may reside in a remote station. In the alternative, the processor and the storage medium may reside as discrete components in a remote station, base station, or server.
It is also noted that the operational steps described in any of the exemplary aspects herein are described to provide examples and discussion. The operations described may be performed in numerous different sequences other than the illustrated sequences. Furthermore, operations described in a single operational step may actually be performed in a number of different steps. Additionally, one or more operational steps discussed in the exemplary aspects may be combined. It is to be understood that the operational steps illustrated in the flowchart diagrams may be subject to numerous different modifications as will be readily apparent to one of skill in the art. Those of skill in the art will also understand that information and signals may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
The previous description of the disclosure is provided to enable any person skilled in the art to make or use the disclosure. Various modifications to the disclosure will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other variations. Thus, the disclosure is not intended to be limited to the examples and designs described herein, but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
The present application is a continuation-in-part of U.S. patent application Ser. No. 16/127,504, filed on Sep. 11, 2018 and entitled “ALTERNATIVE DISPLAY OPTIONS FOR VEHICLE TELLTALES,” the contents of which is incorporated herein by reference in its entirety. The '504 application claims priority to U.S. Provisional Patent Application Ser. No. 62/571,572 filed on Oct. 12, 2017 and entitled “ALTERNATIVE DISPLAY OPTIONS FOR VEHICLE TELLTALES,” the contents of which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62571572 | Oct 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16127504 | Sep 2018 | US |
Child | 16275441 | US |