This application claims priority to and benefits of Chinese Patent Application No. 201610894343.6, filed with State Intellectual Property Office on Oct. 13, 2016, and Chinese Patent Application No. 201621119915.5, filed with State Intellectual Property Office on Oct. 13, 2016, the entire content of which is incorporated herein by reference.
The present disclosure relates to a technical field of mobile terminals, and particularly, to a mobile terminal, an earphone socket and a method for manufacturing an earphone socket.
In the related art, an earphone socket is used as a main adapter for electrical signal transmission in all types of electronic products, specially provided as an audio connector for audio signal output/input and more widely applied in various kinds of audiovisual products. In particular, with the rapid development of a variety of portable electronic products, such as mobile phones, personal digital assistants (PAD), MP3 players, recording pens, and notebook computers, earphones with various sizes have been extensively used in those products in recent years, and hence people are more demanding on waterproofness of the earphone socket. However, in the related art, a waterproof structure of the earphone socket is complex and occupies a large internal space, which is not conductive to a light and thin design of the electronic products.
The present disclosure provides an earphone socket. The earphone socket according to embodiments of present disclosure includes: a housing having an insertion hole surrounded by a peripheral side wall, the peripheral side wall having a first peripheral side wall located at an inner portion of the insertion hole and a second peripheral side wall located at an outer portion of the insertion hole, the first peripheral side wall having a thickness greater than that of the second peripheral side wall, and the second peripheral side wall having an opening port at an outer end of the insertion hole; and a sealing member embedded on an outer surface of the housing, and surrounding a periphery of the opening port, and at least a part of the sealing member extending to the first peripheral side wall.
The present disclosure further provides a mobile terminal that includes the above earphone socket. The mobile terminal according to embodiments of the present disclosure includes the above earphone socket.
The present disclosure furthermore provides a method for manufacturing an earphone socket.
In the method according to embodiments of the present disclosure, an earphone socket includes a housing and a sealing member embedded on an outer surface of the housing; the housing is provided with an insertion hole having an open end; and the sealing member surrounds a periphery of the insertion hole. The method includes actions of: machining an embedding groove in the housing and embedding the sealing member in the embedding groove; forming at least one embedding recess in communication with the embedding groove in the embedding groove; and filling glue in the embedding recess, and coagulating the glue to form a glue portion so as to fix the sealing member on the housing.
Reference will be made in detail to embodiments of the present disclosure. Examples of the embodiments are illustrated in the drawings. The embodiments described herein with reference to drawings are explanatory, and used to interpret the present disclosure. The embodiments shall not be construed to limit the present disclosure.
In the specification, it is to be understood that terms such as “central,” “length,” “width,” “thickness,” “upper,” “lower,” “front,” “rear,” “left,” “right,” “inner,” “outer” and “circumferential” should be construed to refer to the orientations or positions as described or as illustrated in the drawings under discussion. These relative terms are for convenience of description and do not indicate or imply that the device or element referred to must have a particular orientation or be constructed or operated in a particular orientation. Thus, the relative terms shall not be construed to limit the present disclosure.
In addition, terms such as “first” and “second” are used herein for purposes of description and are not intended to indicate or imply relative importance or significance or to imply the number of indicated technical features. Thus, the feature defined with “first” and “second” can comprise one or more of this feature. In the description of the present disclosure, “a plurality of” means two or more than two, unless specified otherwise.
In the present disclosure, unless specified or limited otherwise, the terms “mounted”, “connected”, “coupled”, “fixed” and the like are used broadly, and can be, for example, fixed connections, detachable connections, or integral connections; can also be mechanical or electrical connections; can also be direct connections or indirect connections via intervening structures; can also be inner communications of two elements, which can be understood by those skilled in the art according to specific situations.
In the following, an earphone socket 100 according to embodiments of the present disclosure will be described with reference to
In an embodiment, the housing 1 has an insertion hole 13 surrounded by a peripheral side wall, the peripheral side wall has a first peripheral side wall 12 located at an inner portion of the insertion hole 13 and a second peripheral side wall 11 located at an outer portion of the insertion hole 13. The first peripheral side wall 12 has a wall thickness greater than a wall thickness of the second peripheral side wall 11, and the first peripheral side wall 12 and the second peripheral side wall 11 together define the insertion hole 13, the second peripheral side wall 11 has an opening port 131 at an outer end of the insertion hole. An earphone plug 200 can be inserted into the insertion hole 13. The first peripheral side wall 12 and the second peripheral side wall 11 are arranged along a central axis of the insertion hole 13, and the opening port 131 is located in the second peripheral side wall 11. That is, the first peripheral side wall 12 and the second peripheral side wall 11 are arranged along the central axis of the insertion hole 13, and the opening port 131 is located in the second peripheral side wall 11.
The sealing member 2 is embedded on an outer surface of the housing 1. The sealing member 2 surrounds a periphery of the opening port 131, and at least part of the sealing member 2 extends to the first peripheral side wall 12. The sealing member 2 is embedded on the outer surface of the housing 1 and surrounds the periphery of the opening port 131, such that it is possible to prevent water outside a mobile terminal 1000 from flowing to an interior of the mobile terminal 1000 along the outer surface of the housing 1 of the earphone socket 100, and hence avoid damaging a circuit board or the like inside the mobile terminal 1000. In addition, at least part of the sealing member 2 extends to the first peripheral side wall 12, and since the sealing member 2 is embedded on the housing 1 through a sealing groove (as an embedding groove 14 described below), at least part of the sealing groove can be provided in the first peripheral side wall 12 when at least part of the sealing member 2 extends to the first peripheral side wall 12; since the thickness of the first peripheral side wall 12 is greater than that of the second peripheral side wall 11, there is no need to increase the wall thickness of the second peripheral side wall 11 and form the sealing groove in the second peripheral side wall 11, so as to reduce an overall thickness of the earphone socket 100 and facilitate a light and thin design of the mobile terminal 1000. Meanwhile, at least part of the sealing groove can be provided in the first peripheral side wall 12, which can enhance a structural strength of the housing 1, improve operational reliability of the mobile terminal 1000, and improve waterproof and dustproof reliability of the earphone socket 100.
For the earphone socket 100 according to embodiments of the present disclosure, by configuring the thickness of the first peripheral side wall 12 of the housing 1 to be greater than the thickness of the second peripheral side wall 11 of the housing 1 and configuring the sealing member 2 to extend along the periphery of the opening port 131 with at least part of the sealing member 2 extending to the first peripheral side wall 12, the fluid (e.g. water) outside the mobile terminal 1000 can be prevented from entering the mobile terminal 1000 along the outer surface of the housing 1, and hence the circuit board or the like inside the mobile terminal 1000 can be protected from damages, thereby improving the operational reliability of the mobile terminal 1000. Furthermore, there is no need to increase the wall thickness of the second peripheral side wall 11 and form the sealing groove in the second peripheral side wall 11, so as to reduce the overall thickness of the earphone socket 100 and facilitate the light and thin design of the mobile terminal 1000. Moreover, it is possible to enhance the structural strength of the housing 1, and improve the waterproof and dustproof reliability of the earphone socket 100.
In some embodiments of the present disclosure, as illustrated in
In some embodiments, as illustrated in
In at least one embodiment, as illustrated in
As illustrated in
In some embodiments of the present invention, the embedding groove 14 is provided with at least one embedding recess therein in communication with the embedding groove 14, and the embedding recess is provided with a glue portion therein for bonding the sealing member 2 to the housing 1. The sealing member 2 and the housing 1 can be two individually fabricated structures; after they are fabricated individually, the sealing member 2 can be placed into the embedding groove 14 in the housing 1; then the embedding groove is filled with glue, and the glue is coagulated in the embedding groove to form the glue portion. The glue portion can fix the sealing member 2 in the embedding groove 14, which enhances the reliability of fixing the sealing member 2 on the outer surface of the housing 1, and improves the waterproof and dustproof reliability of the earphone socket 100. In addition, it is possible to simplify a machining process and reduce cost by fabricating the sealing member 2 and the housing 1 individually and assembling them together.
In some embodiments of the present disclosure, the sealing member 2 is injection-molded on the housing 1. Thus, the sealing member 2 can be directly injection-molded on the housing 1, and a process assembling the sealing member 2 and the housing 1 can be simplified.
In some embodiments of the present disclosure, as illustrated in
Further, as illustrated in
As illustrated in
A first end of the transition segment 252 is connected with a second end of the straight segment 251, and a second end of the transition segment 252 is connected with the second segment 24. In a direction towards an interior of the insertion hole 13, the transition segment 252 is gradually inclined towards the central axis of the insertion hole 13. Thus, it is convenient to connect the transition segment 252 with the second segment 24 to shape the sealing member 2 into a ring, thereby realizing a waterproof and dustproof function of the sealing member 2. When the earphone socket 100 is mounted to the mobile terminal 1000, the sealing member 2 can prevent the fluid (e.g. water) outside the mobile terminal 1000 from entering the mobile terminal 1000, and hence avoid damaging the circuit board or the like inside the mobile terminal 1000, so as to improve the operational reliability of the mobile terminal 1000.
In some embodiments of the present disclosure, as illustrated in
In some embodiments of the present disclosure, the sealing member 2 is made of silica gel. Silica gel is a high-active adsorbent material and an amorphous substance. Silica gel does not react with any other substance except strong alkali and hydrofluoric acid, and dissolve in water and any solvents. Silica gel is non-toxic, odorless and chemically stable. Silica gel has the advantages of high adsorption performance, good thermal stability, stable chemical properties, high mechanical strength and so on. Thus, the reliability of the sealing member 2 can be enhanced, and the waterproof and dustproof effect of the sealing member can be improved.
In some embodiments of the present disclosure, as illustrated in
An earphone socket 100 according to a specific embodiment of the present disclosure will be described with reference to
As illustrated in
In an embodiment, the housing 1 includes the second peripheral side wall 11 and the first peripheral side wall 12. The wall thickness of the first peripheral side wall 12 is greater than that of the second peripheral side wall 11, and the first peripheral side wall 12 and the second peripheral side wall 11 together define the insertion hole 13 with the opening port 131 at one end. The first peripheral side wall 12 and the second peripheral side wall 11 are arranged along the central axis of the insertion hole 13, and the opening port 131 is located in the second peripheral side wall 11. The sealing member 2 is embedded on the outer surface of the housing 1. The sealing member 2 surrounds the periphery of the opening port 131, and at least part of the sealing member 2 extends to the first peripheral side wall 12. Therefore, when the earphone socket 100 is assembled to the mobile terminal 1000, it is possible to prevent the fluid (e.g. water) outside the mobile terminal 1000 from entering the mobile terminal 1000 along the outer surface of the housing 1, and hence avoid damaging the circuit board or the like inside the mobile terminal 1000, thereby improving the operational reliability of the mobile terminal 1000. Furthermore, there is no need to increase the wall thickness of the second peripheral side wall 11 and form the sealing groove in the second peripheral side wall 11, so as to reduce the overall thickness of the earphone socket 100 and facilitate the light and thin design of the mobile terminal 1000. Moreover, it is possible enhance the structural strength of the housing 1, and improve the waterproof and dustproof reliability of the earphone socket 100.
As illustrated in
As illustrated in
As illustrated in
The first segment 23 and the second segment 24 extend in the same direction. The length of the first segment 23 is greater than that of the second segment 24, and correspondingly, the length of the first part of the embedding groove 14 for containing the first segment 23 is greater than that of the second part of the embedding groove 14 for containing the second segment 24. Thus, it is possible to not only simplify the structure of the housing 1, but also reduce the length of the second part of the embedding groove 14 for containing the second segment 24, thereby further improving the structural strength of the housing 1. Each connecting segment 25 includes the straight segment 251 and the transition segment 252. The first end of the straight segment 251 is connected with the first segment 23, and the extension direction of the straight segment 251 is perpendicular to the extension direction of the first segment 23. The first end of the transition segment 252 is connected with the second end of the straight segment 251, and the second end of the transition segment 252 is connected with the second segment 24. In the direction towards the interior of the insertion hole 13, the transition segment 252 is gradually inclined towards the central axis of the insertion hole 12.
As illustrated in
In the following, a method for manufacturing an earphone socket 100 according to embodiments of the present disclosure will be described with reference to
The earphone socket 100 includes a housing 1 and a sealing member 2 embedded on the outer surface of the housing 1. The housing 1 is provided with an insertion hole 13 having an open end. The sealing member 2 surrounds a periphery of the insertion hole 13. The method includes the following actions. In S10, an embedding groove 14 is machined in the housing and the sealing member 2 is embedded on the embedding groove 14; in S20, at least one embedding recess is made in the embedding groove 14, and the at least one embedding recess is in communication with the embedding groove 14; and in S30, the glue is filled in the embedding recess, and the glue is coagulated to form a glue portion, so as to fix the sealing member 2 on the housing 1.
With the method for manufacturing the earphone socket 100 according to embodiments of the present disclosure, the housing 1 and the sealing member 2 can be machined individually, and then the sealing member 2 is embedded in the embedding groove 14. The embedding recess in the housing 1 is filled with the glue to form the glue portion. The sealing member 2 is fixed on the outer surface of the housing 1 through the glue portion. This method can simplify the machining process of the housing 1 and the sealing member 2, thus reducing the cost.
A method for manufacturing the earphone socket 100 according to a specific embodiment of the present disclosure will be described with reference to
The earphone socket 100 includes the housing 1 and the sealing member 2. The housing 1 includes a second peripheral side wall 11 and a first peripheral side wall 12. The wall thickness of the first peripheral side wall 12 is greater than that of the second peripheral side wall 11, and the first peripheral side wall 12 and the second peripheral side wall 11 together define an insertion hole 13 with an opening port 131 at one end. The first peripheral side wall 12 and the second peripheral side wall 11 are arranged along a central axis of the insertion hole 13, and the opening port 131 is located in the second peripheral side wall 11. The sealing member 2 is embedded on an outer surface of the housing 1. The sealing member 2 surrounds the periphery of the opening port 131, and at least part of the sealing member 2 extends to the first peripheral side wall 12.
As illustrated in
When the sealing member 2 and the housing 1 are manufactured, the embedded portion 21 of the sealing member 2 is first embedded in the embedding groove 14; then the glue is filled in the embedding recess; the glue is coagulated to form the glue portion; the glue portion can fix the sealing member 2 on the housing 1. This method can simplify the machining process of the housing 1 and the sealing member 2, thus reducing the cost.
A mobile terminal 1000 according to embodiments of the present disclosure will be described with reference to
The mobile terminal 1000 according to embodiments of the present disclosure includes the earphone socket 100. By providing the earphone socket 100, it is possible to prevent the fluid (e.g. water) outside the mobile terminal 1000 from entering the mobile terminal 1000 along the outer surface of the housing 1 of the earphone socket 100, and hence avoid damaging the circuit board or the like inside the mobile terminal 1000, thus enhancing the operational reliability of the mobile terminal 1000. Furthermore, there is no need to increase the wall thickness of the second peripheral side wall 11 and form the sealing groove in the second peripheral side wall 11, so as to reduce the overall thickness of the earphone socket 100 and facilitate the light and thin design of the mobile terminal 1000. Moreover, it is possible enhance the structural strength of the housing 1, and improve the waterproof and dustproof reliability of the earphone socket 100.
In some embodiments of the present disclosure, the mobile terminal 1000 can be a mobile phone, a tablet computer, a notebook computer and so on.
Reference throughout this specification to “an embodiment”, “some embodiments”, “an example”, “a specific example” or “some examples” means that a particular feature, structure, material, or characteristic described in connection with the embodiment or example is included in at least one embodiment or example of the present disclosure. Thus, the appearances of the above phrases throughout this specification are not necessarily referring to the same embodiment or example of the present disclosure. Furthermore, the particular features, structures, materials, or characteristics can be combined in any suitable manner in one or more embodiments or examples. Moreover, different embodiments or examples as well as the features in the different embodiments or examples described in the specification can be combined or united by those skilled in the related art in the absence of contradictory circumstances.
Although embodiments of the present disclosure have been shown and illustrated, it shall be understood by those skilled in the art that the above embodiments are explanatory and cannot be construed to limit the present disclosure, and changes, modifications, alternatives and variants can be made in the embodiments without departing from the scope of the present disclosure.
Number | Date | Country | Kind |
---|---|---|---|
201610894343.6 | Oct 2016 | CN | national |
201621119915.5 | Oct 2016 | CN | national |