Mobile video system

Abstract
A mobile video system includes a first video source, a second video source, a first video monitor, a second video monitor, an audio signal receiver, and a wireless transmitter. One of the first video source and the second video source generates a first audiovisual signal. One of the first video monitor and the second video monitor receives a video portion of at least one of the first audiovisual signal and the second audiovisual signal. The wireless transmitter transmits an audio portion of one of the first audiovisual signal or the second audiovisual signal to the audio signal receiver. A video portion of the first audiovisual signal or the second audiovisual signal is displayed on the first video monitor, on the second video monitor, or on both the first video monitor and the second video monitor.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


This application relates to a mobile video system having more than one audiovisual source and more than one video monitor. More specifically, a mobile video system is provided that includes a wireless transmitter that transmits an audio portion of an audiovisual signal from an audiovisual source to a receiver, which may be a car radio.


2. Description of the Related Art


Audiovisual systems for vehicles have been commonplace aboard commercial aircraft and motor coaches for quite some time. Such systems have also been incorporated into automobiles. For example, U.S. Pat. No. 6,339,455 to Allan et al. discloses a digital video disc vehicle television mounted to the ceiling of an automobile. Similarly, U.S. Pat. No. 5,775,762 to Vitito discloses an overhead console having a flip-down monitor, where the console is mounted to the ceiling of an automobile.


The systems disclosed in U.S. Pat. Nos. 6,339,455 and 5,775,762, provide a TV monitor that is mounted to the ceiling of the automobile. Several passengers can watch the same program on the monitor simultaneously. While suitable for simultaneous viewing, passengers often have varying taste in entertainment and might, therefore, prefer to watch different programs. These systems, unfortunately, do not allow different passengers to select programming that suits them. This is a significant draw-back for one of the primary applications of such systems: occupying children during long road-trips. Children of different ages require different sorts of programming to maintain their interests. Accordingly, a child will not be distracted by programming that is not tailored to him or her.


Some of the systems designed for aircraft provide a unit associated with each seat (i.e., a viewer unit) that allow each passenger to select among a range of programs. However, hardwire connections are required between a device that transmits the programs (i.e., a program device) and the viewer unit. Thus, these systems require extensive wiring to interconnect the program device and the viewer unit. Moreover, because the systems require extensive wiring, as a practical matter, they can only be installed during manufacturing and cannot easily be after-market installed. Also, these systems generally only enable private listening of programs via headphones. While aircraft sometimes have overhead loudspeakers, these loudspeakers are generally not used for programs, but rather are reserved for announcements, e.g., safety instruction, arrival information, and customs procedures. Thus these systems relay the audio signal of the programs to passengers in only one way, through headphones.


SUMMARY OF THE INVENTION

In one embodiment, a mobile audiovisual system for a car is provided. The mobile audiovisual system includes a first video source, a second video source, a first video monitor, and a second video monitor. The mobile audiovisual system also includes a radio and a first wireless transmitter. The first video source generates a first audiovisual signal. The second video source that generates a second audiovisual signal. The first video monitor is adapted to be mounted to a first headrest of the car. The first video monitor is also adapted to receive a video portion of at least one of the first audiovisual signal and the second audiovisual signal. The second video monitor is adapted to be mounted to a second headrest of the car and to receive a video portion of at least one of the first audiovisual signal and the second audiovisual signal. The radio includes a loudspeaker and is adapted to be installed in the car. The first wireless transmitter transmits to the radio an audio portion of one of the first audiovisual signal or the second audiovisual signal. A video portion of either of the first audiovisual signal or the second audiovisual signal can be displayed on the first video monitor, on the second video monitor, or on both the first video monitor and the second video monitor.


In another embodiment, a mobile video system is provided that includes a car, a first video source, a second video source, a first video monitor, a second video monitor, a radio, and a first wireless transmitter. The car includes a passenger compartment and a first seat having a first headrest. The first seat is positioned in the passenger compartment. The first video source generates a first audiovisual signal. The second video source generates a second audiovisual signal. The first video monitor is mounted to the headrest of the first seat. The first video monitor receives a video portion of at least one of the first audiovisual signal and the second audiovisual signal. The second video monitor is mounted in the passenger compartment. The second video monitor receives a video portion of at least one of the first audiovisual signal and the second audiovisual signal. The radio includes a loudspeaker and is installed in the vehicle. The first wireless transmitter transmits an audio portion of one of the first audiovisual signal or the second audiovisual signal to the radio. A video portion of either of the first audiovisual signal or the second audiovisual signal can be displayed on the first video monitor, on the second video monitor, or on both the first video monitor and the second video monitor.


In another embodiment, a car-based mobile video system includes a car, a first video source, a second video source, a first video monitor, a second video monitor, a radio, and a first wireless transmitter. The car has a passenger compartment within which a first seat having a first headrest and a second seat having a second headrest are positioned. The first video source generates a first audiovisual signal. The second video source generates a second audiovisual signal. The first video monitor is mounted to the first headrest of the first seat. The first video monitor receives a video portion of at least one of the first audiovisual signal and the second audiovisual signal. The second video monitor is mounted to the second headrest of the second seat. The second video monitor is configured to receive a video portion of at least one of the first audiovisual signal and the second audiovisual signal. The radio includes a loudspeaker that is installed in the vehicle. The first wireless transmitter is configured to transmit an audio portion of one of the first audiovisual signal or the second audiovisual signal to the radio. A video portion of either of the first audiovisual signal or the second audiovisual signal can be displayed on the first video monitor, on the second video monitor, or on both the first video monitor and the second video monitor.


In another embodiment, a mobile video system includes a car, a first video source, a second video source, a first video monitor, a second video monitor, an audio signal receiver, and a first wireless transmitter. The car has a passenger compartment within which a first seat having a first headrest and a second seat having a second headrest are positioned. The first video source generates a first audiovisual signal. The second video source generates a second audiovisual signal. The first video monitor is mounted to the first headrest of the first seat. The first video monitor receives a video portion of at least one of the first audiovisual signal and the second audiovisual signal. The second video monitor is mounted to the second headrest of the second seat. The second video monitor is configured to receive a video portion of at least one of the first audiovisual signal and the second audiovisual signal. The first wireless transmitter is configured to transmit an audio portion of one of the first audiovisual signal or the second audiovisual signal to the audio signal receiver. A video portion of either of the first audiovisual signal or the second audiovisual signal can be displayed on the first video monitor, on the second video monitor, or on both the first video monitor and the second video monitor.





BRIEF DESCRIPTION OF THE DRAWINGS

These and other features, aspects and advantages of the present invention will be better understood with reference a preferred embodiment, which is illustrated in the accompanying drawings. The illustrated embodiment is merely exemplary and is not intended to define the outer limits of the scope of the present invention. The drawings of the illustrated arrangement comprise six figures.



FIG. 1 is a side elevation view of a car arranged and configured in accordance with certain features, aspects and advantages of the present invention.



FIG. 2 is a cross sectional view of the car of FIG. 1.



FIG. 3 is a schematic view of one embodiment of a mobile video system having a video monitor mounted in a headrest of a vehicle seat.



FIG. 4 is schematic view of the embodiment of FIG. 3, showing more details of the video monitor;



FIG. 5 is a cross-sectional view similar to that of FIG. 2, showing a car equipped with one embodiment of a dual-monitor mobile video system;



FIG. 6 is a schematic view of one embodiment of a dual monitor mobile video system;



FIG. 7 is a front elevation view of one embodiment of a headrest-mounted monitor, illustrating the monitor installed in a headrest of a vehicle seat;



FIG. 7A is a front elevation view of the headrest-mounted monitor of FIG. 7;



FIG. 8A is a left side elevation view of the screen structure of the headrest-mounted monitor of FIG. 7;



FIG. 8B is a rear elevation view of the screen structure of FIG. 8A;



FIG. 9A is a front elevation view of the housing of the headrest-mounted monitor of FIG. 7;



FIG. 9B is a left side elevation view of the housing of FIG. 9A;



FIG. 9C is a detail view of the second hinge portion of the housing of FIG. 9A;



FIG. 10 is a perspective view of the headrest-mounted monitor of FIG. 7, illustrating the screen structure pivoted outward from the housing;



FIG. 11A is a left side section view of the headrest-mounted monitor of FIG. 7, illustrating the screen structure in a storage position;



FIG. 11B is a left side section view of the headrest-mounted monitor of FIG. 7, illustrating the screen structure pivoted outward from the housing;



FIG. 12 is a perspective view of the bracket of the headrest-mounted monitor of FIG. 7;



FIG. 13A is a left side elevation view of the headrest-mounted monitor and headrest of FIG. 7, illustrating the screen structure in a storage position; and



FIG. 13B is a left side elevation view of the headrest-mounted monitor and headrest of FIG. 7, illustrating the screen structure pivoted outward from the housing.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

With reference now to FIGS. 1 and 2, a car featuring certain features, aspects and advantages of the present invention will be described. The car, indicated generally by the reference numeral 20, is an environment for which many features, aspects and advantages of the embodiments described herein have been specially adapted. As used herein “car” is a broad term and is used in its ordinary sense and refers, without limitation, to any personal land transportation vehicle, e.g., a passenger automobile, a truck, a van, a mini-van, a sport-utility vehicle, etc. Nevertheless, certain features, aspects and advantages of the embodiments described herein can be used with other vehicles.


The car 20 generally comprises a chassis (not shown) to which a body having a plurality of body panels 24 is attached. A passenger compartment 28 is defined by the body. A dashboard 30 preferably is positioned within the passenger compartment 28. The dashboard 30 usually is coupled with the chassis of the car 20 and houses several components of the car 20, e.g., a car radio 31. A first front seat 32 that includes a first headrest 36 is positioned within the passenger compartment 28. Preferably a second front seat 40 that includes a second headrest 44 is also positioned within the passenger compartment 28. One skilled in the art will appreciate that the headrests 36, 44 need not take any particular form. For example, in one embodiment, at least one of the headrests 36, 44 is detachably attached to the corresponding front seat 32, 40. In another embodiment, at least one of the headrests 36, 44 is integrally formed with the corresponding front seat 32, 40. In other words, the headrests 36, 44 can take many forms, generally providing the function of supporting a head of a passenger sitting in the front seats 32, 40. In some embodiments, the size of at least one of the headrests 36, 44 must be sufficient to house a video monitor, as discussed in more detail below.



FIGS. 2-4 show one embodiment of a mobile video system 48 that preferably is positioned in the car 20. The mobile video system 48 preferably includes a video source 52, a video monitor 56 and the radio 31. As discussed in more detail below, the mobile video system 48 provides wireless transmission of an audio portion of an audiovisual signal and a manually operated audio frequency selector, or manual actuator, that selects a wireless transmission frequency.


The video source 52 is also referred to herein as an “audiovisual source.” The terms “video source” and “audiovisual source” are broad terms that are used in their ordinary sense and refer, without limitation, to any device that generates an audiovisual signal that includes a video portion that can be processed to produce a video signal (e.g., to produce a visual image) and an audio portion that can be processed to produce an audio signal (e.g., sound at a level high enough to be heard by a human ear). For example, “video source” and “audiovisual source” are broad enough to cover a digital video-disc player, a video cassette player, a video-game console, and a computer that can generate audiovisual signals, etc. Thus, the video source 52 is described herein as generating or providing an audiovisual signal.


Video sources typically have a variety of jacks for interconnecting the sources with other components. For example, the sources may have output jacks to convey the audio portion of an audiovisual signal and may have output jacks to convey the video portion of an audiovisual signal. Video sources may also have output jacks to convey to other devices power or control signals, e.g., remote control signals. Video sources also may have input jacks to receive from other sources power, control signals, or other audiovisual signals.


The video source 52 advantageously can be positioned in a wide variety of locations in the car 20. In some embodiments, the video source 52 is preferably positioned within the passenger compartment 28 so as to be accessible while the car 20 is in motion. For example, the video source 52 is shown positioned beneath the front seat 32 in the embodiment illustrated by FIG. 2. In other embodiments, the video source 52 is positioned in the dashboard 30. It may be advantageous to position the video source 52 in a more secure location, such as in a storage compartment that is not accessible from the passenger compartment 28 (e.g., the trunk). Alternatively, in some cars, there may be sufficient overhead space in the passenger compartment 28 for the source 52 to be mounted overhead. One skilled in the art will appreciate that the source 52 could be housed in an overhead console (not shown). In some embodiments, more than one video source is provided. Such embodiments are discussed in connection with FIGS. 5 and 6.


The mobile video system 48 preferably also includes a set of input jacks 60. As discussed more fully below, a first audiovisual signal line 64 having an audio branch 64A and a video branch 64B interconnects the input jacks 60 and the video monitor 56. In one embodiment, the first video source 52 connects to the set of input jacks 60 through a series of signal lines. For example, a remote sensor signal line 68 that is connected to the first video source 52 is received by a first remote sensor jack 72. Preferably, a video signal line 76 interconnects the video source 52 and a primary video signal jack 80. In the illustrated embodiment, a secondary video signal jack 88 is provided which can receive a signal line connected to a second video source. A left-side audio signal line 92 has a first branch 92A and a second branch 92B. The first branch 92A of the left-side audio signal line 92 interconnects the video source 52 and a left-side audio signal jack 96. A right-side audio signal line 100 has a first branch 100A and a second branch 100B. The first branch 100A of the right-side audio signal line 100 interconnects the first video source 52 and a right-side audio signal jack 104.


As discussed above, the mobile video system 48 provides wireless transmission of audio signals. Preferably the mobile video system 48 includes at least one wireless transmitter. In one embodiment a primary wireless transmitter 108 is provided that is coupled with the video monitor 56 via a signal line 112. As is discussed more fully below, the signal line 112 may be capable of conveying at least one input command from a passenger that may include directing the transmitter 108 to switch from one frequency to another frequency. In the illustrated embodiment, the primary wireless transmitter 108 and the video source 52 also are connected via the audio signal lines 92, 100. In particular, the second branch 92B of the left-side audio signal line 92 interconnects the video source 52 and the primary wireless transmitter 108 and the second branch 100B of the right-side audio signal line 100 interconnects the video source 52 and the primary wireless transmitter 108. Other embodiments with a single connection between the primary wireless transmitter 108 and the video source 52 can also be provided.


Wireless transmission in the mobile video system 48 is indicated by the arrow 120. Wireless transmission of the audio signals advantageously eliminates the need for extensive installation of wiring in the car 20 to physically connect the source 52 and the radio 31. This is particularly advantageous for after-market installation of the mobile video system 48. The primary wireless transmitter 108 preferably can employ any radio frequency transmission method that is compatible with the receiver 116, e.g., amplitude modulation transmission, short-wave transmission, etc. In one embodiment, the primary wireless transmitter 108 comprises a frequency modulation (FM) transmitter that transmits audio signals in a wireless manner to at least one audio signal receiver 116. FM transmission is particularly advantageous because it produces higher quality sound reproduction than other transmission techniques, e.g., amplitude modulation transmission.


The audio signal receiver 116 is a factory or a permanently installed radio in one embodiment, e.g. the car radio 31, and is a portable radio within the vehicle in another embodiment. In one embodiment, the audio signal receiver 116 provides audio signals to at least one loudspeaker, or speaker 124 to be audibly reproduced for one or more passengers in the car 20. Thus, a group of listeners can enjoy the audio signals generated by the audiovisual source 52. In another embodiment, the at least one audio signal receiver 116 comprises two sets of headphones that include speakers for private listening by a single passenger. As discussed more fully below, at least one set of headphones can also be provided to receive audio signals from a secondary audio signal transmitter.


One embodiment of the video monitor 56 is shown in more detail in FIG. 4. The embodiment illustrated in FIG. 4 is particularly suited for mounting in a headrest of a vehicle seat. In other embodiments, the video monitor 56 can be configured to be suspended from the ceiling of the vehicle. Details of the construction of such a system are set forth in U.S. Pat. No. 6,409,242, the entire contents of which is hereby expressly incorporated herein and made a part of this specification. The video monitor 56 illustrated in FIG. 4 includes a screen structure 128 that is pivotally attached to a housing 132. Both the housing 132 and an outer casing of the screen structure 128 are preferably constructed of a high-strength plastic, so that the video monitor 56 is lightweight and durable. The housing 132 is configured to be embedded in a headrest, e.g., the independently moveable headrest 36. In particular, the housing 132 is embedded in a rear-facing surface 136 of the headrest 36 (See FIG. 3). The housing 132 preferably defines a cavity that receives the screen structure 128. The cavity is substantially the same size and shape as the screen structure 128, such that when the screen structure 128 is stored, a front face 140 of the screen structure 128 is substantially flush with an outer surface 144 of the housing 132, which is in turn substantially flush with the rear-facing surface 136 of the headrest 36. The video monitor 56 thus preferably protrudes only minimally or not at all from the headrest 36.


The video monitor 56 may be adapted to be adjustably mounted to the headrest 36. For example, in one embodiment, an angular orientation of the video monitor 56 relative to the headrest 36 is adjustable without moving the headrest 36. More details various embodiments of a video monitor 56 that is configured to be mounted to a headrest are set forth herein in connection with FIGS. 7-13B, and may be found in U.S. application Ser. No. 10/219,987, filed Aug. 13, 2002, which is hereby expressly incorporated by reference herein in its entirety and made a part of this specification.


In one embodiment, the video monitor 56 also includes a secondary wireless transmitter 148. Preferably, the secondary wireless transmitter 148 transmits an audio portion of an audiovisual signal to at least one secondary receiver 150. In the embodiment illustrated in FIG. 4, the at least one secondary receiver 150 comprises two sets of headphones. Thus, in this embodiment, the at least one secondary receiver 150 comprises two personal speaker systems. The secondary wireless transmitter 148 advantageously transmits the audio portion of an audiovisual signal. Arrows 149 indicate that the transmission from the transmitter 148 to the at least one secondary receiver 150 is wireless. The transmitter 148 can operate on any desirable frequency range. In one embodiment, the secondary wireless transmitter 148 is an FM transmitter. FM transmitters advantageously do not require a line-of-sight connection between the secondary wireless transmitter 148 and the secondary receiver 150. In another embodiment, the secondary wireless transmitter 148 comprises an infrared transmitter. Infrared audio signal transmitters advantageously do not transmit in a band that can be received by the radio 31 and therefore they will not interfere with reception by the radio 31. One type of infrared transmitter that can be used comprises four light emitting diodes (LEDs). In one embodiment the infrared transmitter 148 operates at about 2.3 MHz or at about 2.8 MHz. In another embodiment the infrared audio signal transmitter 148 operates at about 3.2 MHz or at about 3.8 MHz. In one embodiment, the transmitter 148 transmits audio signals in stereo at 2.3 MHz, at 2.8 MHz, or at both 2.3 MHz and 2.8 MHz. One skilled in the art will recognize that other frequencies could also be used for such transmissions. By including the secondary wireless transmitter 148 and the receiver 150, one or more passengers can enjoy a movie or a video game while other passengers listen to the same movie or video game on the radio 31. This enables the passenger listening on the headphones to not be disturbed if other passengers listening on the radio 31 choose to listen to a broadcast radio station.


Because many environments in which the mobile video system 48 will be used receive broadcasts at many radio frequencies, interference between these prevailing radio signals and those generated by the primary wireless transmitter 108 sometimes will occur. This interference can render the audio signal unlistenable. Thus, the mobile video system 48 advantageously includes a manually operated audio frequency selector, or manual actuator 156. The manual actuator 156 selects a transmission frequency upon which the primary wireless transmitter 108 transmits the audio portion of an audiovisual signal. In one embodiment, the manual actuator 156 comprises a push-button that is wired to the primary wireless transmitter 108 and that is operable by a passenger within the car 20. In one embodiment, the manual actuator 156 also provides an on/off signal to the video monitor 56.


Preferably, the manual actuator 156 is at least partially positioned within the housing 132 for the video monitor 56. In one embodiment, the manual actuator 156 is provided in a cluster of manual controls 158 located on the housing 132. By positioning the manual actuator 156 within the housing 132 for the video monitor 56, the number of components that need to be separately installed is reduced, which also reduces installation cost and complexity. In another embodiment, the manual actuator 156 comprises a remote control device. The remote control manual actuator 156 advantageously allows passengers sitting in a variety of seats throughout the vehicle to move the frequency of transmission as needed. As will be understood by one skilled in the art, a remote control device can be a self-contained device that can be moved around within the passenger compartment 28, or can be a control panel affixed to a location within the passenger compartment, but remotely located from the video monitor 56.


Preferably the mobile video system 48 also includes an audio frequency indicator 160 that provides a visual signal regarding the frequency of transmission selected by the manual actuator 156. For example, as shown in FIG. 4, the audio frequency indicator 160 comprises a plurality of LEDs that are energized to indicate the frequency of transmission selected by the manual actuator 156. The audio frequency indicator 160 informs at least one passenger which frequency is being used by the primary wireless transmitter 108 and, therefore, which frequency to tune the audio receiver 116 to in order to receive the audio transmission. The audio frequency indicator 160 thus enables the passenger to very quickly tune the receiver 116 to the indicated frequency.


In one embodiment, the audio frequency indicator 160 is positioned within the housing 132 of the video monitor 56, e.g., as one portion of the manual controls 158. By positioning the audio frequency indicator 160 in the housing 132, the indicator 160 is desirably visible to the passengers who are able to view the monitor so that the audio signal receiver 116 can be tuned to the selected frequency. Also, by positioning the audio frequency indicator 160 in the housing 132, the number of components to be separately installed is reduced, as is the cost of the installation. Of course, the audio frequency indicator 160 could be located elsewhere, so long it can be conveniently read by a passenger. For example, it may be advantageous in some embodiments to position the audio frequency indicator 160 near the radio 31 so that a passenger in the front seat near the radio 31 can switch the radio 31 to the selected frequency. In another embodiment, the audio frequency indicator 160 is positioned on a remote control device, e.g., a remote control audio frequency selector. Providing the audio frequency indicator 160 on a remote control device advantageously reduces installation cost where the remote control is not connected to the passenger compartment 28. Also, where the remote control device is not connected to the passenger compartment 28, any passenger seated anywhere in the vehicle can see the audio frequency indicator 160. In another embodiment, the audio frequency indicator 160 is located in a separate housing that is located within the passenger compartment 28, e.g., near the radio 31.


In one embodiment, the manual actuator 156 is a power/select button that switches the mobile video system 48 on and off if held in for an extended time. However, once the mobile video system 48 is turned on, brief actuation of the manual actuator 156 causes the frequency of transmission of the primary wireless transmitter 108 to be altered. In one embodiment, the brief actuation of the manual actuator 156 causes a signal to be conveyed to the wireless transmitter 108 via the signal line 112.


The manual actuator 156 and the audio frequency indicator 160, where used together, provide great advantages to the mobile video system 48. For example, these components enable a passenger to sense the degrading quality of audio signal reception at the receiver 116. This degrading quality can cause some or all of the audio signal to be obscured. Thus, as the signal degrades, the passenger can manually actuate the actuator 156, thus causing the frequency of transmission to be altered. In one embodiment, three preset transmission frequencies are provided. The passenger manually actuates the actuator 156 to move the frequency of transmission from one of the three preset frequencies to another of the preset frequencies. The audio frequency indicator 160 indicates which frequency has been thereby selected and indicates, therefore, to which frequency the passenger should tune the receive 116. Thus, three known frequencies are provided to which the receiver 116 can be tuned.


This arrangement advantageously enables the passengers to move from a frequency to another frequency preemptively. On a familiar drive (e.g., a daily commute), a passenger may become aware of a first area where, at a first frequency band, interference causes the audio signal to become obscured, i.e., degrades the audio signal from listenable to unlistenable. The passenger may also know that at a second frequency band interference is not present when the car is in the first area, and therefore the audio signal would not become obscured. A little farther along the drive, the car might enter a second area known by the passenger to be subject to interference at the second frequency band. The passenger may also know that at a third frequency band, interference is not present in the second area. Accordingly, the prior to entering the first area, the transmitter 108 may be set to transmit to the receiver 116 at the first preset frequency band. Because the passenger is aware of the impending interference in the second area, the passenger can actuate the manual actuator 156 just prior to entering the second area to cause the transmission frequency band to move from the first preset frequency band to the second preset frequency band. Also, the receiver 116 may have a button that automatically causes the receiver 116 to receive signals at the same second preset frequency band (e.g., a radio station preset buttons). Then, just prior to entering the second area, the passenger can again actuate the manual actuator 156 to cause the band of frequency transmission to move from the second preset frequency to the third preset frequency band. As discussed above, the receiver 116 can be automatically switched to the third preset frequency, e.g., using a radio station preset button. Thus, one advantage of the mobile video system 48 is that it enable passengers to preemptively switch transmission frequency of the transmitter 108 to prevent any substantial amount of audio signal loss during a familiar car trip. If the passenger had to turn a dial or in any other hunt for an available frequency, the passenger would either have to pause the playback of the audiovisual signal or completely miss a portion of the signal.


Another embodiment is illustrated by FIGS. 5 and 6, wherein at least two video sources and two video monitors are provided. The system below is similar to that described above, and the details described above should be considered to supplement the discussion of the following embodiment.


Referring to FIG. 5, a car 220 includes a first seat 232 and a second seat 236. The first seat 232 comprises a first headrest 240 and the second seat comprises a second headrest 244. The car 220 also includes a mobile audiovisual system 248 that includes a first video source 252 and a second video source 254. The video sources 252, 254 are similar to the source 52 discussed above. Although this embodiment shows two sources, there can of course be more than two as well.


The mobile video system 248 preferably also includes a first set of input jacks 262, a second set of input jacks 264, a first video monitor 258, and a second video monitor 260. A first audiovisual signal line 266 that has an audio branch 266A and a video branch 266B is provided to interconnect the input jacks 262 and the first video monitor 258. A second audiovisual signal line 268 having an audio branch 268A and a video branch 268B is provided to interconnect the input jacks 264 and the second video monitor 260.


In one embodiment, the first video source 252 connects to the input jacks 262, 264 through a series of signal lines. For example, a remote sensor signal line 272 that is connected to the first video source 252 is received by a first remote sensor jack 274. Preferably, a first video signal line 276 is connected to the first video source 252. The first video signal line 276 includes a first branch 276A and a second branch 276B. The first branch 276A of the first video signal line 276 is received by a first primary video signal jack 280. A second video signal line 284 is connected to the second video source 254. The second video signal line 284 includes a first branch 284A and a second branch 284B. The first branch 284A is received by a first secondary video signal jack 288. A first right-side audio signal line 292 that is connected to the first video source 252 includes a first branch 292A and a second branch 292B. The first branch 292A of the first right-side audio signal line 292 is received by a first right-side audio signal jack 296. A first left-side audio signal line 300 that is connected to the first video source 252 includes a first branch 300A and a second branch 300B. The first branch 300A is received by a first left-side audio signal jack 304.


In one embodiment, the second video source 254 connects to the input jacks 262, 264 through a series of signal lines. For example, a remote sensor signal line 308 that is connected to the second video source 254 is received by a second remote sensor jack 312. Preferably, the second branch 284B of the second video signal line 284 is received by a second secondary video signal jack 316. The second branch 276B of the first video signal line 276 preferably is received by a second primary video signal jack 320. A second right-side audio signal line 324 that is connected to the second video source 254 includes a first branch 324A and a second branch 324B. The first branch 324A of the first right-side audio signal line 324 is received by a second right-side audio signal jack 328. A second left-side audio signal line 332 that is connected to the second video source 254 includes a first branch 332A and a second branch 332B. The first branch 328A is received by a second left-side audio signal jack 336.


The mobile video system 248 also advantageously includes a plurality of wireless transmitters. In one embodiment a first primary wireless transmitter 340 and a second primary wireless transmitter 344 are provided. In one embodiment, the second branch 292B of the first right-side audio signal line 292 is coupled with the first primary wireless transmitter 340. Preferably, the second branch 300B of the first left-side audio signal line 300 is coupled with the first primary wireless transmitter 340. In one embodiment, the first primary wireless transmitter 340 is also coupled with the first video monitor 258, e.g., via a signal line 348. Like the signal line 112, the signal line 348 may be capable of conveying at least one input command from a passenger that may include directing the transmitter to switch from one frequency to another frequency.


The second primary wireless transmitter 344 is similarly coupled with the second video source 254. In particular, the second branch 332B of the second left-side audio signal line 332 and the second branch 324B of the first right-side audio signal line 324 are coupled with the second primary wireless transmitter 344. In one embodiment, the second primary wireless transmitter 344 is also coupled with the second video monitor 260, e.g., via a signal line 364. As with the signal line 348, the signal line 364 may be capable of conveying at least one input command from the user.


The primary wireless transmitters 340, 344 are configured to transmit an audio portion of an audiovisual signal generated by the first source 252 and the second source 254 respectively in the manner described above. Thus, in one embodiment, the wireless transmitters 340, 344 transmit the audio portion of the audiovisual signals to at least one audio signal receiver 352. Wireless transmission is indicated by the arrow 356. As discussed above, in connection with the receiver 116, the receiver 352 preferably is connected to at least one loudspeaker 360.


In one embodiment, the first video monitor 258 includes a first secondary wireless transmitter 380 and the second video monitor 260 includes a second secondary wireless transmitter 384. The transmitters 380, 384 may operate in a fashion similar to the wireless transmitter 148, discussed above. Each of the first secondary wireless transmitter 380 and the second secondary wireless transmitter 384 can desirably transmit audio signals to one or more sets of headphones 388. The wireless transmission to the sets of headphones 388 is indicated by the arrows 392. As discussed above in connection with the transmitter 148, the transmitters 380, 384 can be an infrared transmitters, or any other suitable transmitter.


In addition to the advantages discussed above in connection with the audiovisual system 48, the audiovisual system 248 provides a great deal of flexibility in passenger entertainment. For example, the audiovisual system 248 advantageously allows one passenger to watch a movie generated by one of the audiovisual sources 252, 254 on one of the video monitors 258, 260, while another passenger watches a different movie generated by a different audiovisual source on the other of the video monitors 258, 260. Or, while one passenger watches a movie on one of the video monitors 258, 260, another passenger can play a video game using a different audiovisual source, with the video signal of the video game being displayed on the other of the video monitors 258, 260. Numerous combinations of audiovisual signals that can be flexibly displayed on the video monitors 258, 260 are possible. The audiovisual system 248 is also flexible in that audio signals can be conveyed thereby in the two modes (e.g., FM wireless and IR wireless, in one embodiment) as described above in connection with the audiovisual system 48.


The audiovisual system 248 allows one passenger to listen privately on headphones to a movie, a video game, or another audiovisual signal, while the other passengers listen together over the vehicle radio or other FM receiver to the audio signal of another movie, another video game, or another audiovisual source. By providing multiple headphones 388, two or more passengers can listen privately to the audio signal generated by one audiovisual source, while one or more other passengers listen collectively to the audio signal generated by another audiovisual source and provided to the speakers 360.


In the embodiment illustrated in FIG. 6, two primary wireless transmitters are provided that can communicate with the audio signal receiver 352, namely the first primary wireless transmitter 340 and the second primary wireless transmitter 344. In another embodiment, a mobile video system can be provided that includes two video sources and one primary wireless transmitter that is associated with only one of the two video source. In this embodiment, the source with which the primary wireless transmitter is associated will be the source used for group viewing. The other source will be capable of transmitting to headphones for private listening. Of course, the source associated with the primary wireless transmitter can also comprise a secondary wireless transmitter that transmits to headphones for private listening.


Advantageously, the audiovisual system 248 can provide flexible entertainment, as discussed above, without requiring a separate switching unit. Accordingly, the audiovisual system 248 costs less to manufacture and to install and also is easier to install.



FIG. 7 illustrates another embodiment of a monitor 410 disposed within a headrest 412. The headrest 412 is mounted to a vehicle seatback 414, and is movable independently of the seatback 414 toward and away from the seatback 414. The monitor 410 preferably faces a rear of the vehicle so that images displayed on the monitor 410 are visible to passengers seated behind the seatback 414. Features of the monitor 410, which are described in detail below, reduce the risk of injury to passengers presented by the monitor 410, and enable the monitor 410 to be mounted in the very limited space available within a typical vehicle headrest 412.


As shown in FIGS. 10, 11A and 11B, the monitor 410 includes a screen structure 416 that is pivotably attached to a housing 418. Both the housing 418 and an outer casing of the screen structure 416 are preferably constructed of a high-strength plastic, so that the monitor 410 is lightweight and durable. The housing 418, which is embedded in the headrest 412 as shown in FIGS. 7, 13A and 13B, includes a cavity 420 (FIGS. 9, 10, and 11B) defining a storage space for the screen structure 416. The cavity 420 is substantially the same size and shape as the screen structure 416, such that when the screen structure 416 is in the storage position of FIGS. 11A and 13A, a front face 422 of the screen structure 416 is substantially flush with an outer surface 424 of the housing 418, which is in turn substantially flush with a surface 425 of the headrest 412 (FIG. 13A). The monitor 410 thus preferably protrudes only minimally or not at all from the headrest 412.


In the illustrated embodiment, the screen structure 416 includes a front portion 426 (FIGS. 8A and 8B) that is a substantially rectangular parallelepiped, and a rear portion 428 that tapers inward from the front portion 426 toward a rear face 430. Each of the left and right faces 432, 434 of the screen structure 416 includes a first hinge portion 436 adjacent a top face 438 of the screen structure 416. Each hinge portion 436 comprises a substantially flat bar 440 defining a plane that is parallel to a side faces 432, 434 of the screen structure 416. The bar 440 is pivotably secured at a first end 442 to the side faces 432, 434 of the screen structure 416, such that the bar 440 is pivotable in the plane defined by the bar 440. The first hinge portions 436 cooperate with second hinge portions 444 (FIGS. 9A-9C) on the housing 418 to pivotably secure the screen structure 416 to the housing 418, as described in detail below. The illustrated first hinge portions 436 are preferred, because they simplify the assembly of the monitor 410, as explained below. However, those of skill in the art will appreciate that a variety of alternate hinge constructions could be used and still achieve a number of advantages of the present monitor 410.


The front surface 422 of the screen structure 416 (FIG. 7A) includes a viewing screen 446 that displays images to passengers. As shown in FIGS. 8A and 8B, the screen structure 416 includes an input cable 448 for receiving an input signal to control the images displayed on the viewing screen 446. A first end 450 of the cable preferably includes a multi-pin connector 452 that enables a variety of input devices to selectively communicate with the monitor 410.


The monitor 410 further includes a plurality of controls for determining characteristics of the displayed images. For example, one control preferably enables power to be selectively applied to the monitor 410. Other controls preferably enable a viewer to select between various input sources for the monitor 410, such as a television tuner, a DVD player, a video game system, etc. Other controls preferably enable adjustment of qualities of the screen images, such as brightness, sharpness, contrast, etc.


In the illustrated embodiment, a first cluster of manual controls 454 is located on the front face 422 of the screen structure 416, and a second cluster of manual controls 456 is located on the outer surface 424 of the housing 418 adjacent the screen structure 416. The front face 422 of the screen structure 416 further includes an infrared sensor 458 for receiving signals from a handheld wireless remote control unit (not shown). Those of skill in the art will appreciate that all controls may be located on the screen structure 416, or all controls may be located on the housing 418. Alternatively, the monitor 410 may include no integrated manual controls, such that the monitor 410 is controllable using only a handheld wired or wireless remote control unit.


An interior of the screen structure 416 preferably includes at least one speaker 459 that produces audible sounds that accompany the images displayed on the screen 446. At least one of the controls 454, 456 on the monitor 410 or on an optional remote control unit preferably enables adjustment of a volume level produced by the at least one speaker 459. The rear face 430 of the screen structure 416, shown in FIG. 8B, includes apertures 460 that enable sounds produced by the speaker 459 to be heard clearly by passengers. Those of skill in the art will appreciate that the apertures 460 are not necessary to achieve many advantages of the present monitor 410.


Those of skill in the art will also appreciate that the monitor 410 need not include a speaker 459. The monitor 410 could, for example, be connected to the vehicle's sound system such that sounds from the monitor 410 are produced by speakers mounted in the vehicle's interior. However, front seat passengers, who are not in a position to view the images on the monitor 410, may wish to listen to, for example, a radio broadcast through the vehicle's sound system. Therefore, providing at least one speaker 459 in the monitor 410 enables rear seat passengers to listen to sounds produced by the monitor 410, and front seat passengers to listen to sounds produced by the vehicle's sound system. To eliminate any dissonance created by two sources of different sounds, the monitor 410 could also include a headphone jack so that only backseat passengers wearing headphones can hear sounds produced by the monitor 410.


As shown in FIGS. 9A-9C, 11A, and 11B, front edges of the housing 418 extend outward and backward, thus creating a rim 462 around the cavity 420 having a front face 464 and side faces 466, 468, 470, 472 that are substantially parallel to side faces of the cavity 420. The rim 462 increases the rigidity of the housing 418 without substantially increasing its weight or volume. In the illustrated embodiment, a portion of the front face 464 of the rim 462 adjacent a lower right edge 468 of the housing 418 includes a plurality of apertures 474. The apertures 474 are adapted to house controls, such as buttons or knobs, for adjusting various aspects of the monitor 410, as described above. Those of skill in the art will appreciate that the apertures 474 are not necessary to achieve all the advantages of the monitor 410, since controls may be mounted on the screen structure 416 or on a remote control unit.


A floor 476 of the cavity 420 preferably includes a plurality of apertures 478 (FIG. 9A) that cooperate with mounting hardware, such as screws, to secure the housing 418 to the headrest 412. The floor 476 preferably also includes an aperture 480 of sufficient size to allow the input cable 448 to pass through the floor 476 without interference. A top surface 482, bottom surface 484 and opposing side surfaces 486 extend upward from the floor 476. The floor 476 protects the monitor 410 and the headrest 412 during use.


Adjacent the top surface 482, each side surface 486 of the cavity 420 includes a second hinge portion 444 (FIGS. 9A-9C) that cooperates with one of the first hinge portions 436 on the screen structure 416 to pivotably secure the screen structure 416 to the housing 418. Each second hinge portion 444 comprises a slot having a width substantially equal to a thickness of the bar 440 of the first hinge portion 436. The bar 440 is thus slidable within the slot. With the bar 440 disposed within the slot, a position and orientation of the bar 440 is fixed relative to the housing 418. However, because the bar 440 is rotatable with respect to the screen structure 416, the screen structure 416 is pivotable with respect to the housing 418.


A tab 488 within the slot cooperates with an aperture 490 (FIG. 8A) on the bar 440 to lock the bar 440 within the slot. The tab 488 is cantilevered and attached to a side edge 492 of the floor 476 of the cavity 420. The tab 488 includes a forward facing tapered portion 494 (FIG. 9C) that terminates in a ledge 96 that is perpendicular to a longitudinal axis of the tab 488 and faces away from the rim 462. As the bar 440 is inserted within the slot, the bar 440 slides along the outside of the tab 488, and the bar 440 urges the tab 488 inward due to interengagement of the bar 440 with the tapered surface 494. As a leading edge 498 (FIG. 8A) of the bar 440 reaches a rear end of the slot, the tab 488 snaps into position within the aperture 490 of the bar 440. The ledge 496 abuts an edge of the aperture 490, thus locking the bar 440 within the slot and securing the screen structure 416 to the housing 418. The present monitor 410 is thus easy to assemble. The bars 440 are simply inserted into the slots until the tabs 488 lock into place within the apertures 490.


While the illustrated second hinge portions 444 are preferred for their ease of assembly together with the illustrated first hinge portions 436, those of skill in the art will appreciate that the illustrated second hinge portions 444 are merely exemplary. A variety of alternate hinge constructions could be used to achieve many advantages of the present monitor 410.


Preferably, the first and second hinge portions 436, 444 are located near an upper edge 438, 482 of the screen structure 416 and housing 418, respectively. The upper edge 438 of the screen structure 416 thus remains substantially fixed with respect to the housing 418, while a lower edge 500 of the screen structure 416 is capable of protruding substantially from the front face 422 of the housing 418, as shown in FIG. 11B. Preferably, a finger catch 502 (FIGS. 8A, 8B, 11A and 11B) extends downward from the lower edge 500 of the screen structure 416. The finger catch 502 provides a convenient surface against which a viewer may place his or her fingers to rotate the screen structure 416 with respect to the housing 418. Preferably, the lower edge 470 of the housing includes a cut out portion 504 (FIGS. 9A and 10) so that a viewer can reach behind the finger catch 502 to pull the screen structure 416 outward from the stowed position of FIG. 11A.


Advantageously, as the screen structure 416 pivots from the stowed position of FIG. 11A to the position of FIG. 11B, no portion of the rear face 430 of the screen structure 416 moves toward the floor 476 of the cavity 420. The floor 476 thus defines a limit for the monitor 410. No portion of the monitor 410, including the screen structure 416, extends beyond the floor 476 into the headrest 412. Thus, the overall monitor 410 occupies relatively little depth of the headrest 412, because the depth occupied by the monitor 410 corresponds roughly to the thickness of the screen structure 416.


With prior art monitors, such as the monitors disclosed in U.S. Pat. No. 5,267,775 to Nguyen, U.S. Pat. No. 5,507,556 to Dixon, and U.S. Pat. No. 5,842,715 to Jones, additional depth beyond the thickness of the screen structure would be required within a headrest to accommodate these monitors. As the screen structures of these monitors pivot from the stowed position to a viewing position, an upper edge of the screen structure would move backward into the headrest. This configuration is disadvantageous because limited space is available within a headrest.


The function of a headrest is to provide padding for comfort and safety. Thus, a headrest must comprise at least a minimum amount of padding. When a monitor is added to a headrest, padding is displaced. The padding may be eliminated entirely, but such elimination makes the headrest less comfortable and less safe. Alternatively, the padding may be retained but moved elsewhere within the headrest. Disadvantageously, this option makes the headrest larger. If the headrest is made wider, the extra width obstructs a larger portion of the driver's view. If instead the headrest is made deeper, (extends farther into rear passenger area) the portion of the headrest that protrudes into the rear passenger area presents an obstacle to rear seat passengers. Therefore, a headrest-mounted monitor desirably occupies minimal space.


Besides defining a thickness of the present monitor 410, the housing 418 also provides a self-contained casing for the monitor 410. The housing 418 thus protects the monitor 410 from impacts, for example. The housing 418 also facilitates installation and removal of the monitor 410. To exchange one monitor 410 for another, for example if the first monitor 410 is defective, the housing 418 and all of the components within the housing are easily removed from the headrest 412. A new monitor 410 is then easily installed by inserting the housing 418 of the new monitor 410 into the headrest 412.


As shown in FIGS. 10, 11A, and 11B, the monitor 410 includes a bracket 506 that limits a range of pivot of the screen structure 416 relative to the housing 418. The shape of the bracket 506, illustrated in FIG. 12, preferably resembles a straight wire 508 with an attached pair of L-shaped wires 510. Of course, the bracket 506 may be produced by many different processes such that the straight wire 508 and L-shaped wires 510 comprise one piece, or separate pieces attached to one another.


All three wires 508, 510, 510 are coplanar, and both L-shaped wires 510 extend from the straight wire 508 in the same direction. The upright portion 512 of each L-shaped wire 510 is substantially perpendicular to the straight wire 508, and the base portion 514 of each L-shaped wire 510 is substantially parallel to the straight wire 508. Further, the base portions 514 of each L-shaped wire 510 extend toward each other, and include a small gap 516 between their ends. The upright portions 512 of the L-shaped wires 510 are attached to the straight wire 508 such that opposite end portions of the straight wire 508, comprising posts 518, extend beyond the attachment points of the L-shaped wires 510.


The base portions 514 of the L-shaped wires 510, which define a first end 524 of the bracket 506, are pivotably retained within a tube 520 (FIGS. 9A, 10 and 11A-11B) on the floor 476 of the cavity 420. The tube 520 defines a first pivot opening and a second pivot opening. The posts 518 of the straight wire 508, which define a second end 526 of the bracket 506, are slidably retained within a channel 522 on the rear face 430 of the screen structure 416, as shown in FIGS. 8B, 11A and 11B. In the stowed position shown in FIG. 11A, the bracket 506 is substantially parallel to the rear face 430 of the screen structure 416. As the screen structure 416 pivots outward from the cavity 420, the base portions 514 of the L-shaped wires 510 pivot within the tube 520 and the posts 518 slide downward within the channel 522. As FIG. 11B illustrates, the posts 518 eventually reach a lower end of the channel 522, defining a maximum angle of the screen structure 416 relative to the housing 418.


Preferably, the hinges 436, 444 that pivotably connect the screen structure 416 to the housing 418 are self tensioning. Thus, the hinges 436, 444 retain the screen structure 416 in the position of FIG. 11B, and in any position in between the positions of FIG. 11A and FIG. 11B. A viewer can thus position the screen structure 416 anywhere between the limits of rotation to enjoy the optimum viewing angle. For example, the optimum viewing angle often depends upon the position of the sun. Glare from sunlight interferes with the viewer's ability to see images on the screen. Thus, the viewer can orient the screen structure 416 such that glare from sunlight is minimized. Furthermore, as the vehicle travels, its position and orientation with respect to the sun are continuously changing. At one moment, there may be little or no glare on the screen 446, and the next moment the vehicle may round a corner and suddenly there is a substantial glare on the screen 446. Because the present monitor 410 is positionable in a wide range of viewing angles, the monitor 410 enables the viewer to continuously adjust the angle of the screen structure 416 to avoid sun glare occasioned by variations in the vehicle's position and/or orientation with respect to the sun.


The present monitor 410 advantageously collapses toward the storage position (FIGS. 11A and 13A) when a force F is applied to the front surface 422 of the screen structure 416 as shown in FIGS. 11B and 13B. This feature is especially advantageous when a vehicle in which the monitor 410 is installed collides with another vehicle or brakes suddenly, for example. In these situations, a passenger seated behind the monitor 410 is often thrown forward, and may collide with the monitor 410. If the monitor 410 does not quickly collapse upon contact, the monitor 410 could injure the passenger.


As shown in FIG. 11B, the bracket 506 limits the rotation of the screen structure 416 relative to the housing 418. The length of the bracket 506 is fixed, and the first end 524 of the bracket 506 is constrained against translation. Therefore, a maximum angle that the screen structure 416 can be rotated from the stowed position of FIG. 11A coincides with a configuration wherein a longitudinal axis of the bracket 506 is perpendicular to the rear face 430 of the screen structure 416. In such a configuration, a force applied perpendicularly to the front face of the screen structure 416, such as the force F in Figure 11B, would not have a component that acts on the bracket second end 526 in a direction parallel to the channel 522 and perpendicular to the bracket 506. Instead, the entire magnitude of the force would act in a direction parallel to the bracket 506, and would not cause the bracket second end 526 to slide upward within the channel 522, thus rotating the bracket 506 about its first end. In such a configuration, the bracket 506 would prevent the screen structure 416 from rotating back toward the storage configuration of FIG. 11A. The screen structure 416 would thus pose a danger to a passenger colliding with it, as in a crash or a sudden stop.


However, as explained above and illustrated in FIG. 11B, a lower end of the channel 522 in the rear face 430 of the screen structure 416 limits the travel of the bracket 506 within the channel 522 and prevents the bracket 506 from reaching the configuration wherein the bracket 506 is perpendicular to the rear face 430 of the screen structure 416. As shown in FIG. 11B, the maximum angle α between the bracket 506 and the rear face 430 of the screen structure 416 is preferably about 80°, and more preferably about 75°. In this configuration, the force F applied perpendicularly to the front face 422 of the screen structure 416 has a component that acts parallel to the channel 522, and a component that acts perpendicularly to the bracket 506. These force components cause the bracket second end 526 to translate upward within the channel 522, causing the bracket 506 to rotate about its first end 524 as the screen structure 416 collapses toward the storage configuration of FIG. 11A. The bracket 506 thus diminishes the injury-causing potential of the monitor 410 by enabling the screen structure 416 to pivot safely out of the way when a passenger collides with it.


Although the present invention has been described in terms of certain preferred embodiments, other embodiments apparent to those of ordinary skill in the art also are within the scope of this invention. Thus, various changes and modifications may be made without departing from the spirit and scope of the invention. Moreover, not all of the features, aspects and advantages are necessarily required to practice the present invention. Accordingly, the scope of the present invention is intended to be defined only by the claims that follow.

Claims
  • 1. A mobile video system comprising: a motorized land vehicle comprising a passenger compartment, a seat having a headrest, the seat positioned in the passenger compartment;a first video source that generates a first audiovisual signal;a second video source that generates a second audiovisual signal;a first video monitor configured to receive a video portion of at least one of the first audiovisual signal and the second audiovisual signal, the first video monitor comprising: a screen structure defining a first hinge portion and including a viewing screen;a housing sized and shaped to be substantially positioned within the headrest, the housing at least partially defining a floor, a first wall and a second wall which cooperate to at least partially form a storage cavity adapted to receive the screen structure, the floor having an aperture formed therein, the housing further comprising a second hinge portion adapted to cooperate with the first hinge portion of the screen structure, wherein the first hinge portion and the second hinge portion cooperate to permit rotation about an axis but prevent radial movement with respect to the axis; anda removable fastening member configured to be advanced through the aperture of the housing and to be coupled with the headrest to secure the video monitor thereto;wherein the first and second hinge portions cooperate to pivotably secure the screen structure to the housing such that when the screen structure is pivoted outward from the housing to a non-viewing angle, access is provided to the second fastener, wherein the second fastener is hidden from view during normal usage of the video monitor; anda second video monitor mounted in the passenger compartment, the second video monitor configured to receive a video portion of at least one of the first audiovisual signal and the second audiovisual signal;whereby a video portion of either of the first audiovisual signal or the second audiovisual signal can be displayed on the first video monitor, on the second video monitor, or on both the first video monitor and the second video monitor.
  • 2. The mobile video system of claim 1, further comprising a radio that includes a loudspeaker and that is installed in the vehicle.
  • 3. The mobile video system of claim 2, further comprising a first wireless transmitter configured to transmit an audio portion of one of the first audiovisual signal or the second audiovisual signal to the radio.
RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 10/361,897, filed Feb. 7, 2003, which claims the benefit of U.S. Provisional Patent Application No. 60/435,810, filed Dec. 20, 2002, and which also claims the benefit of U.S. Provisional Patent Application Ser. No. 60/421,936, filed Oct. 28, 2002, the entire contents of all of which are hereby expressly incorporated by reference.

US Referenced Citations (301)
Number Name Date Kind
3019050 Spielman Jan 1962 A
3284041 Tjaden Nov 1966 A
3737184 Swartz Jun 1973 A
3773378 Lewis Nov 1973 A
3944020 Brown Mar 1976 A
D246037 Kelly Oct 1977 S
D247234 Stewart Feb 1978 S
4079987 Bumgardener Mar 1978 A
4100372 Hypolite Jul 1978 A
4101159 Stewart Jul 1978 A
4241870 Marcus Dec 1980 A
4281577 Middleton Aug 1981 A
D260507 Kosugi et al. Sep 1981 S
D264969 McGourty Jun 1982 S
4352200 Oxman Sep 1982 A
4394055 Smith Jul 1983 A
4440443 Nordskog Apr 1984 A
D280312 Simeri et al. Aug 1985 S
D282251 Isham et al. Jan 1986 S
D282733 Giavazzi et al. Feb 1986 S
4584603 Harrison Apr 1986 A
D285684 Akita et al. Sep 1986 S
4630821 Greenwald Dec 1986 A
4635110 Weinblatt Jan 1987 A
4647980 Steventon et al. Mar 1987 A
4669694 Malick Jun 1987 A
4681366 Lobanoff Jul 1987 A
4756528 Umashankar Jul 1988 A
4758047 Hennington Jul 1988 A
4792183 Townsend, III Dec 1988 A
4797934 Hufnagel Jan 1989 A
4818010 Dillon Apr 1989 A
4824159 Fluharty et al. Apr 1989 A
4833727 Calvet et al. May 1989 A
4843477 Mizutani et al. Jun 1989 A
4867498 Delphia et al. Sep 1989 A
4870676 Lewo Sep 1989 A
4950842 Menninga Aug 1990 A
RE33423 Lobanoff Nov 1990 E
4982996 Vottero-Fin et al. Jan 1991 A
4983951 Igarashi et al. Jan 1991 A
5040990 Suman et al. Aug 1991 A
D320587 Kapp et al. Oct 1991 S
5061996 Schiffman Oct 1991 A
5096271 Portman Mar 1992 A
5109572 Park May 1992 A
5145128 Umeda Sep 1992 A
5163870 Cooper Nov 1992 A
5177616 Riday Jan 1993 A
5188421 Arseneault Feb 1993 A
5192301 Kamiya et al. Mar 1993 A
5214514 Haberkern May 1993 A
D338003 Nakayama Aug 1993 S
D340016 Falcoff Oct 1993 S
5267775 Nguyen Dec 1993 A
5303970 Young et al. Apr 1994 A
5311302 Berry et al. May 1994 A
D349893 Bennett Aug 1994 S
5338081 Young et al. Aug 1994 A
5359349 Jambor et al. Oct 1994 A
5396340 Ishii et al. Mar 1995 A
5467106 Salomon Nov 1995 A
5469298 Suman et al. Nov 1995 A
5507556 Dixon Apr 1996 A
5522638 Falcoff et al. Jun 1996 A
5529265 Sakurai Jun 1996 A
D371357 Nakamura Jul 1996 S
5547248 Marechal Aug 1996 A
5555466 Scribner et al. Sep 1996 A
5583735 Pease et al. Dec 1996 A
5636891 Van Order et al. Jun 1997 A
5696861 Schimmeyer et al. Dec 1997 A
5705860 Ninh et al. Jan 1998 A
5709360 Rosen Jan 1998 A
D390219 Rosen Feb 1998 S
5713633 Lu Feb 1998 A
D394432 Rosen May 1998 S
5775762 Vitito Jul 1998 A
5808862 Robbins Sep 1998 A
5811791 Portman Sep 1998 A
D399200 Rosen Oct 1998 S
5822023 Suman et al. Oct 1998 A
5823599 Gray Oct 1998 A
5842715 Jones Dec 1998 A
5847685 Otsuki Dec 1998 A
D410458 Rosen Jun 1999 S
D410464 Hakoda Jun 1999 S
5910882 Burrell Jun 1999 A
5927784 Vitito Jul 1999 A
5940120 Frankhouse et al. Aug 1999 A
5946055 Rosen Aug 1999 A
D413856 Scribner Sep 1999 S
5959596 McCarten et al. Sep 1999 A
5982429 Kamamoto et al. Nov 1999 A
5984347 Blanc-Rosset Nov 1999 A
5996954 Rosen et al. Dec 1999 A
5997091 Rech et al. Dec 1999 A
6007036 Rosen Dec 1999 A
6055478 Heron Apr 2000 A
6056248 Ma May 2000 A
6059255 Rosen et al. May 2000 A
6081420 Kim et al. Jun 2000 A
6092705 Matt Jul 2000 A
6093039 Lord Jul 2000 A
6097448 Perkins Aug 2000 A
6115086 Rosen Sep 2000 A
6124902 Rosen Sep 2000 A
6125030 Mola et al. Sep 2000 A
D432586 Galli-Zugaro et al. Oct 2000 S
6135801 Helot et al. Oct 2000 A
D434400 Rosen Nov 2000 S
6157418 Rosen Dec 2000 A
6179263 Rosen et al. Jan 2001 B1
6181387 Rosen Jan 2001 B1
D437837 Harrison et al. Feb 2001 S
6186459 Ma Feb 2001 B1
6195438 Yumoto et al. Feb 2001 B1
D438853 Lino Mar 2001 S
6199810 Wu et al. Mar 2001 B1
6216927 Meritt Apr 2001 B1
6219927 Westermaier Apr 2001 B1
6231371 Helot May 2001 B1
6246449 Rosen Jun 2001 B1
6250967 Chu Jun 2001 B1
6256837 Lan et al. Jul 2001 B1
6267428 Baldas et al. Jul 2001 B1
D446507 Rosen et al. Aug 2001 S
6275376 Moon Aug 2001 B1
6292236 Rosen Sep 2001 B1
6304173 Pala et al. Oct 2001 B2
D450667 Scribner Nov 2001 S
6339455 Allan et al. Jan 2002 B1
6339696 Chan et al. Jan 2002 B1
6361012 Chang Mar 2002 B1
6363204 Johnson et al. Mar 2002 B1
D456371 Lavelle et al. Apr 2002 S
6364390 Finneman Apr 2002 B1
6380978 Adams Apr 2002 B1
6381133 Chen Apr 2002 B1
D457506 Scribner May 2002 S
6394551 Beukema May 2002 B1
6404622 Chen Jun 2002 B1
6409242 Chang Jun 2002 B1
6412848 Ceccanese et al. Jul 2002 B1
D461850 Hussaini et al. Aug 2002 S
D462670 Kasuga et al. Sep 2002 S
6446925 Wada Sep 2002 B1
6466278 Harrison et al. Oct 2002 B1
D465492 Scribner Nov 2002 S
D467234 Scribner Dec 2002 S
6510049 Rosen Jan 2003 B2
6522368 Tuccinardi et al. Feb 2003 B1
6532152 White et al. Mar 2003 B1
6532592 Shintani et al. Mar 2003 B1
6549416 Sterner et al. Apr 2003 B2
6557812 Kutzehr et al. May 2003 B2
6619605 Lambert Sep 2003 B2
6668407 Reitzel Dec 2003 B1
6669285 Park et al. Dec 2003 B1
6678892 Lavelle et al. Jan 2004 B1
6688407 Etter et al. Feb 2004 B2
6695376 Hirano Feb 2004 B1
6698832 Boudinot Mar 2004 B2
6719343 Emerling et al. Apr 2004 B2
6739654 Shen et al. May 2004 B1
D502152 Peng Feb 2005 S
6871356 Chang Mar 2005 B2
6883870 Jost Apr 2005 B2
6899365 Lavelle et al. May 2005 B2
D510330 Peng Oct 2005 S
D511332 Vitito Nov 2005 S
7019794 Norvell et al. Mar 2006 B2
7036879 Chang May 2006 B2
7040697 Tuccinardi et al. May 2006 B1
7040698 Park et al. May 2006 B2
7066544 Tseng Jun 2006 B2
7084932 Mathias et al. Aug 2006 B1
7095608 Simmons et al. Aug 2006 B2
7149078 Schedivy Dec 2006 B2
7184259 Marler et al. Feb 2007 B2
7201354 Lee Apr 2007 B1
7201356 Huang Apr 2007 B2
7218360 Schedivy May 2007 B2
7219942 Schedivy May 2007 B2
7245274 Schedivy Jul 2007 B2
7267402 Chang Sep 2007 B2
7315729 Schedevy Jan 2008 B2
7327225 Nicholas et al. Feb 2008 B2
7333009 Schedivy Feb 2008 B2
7334243 Chengalva et al. Feb 2008 B2
D564974 Berg et al. Mar 2008 S
7352355 Troxell et al. Apr 2008 B2
7354091 Lavelle et al. Apr 2008 B2
7360833 Vitito Apr 2008 B2
7379125 Chang May 2008 B2
7440275 Schedivy Oct 2008 B2
7448679 Chang Nov 2008 B2
7460187 Schedivy Dec 2008 B2
D592647 L'Henaff et al. May 2009 S
D592648 L'Henaff et al. May 2009 S
D592649 L'Henaff et al. May 2009 S
7548413 Schedivy et al. Jun 2009 B2
20010001319 Beckert et al. May 2001 A1
20010055071 Kawai Dec 2001 A1
20020005917 Rosen Jan 2002 A1
20020085129 Kitazawa Jul 2002 A1
20020105507 Tranchina et al. Aug 2002 A1
20020113451 Chang Aug 2002 A1
20020149708 Nagata et al. Oct 2002 A1
20020186531 Pokharna et al. Dec 2002 A1
20030020840 Hays et al. Jan 2003 A1
20030025367 Boudinot Feb 2003 A1
20030036357 McGowan Feb 2003 A1
20030112585 Silvester Jun 2003 A1
20030128183 Chang Jul 2003 A1
20030137584 Norvell et al. Jul 2003 A1
20030140352 Kim Jul 2003 A1
20030202005 Sadahiro Oct 2003 A1
20030222848 Solomon et al. Dec 2003 A1
20040007906 Park et al. Jan 2004 A1
20040032543 Chang Feb 2004 A1
20040080213 Chang Apr 2004 A1
20040083491 Chang Apr 2004 A1
20040085337 Barrows May 2004 A1
20040085485 Schedivy May 2004 A1
20040085718 Imsand May 2004 A1
20040086259 Schedivy May 2004 A1
20040125549 Iredale Jul 2004 A1
20040130616 Tseng Jul 2004 A1
20040160096 Boudinot Aug 2004 A1
20040212745 Chang Oct 2004 A1
20040212957 Schedivy Oct 2004 A1
20040227372 Lavelle et al. Nov 2004 A1
20040227695 Schedivy Nov 2004 A1
20040227696 Schedivy Nov 2004 A1
20040227861 Schedivy Nov 2004 A1
20050005298 Tranchina Jan 2005 A1
20050020320 Lavelle et al. Jan 2005 A1
20050024356 Lavelle et al. Feb 2005 A1
20050052046 Lavelle et al. Mar 2005 A1
20050066369 Chang Mar 2005 A1
20050098593 Schedivy May 2005 A1
20050099042 Vitito May 2005 A1
20050099495 Vitito May 2005 A1
20050099547 Vitito May 2005 A1
20050099548 Vitito May 2005 A1
20050102697 Vitito May 2005 A1
20050110313 Vitito et al. May 2005 A1
20050110913 Vitito May 2005 A1
20050122670 Oh Jun 2005 A1
20050132407 Boyer, Jr. et al. Jun 2005 A1
20050155068 Chang Jul 2005 A1
20050166238 Vitito Jul 2005 A1
20050174498 Wu Aug 2005 A1
20050200697 Schedivy Sep 2005 A1
20050223406 Vitito Oct 2005 A1
20050232585 Lavelle et al. Oct 2005 A1
20050235326 Vitito Oct 2005 A1
20050235327 Vitito Oct 2005 A1
20050242636 Vitito Nov 2005 A1
20050242637 Vitito Nov 2005 A1
20050242638 Vitito Nov 2005 A1
20050249357 Schedivy Nov 2005 A1
20050251833 Schedivy Nov 2005 A1
20060023412 Schedivy Feb 2006 A1
20060034040 Simmons et al. Feb 2006 A1
20060047426 Vitito Mar 2006 A1
20060070102 Vitito Mar 2006 A1
20060070103 Vitito Mar 2006 A1
20060097537 Schedivy May 2006 A1
20060112144 Ireton May 2006 A1
20060119151 Vitito Jun 2006 A1
20060125295 Schedivy Jun 2006 A1
20060128303 Schedivy Jun 2006 A1
20060218595 Chang Sep 2006 A1
20060227212 Schedivy Oct 2006 A1
20060236345 Schedivy Oct 2006 A1
20060238529 Lavelle et al. Oct 2006 A1
20070001492 Chang Jan 2007 A1
20070001493 Chang Jan 2007 A1
20070008094 Schedivy Jan 2007 A1
20070052618 Shalam Mar 2007 A1
20070057541 Huang Mar 2007 A1
20070070259 Schedivy Mar 2007 A1
20070091015 Lavelle et al. Apr 2007 A1
20070096517 Chang May 2007 A1
20070096518 Chang May 2007 A1
20070097210 Chang May 2007 A1
20070101372 Chang May 2007 A1
20070105444 Macholz May 2007 A1
20070108788 Shalam et al. May 2007 A1
20070164609 Shalam et al. Jul 2007 A1
20080067842 Chang Mar 2008 A1
20080093956 Maxson Apr 2008 A1
20080165293 Tranchina Jul 2008 A1
20080191505 Schedivy Aug 2008 A1
20080246319 Chang Oct 2008 A1
20080246320 Chang Oct 2008 A1
20080252118 Chang Oct 2008 A1
20090013357 Cassellia et al. Jan 2009 A1
20090021036 Chang Jan 2009 A1
Foreign Referenced Citations (51)
Number Date Country
2506484 Aug 2002 CN
3316818 Nov 1984 DE
3721377 Jun 1989 DE
4118711 Oct 1992 DE
19943696 Mar 2001 DE
19943696 Mar 2001 DE
0 784 400 Jul 1997 EP
2817812 Dec 2000 FR
2829980 Sep 2001 FR
2276059 Mar 1994 GB
58-128942 Aug 1983 JP
61-161151 Oct 1986 JP
1-94048 Apr 1989 JP
2-17777 Feb 1990 JP
2-144242 Jun 1990 JP
2-158437 Jun 1990 JP
3-10476 Jan 1991 JP
3-8513 Mar 1991 JP
3-189620 Aug 1991 JP
3-45875 Sep 1991 JP
3-122482 Dec 1991 JP
4-5142 Jan 1992 JP
4-201639 Jul 1992 JP
5-38981 Feb 1993 JP
5-50883 Mar 1993 JP
5-97098 Apr 1993 JP
6-57251 Aug 1994 JP
7-8680 Feb 1995 JP
9-224202 Aug 1997 JP
10-75389 Mar 1998 JP
2001-047921 Feb 2001 JP
2001-256768 Sep 2001 JP
2001-354074 Dec 2001 JP
2001-354074 Dec 2001 JP
2004-25949 Jan 2004 JP
2004-81385 Mar 2004 JP
2004-231158 Aug 2004 JP
2004-231159 Aug 2004 JP
2004-529688 Sep 2004 JP
2005-503904 Feb 2005 JP
2005-525856 Sep 2005 JP
2005-532224 Oct 2005 JP
63872 Jun 1999 SE
63912 Jun 1999 SE
63913 Jun 1999 SE
WO 0038951 Jul 2000 WO
WO 02074577 Sep 2002 WO
WO 03029050 Sep 2002 WO
WO 0301885 Jan 2003 WO
WO 2004005077 Jan 2004 WO
WO 2005038628 Apr 2005 WO
Related Publications (1)
Number Date Country
20050066369 A1 Mar 2005 US
Provisional Applications (2)
Number Date Country
60435810 Dec 2002 US
60421936 Oct 2002 US
Continuations (1)
Number Date Country
Parent 10361897 Feb 2003 US
Child 10985262 US