The following disclosure relates generally to water heaters, and more particularly to mobile water heaters having multiple burners and multiple flame tubes or heating coils.
Direct contact water heaters can be used in industrial applications to heat large volumes of water for various applications. These water heaters can come in various configurations and sizes that produce varying volumes of hot water. Generally, the larger the size of the water heater, the larger the volume of hot water that can be produced. In many applications, water heaters are permanently installed in a particular location, and the size of the water heater may not be critical. However, several industrial applications require hot water in a variety of locations that may change over a period of time. For example, drilling and/or mining operations are often conducted over a large area or at different sites over a period of time. These applications can require very large volumes of hot water, but cannot utilize a permanently installed and immobile large water heater. Adapting existing high volume direct contact water heaters to a mobile platform is not practical because the size of the mobile platform would prevent its use on most roadways.
The following disclosure describes several embodiments of mobile direct contact water heaters having multiple burners and multiple flame tubes. Several of the embodiments described below include features or advantages that overcome the limitations of existing water heaters. However, reference throughout this specification to features, advantages, or similar language does not imply that all of the features and advantages that may be realized with the present invention should be or are in any single embodiment of the invention. Rather, language referring to the features and advantages is understood to mean that a specific feature, advantage, or characteristic described in connection with an embodiment is included in at least one embodiment of the present invention. Thus, discussion of the features and advantages, and similar language, throughout this specification may, but do not necessarily, refer to the same embodiment.
Furthermore, the described features, advantages, and characteristics of the invention may be combined in any suitable manner in one or more embodiments. One skilled in the relevant art will recognize that the invention can be practiced without one or more of the specific features or advantages of a particular embodiment. In other instances, additional features and advantages may be recognized in certain embodiments that may not be present in all embodiments of the invention. Additionally, in the following description of various embodiments of the present invention, numerous specific details are set forth in order to provide a thorough understanding of embodiments of the present invention. In other instances, well known components, methods and procedures have not been described so as not to unnecessarily obscure aspects of the embodiments of the present invention.
The features and advantages of the present invention will become more fully apparent from the following description, or may be learned by the practice of the invention as set forth hereinafter. In order that the advantages of the invention will be readily understood, a description of the invention will be rendered by reference to specific embodiments that are illustrated in the appended drawings. Understanding that these drawings depict only typical embodiments of the invention and are not therefore to be considered to be limiting of its scope, the invention will be described and explained with reference to the accompanying drawings.
As discussed above, larger direct contact water heaters generally produce larger volumes of hot water. Accordingly, for several high volume applications requiring mobile hot water production, large mobile hot water heaters would be beneficial. However, in the United States, the maximum height allowed on roadways is regulated at the State level. The maximum vehicle height to ensure travel within all states is 4.1 meters (13.5 feet). The maximum overall vehicle width permitted to travel on the National Network of highways is regulated at the Federal level and is limited to 2.6 meters (102 inches). Accordingly, the dimensions of the heating system 100 and the water heater 102 must be within these limits to ensure travel on the National Network of highways. In the illustrated embodiment of
In the illustrated embodiment, the oval-cylindrical shape of the water heater 102 provides space within the shell 210 for the two flame tubes 308 to be positioned side by side. In other embodiments, the water heater 102 can be constructed in a variety of shapes and can have additional burner stacks 206 and flame tubes 308. For example, the water heater 102 can be cylindrical, an elliptic cylinder, or can be a rectangular cuboid and can contain three or more burner stacks 206 and corresponding flame tubes 308. The shape of the water heater 102 and the number of flame tubes 308 and burner stacks 206 can be selected to increase the thermal efficiency and capacity of the water heater 102.
In the illustrated embodiment, the vaporization coil 804 extends from the fuel inlet 808, under the base 809, and through a series of coils 813 forming a cylinder within the base 809. The coils 813 can extend around an internal surface of the annular base 809, with each successive coil positioned on top of the preceding coil. From the coils 813, the vaporization coil 804 extends through a hole 811 in a sidewall portion of the base 809 to the fuel outlet 810. In one embodiment, the vaporizer assembly 802 can be positioned within a flame tube in a manner at least generally similar to the vaporization coil 514 described above with respect to
In some embodiments, a plurality of individual vaporization coils can be connected to form a larger vaporization coil.
Although the illustrated embodiment of
The illustrated embodiment of
In operation, the water heater 102 can burn LPG from the fuel tank 104 to heat water from a water source (not shown). Referring to
In embodiments having high efficiency burners, such as the burners 1016 of
In embodiments having flame tubes 308 constructed from rolled metal or other solid material, the combustion gases exit the lower end of the flame tubes 308 and pass into the water reservoir 220. The combustion gases then rise through the shell 210, further heating the pall rings 506 and the flame tubes 308, and then exit through the exhaust vents 204. In embodiments having wire mesh flame tubes 308, the combustion gases can also pass through the wire mesh along the length of the flame tubes 308 and proceed through the pall rings 506. As discussed above, the diffusers 1009 can be positioned in the exhaust vents 204. The diffusers 1009 can reduce the amount of free moisture that is carried by the exhaust out of the shell 210, thereby increasing the efficiency of the mobile water heating system 100. Additionally, the vent assembly 1002 can further reduce the amount of free moisture carried by the exhaust. In embodiments having the vent assembly 1002, the exhaust exits the shell 210 through the diffusers 1009 and enters the interior 1003 of the enclosure 1004. The exhaust passes through the media (e.g., pall rings) within the enclosure 1004 and exits through the cover screen 1006. As the exhaust passes through the enclosure 1004, moisture in the exhaust condenses on the media and returns to the shell 210 through the exhaust vents 204 and/or the diffusers 1009. The removal of this additional moisture from the exhaust further increases the efficiency of the mobile water heating system 100.
The pumped water enters the manifold 312, 402, 412 or 414 through the inlet 208 and is sprayed out of the nozzles 406. The water is sprayed onto the heated pall rings 506 and/or the flame tubes 308 and heat from the pall rings 506 and/or the flame tubes 308 is transferred to the water. In some embodiments, the water can be sprayed onto the pall rings 506 without being sprayed directly onto the flame tubes 308. For example, in some embodiments the nozzles 406 can be positioned and/or shaped to direct a spray pattern of water onto the pall rings 506 without spraying water directly onto the flame tubes 308. In other embodiments, the nozzles 406 can be positioned and/or shaped to spray water directly onto the pall rings 506 and directly onto the flame tubes 308. In yet other embodiments, the nozzles 406 can be positioned and/or shaped to spray water directly onto the flame tubes 308 without spraying water directly onto the pall rings 506. The heated water travels downwardly through the shell 210 under the force of gravity and can undergo further heating through additional contact with the heated pall rings 506 and/or the flame tubes 308. Additionally, the combustion gases and/or the flames can provide direct heating of the water as the water travels through the shell 210. Without wishing to be bound by theory, it is believed that in some embodiments the pall rings 506 can act to slow and disperse the water as it passes through the shell 210, thereby providing increased heating of the water by the combustion gases and/or the flames. The heated water passes through the shell 210 and falls through openings in the screen 304 into the water reservoir 220. The flame and combustion gases from the flame tubes 308 are directed downwardly into contact with the heated water in the reservoir 220, providing additional heating. The heated water in the reservoir 220 can be dispensed or pumped through an outlet (not shown) and directed through a series of hoses or pipes to a desired location.
The water heater 1302 can operate in a manner at least generally similar to the water heater 102 described above. For example, LPG can be directed to the inlets 1306 of the vaporization coils 1304. The LPG can be converted to gaseous propane within the vaporization coils 1304 and directed through the outlets 1308 to the burners 1016. The burners 1016 can burn the gaseous propane and direct the flame and resulting combustion gases downwardly through the heating coils 1200. Water can be directed to the manifold 412 and through the tubes 1202 of the heating coils 1200, as described above. The flame and the combustion gases can heat the heating coils 1200, resulting in heating of the water traveling through the heating coils 1200. The heated water can exit the heating coils 1200 through the outlets 1206 and be directed into the water reservoir 220. The water traveling through the heating coils 1200 can cool the heating coils 1200. Additionally, water from the manifold 412 can be sprayed from the nozzles 406 and travel downwardly through the pall rings 506. The nozzles 406 can be positioned to direct the water uniformly, or at least approximately uniformly, over the top of the pall rings 506. In the illustrated embodiment, the nozzles 406 are positioned to direct a spray pattern of water onto the pall rings 506 without spraying water directly onto the heating coils 1200. In other embodiments, the nozzles 406 can be positioned to spray water onto the pall rings 506 and the heating coils 1200, or just onto the heating coils 1200. The combustion gases and heated air can exit the lower end 1205 of the heating coils 1200 and travel upwardly, heating the water traveling downwardly through the pall rings 506. Accordingly, the water in the reservoir 220 can include water that has been heated as it travels through the tubes 1202 of the heating coils 1200, as well as water that has been heated as it travels downwardly through the pall rings 506. Furthermore, the flame and the combustion gases can be directed downwardly through the heating coils 1200 into the water reservoir 220, further heating the water in the water reservoir 220. Although the term “heating coil” is used herein to refer to the heating coils 1200, flame directors in accordance with the present technology, including the heating coils 1200, can also be referred to as flame tubes.
A variety of control systems, computers, electrical devices, mechanical devices, electromechanical devices, and other suitable components can be employed in embodiments in accordance with the present technology. In several embodiments combinations of engines, generators, pumps, motors, valves, solenoids, sensors, electronic control circuits, controllers, converters, drivers, logic circuitry, control panels, displays, input/output (I/O) interfaces, connectors or ports, personal computers (PCs), computer readable media, software, and/or other components are operably connected to the water heater 102 to control or engage in various operations. For example,
A controller, e.g., a programmable logic controller 1410, can be coupled to a variety of components to control the operations of the water heater 102. For example, in the illustrated embodiment, the controller 1410 receives power from the distribution system 1408 and is electrically coupled to: the blowers 106 (second blower 106b not visible); the burners 1016 (second burner 1016b not visible); an inlet pump or first pump 1416a and an outlet pump or second pump 1416b (collectively, the pumps 1416); a pneumatic water inlet valve 1418; a pneumatic water outlet valve 1417; a pneumatic trim valve 1419; a water level sensor 1422; pneumatic pilot valves 1428 (only one visible in
The power distribution system 1408 can provide power to components of the water heating system 1400, including components that are electrically coupled to the controller 1410, as illustrated in
In operation, an operator can control the water heater 102 via either of the control panels 1412. The control panels 1412 can graphically display the condition of various components and/or of various operating parameters, e.g., pump status (on or off), valve status (open, closed, or trim position), burner status (off, pilot, mid-burn, or full-burn), inlet water temperature, outlet water temperature, temperature difference (e.g., outlet temperature minus inlet temperature), and flow rate (barrels of water per minute). The operator can start the engine 1402 and engage the hydraulic pump 1404 to provide power to the power distribution system 1408 and the air system 1414. The inlet pump 1416a can be coupled to a water source 1420 via hoses 1434 and a filter 1432. The filter 1432 can remove debris and/or contamination from the water to improve the efficiency and operation of the water heater 102. In one embodiment, the operator can open the inlet valve 1418 and start the inlet pump 1416a in the manual mode of operation. The inlet pump 1416a pumps water into the water heater 102 and the control panel indicates a rising water level via signals from the water level sensor 1422. When the water level reaches a predetermined level, the operator can put the system into automatic water level control and the controller 1410 can maintain the water level within a suitable range. For example, in automatic mode, the controller 1410 can open the outlet valve 1417, start the outlet pump 1416b and adjust the position of the trim valve 1419 to direct water out the discharge outlet 1430. When the water level drops below a predetermined lower limit, the controller 1410 can position the trim valve 1419 to restrict the flow, and when the water level rises above a predetermined upper limit, the controller 1410 can position the trim valve 1419 in a fully open position to increase the outflow.
A variety of suitable parameters can be used to initiate automatic shutdowns and/or other functions to provide safe operation or other control features. For example, in one embodiment, the level sensor 1422 can provide a signal to temporarily shut down the water heater 102 in the event the water level rises above a predetermined limit, or falls below a predetermined limit. In some embodiments, the burners 1016 and/or the controller 1410 can include computer readable instructions that instruct a delayed opening of the fuel valves and/or delays of other ignition sequence events until a predetermined amount of time has passed. For example, in one embodiment, the burners 1016 delay ignition until the blowers 106 have operated for at least 30 seconds to purge any combustible gases within the shell 210. The blowers 106 can provide various amounts of airflow during the purging of the shell 210. In one embodiment, the blowers 210 provide 3400 cubic feet per minute of airflow during purging.
An ignition sequence for the water heating system 1400 can include opening of the pilot valves 1428 and operation of igniters within the burners 1016. The burners 1016 can include sensors to determine if an ignition was successful, and if so, a signal can be sent to open the mid-burn valves 1429. Fuel flow through the mid-burn valves 1429 can produce sufficient flames to heat the vaporization coils 1304 (
The water heater 102 and the associated components illustrated in the Figures are illustrative of several embodiments of the present technology. In other embodiments, additional and/or fewer components can be included in a variety of suitable configurations. Additionally, in order to not obscure the present technology, well-known components are omitted and/or not set forth in detail in the Figures. For example, several embodiments can include regulators, pressure sensors, flow meters, switches, additional fuel valves, and/or other components.
Without being bound by any particular theory, it is believed that the multiple flame tubes 308, multiple heating coils 1200, multiple burners 512 and/or the oval-cylindrical shape of the water heaters 102, 1302 provide for a more efficient heating of the water. These features, alone or in combination with other features, can provide large volume hot water production in a mobile design of a size that permits transport on most roads. Accordingly, hot water heaters configured in accordance with the embodiments of the present disclosure can provide large volume mobile hot water production that can be used in a variety of suitable applications. Additionally, the heating coils 1200 described above can provide for lower noise generation when compared to heating systems of other designs. Again, without being bound by theory, it is believed that the shape of the heating coils 1200 can reduce noise production by providing multiple surfaces of varying angles for sound to reflect from. For example, the coiled tubular shape of the heating coil 1200 includes multiple coils of the metal tube 1202, each of which provides surfaces that can reflect the sound generated by the burners 1016.
Furthermore, existing heating solutions typically provide water temperature increases of 50-60 degrees Fahrenheit and water flow of approximately 250 gallons per minute. Several embodiments in accordance with the present technology can produce water temperature increases of from about 75 degrees to about 85 degrees Fahrenheit, with flow rates of about 450 gallons per minute. For example, in one embodiment, the water heater 102 can heat water from an inlet temperature of 40 degrees Fahrenheit to an outlet temperature of 125 degrees Fahrenheit with a flow rate of 450 gallons per minute. In other embodiments, higher or lower flow rates or ranges of temperature increases can be achieved, depending on the design characteristics of the particular embodiment. Additionally, existing water heating solutions often employ open heating chambers that utilize closed flow-through pipes to heat water. The open heat chambers can produce large amounts of heat and present a significant fire hazard. Embodiments in accordance with the present technology can heat water within an internal volume of a shell that is bathed in water. This can reduce the risk of fires and provide significant advantages in locations that may present fire dangers (e.g., oil and gas exploration or drilling sites).
From the foregoing, it will be appreciated that specific embodiments of the invention have been described herein for purposes of illustration, but that various modifications may be made without deviating from the spirit and scope of the various embodiments of the invention. For example, the water heaters disclosed herein can be constructed in various shapes and sizes, and can include differing numbers of flame tubes, heating coils and burners. Additionally, any of the embodiments shown or described herein may be combined with each other as the context permits. Accordingly, the invention is not limited except as by the appended claims.
The present application claims priority to the following U.S. Provisional Applications: Application No. 61/681,587, filed on Aug. 9, 2012, and entitled “MOBILE WATER HEATING APPARATUS;” Application No. 61/656,951, filed on Jun. 7, 2012, and entitled “MOBILE WATER HEATING APPARATUS:” Application No. 61/613,449, filed on Mar. 20, 2012, and entitled “MOBILE WATER HEATING APPARATUS:” and Application No. 61/564,988, filed on Nov. 30, 2011, and entitled “WATER HEATING APPARATUS,” each of which is incorporated herein by reference its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1522120 | Halder | Jan 1925 | A |
1527740 | Lipshitz | Feb 1925 | A |
1886448 | Smith et al. | Nov 1932 | A |
2410900 | Radbill | Nov 1946 | A |
2486141 | Follo | Oct 1949 | A |
2645463 | Stearns | Jul 1953 | A |
2892509 | Baker et al. | Jun 1959 | A |
2969451 | Logan | Jan 1961 | A |
2987061 | Huber | Jun 1961 | A |
3232336 | Leslie et al. | Feb 1966 | A |
3331366 | Sullivan | Jul 1967 | A |
3581822 | Cornelius | Jun 1971 | A |
3601099 | Vaillant et al. | Aug 1971 | A |
3619380 | Stephens | Nov 1971 | A |
3672350 | Denis | Jun 1972 | A |
3685542 | Daughirda | Aug 1972 | A |
3698430 | Van Gasselt et al. | Oct 1972 | A |
3768257 | Neuffer | Oct 1973 | A |
3982910 | Houseman et al. | Sep 1976 | A |
4044727 | Rychen et al. | Aug 1977 | A |
4574775 | Lutzen et al. | Mar 1986 | A |
4596235 | Bougard | Jun 1986 | A |
4658803 | Ball et al. | Apr 1987 | A |
4685444 | Durrenberger | Aug 1987 | A |
4753220 | Lutzen et al. | Jun 1988 | A |
4782816 | Salgado et al. | Nov 1988 | A |
4845981 | Pearson | Jul 1989 | A |
4846148 | Zifferer | Jul 1989 | A |
4848468 | Hazlett et al. | Jul 1989 | A |
4966100 | Fournier et al. | Oct 1990 | A |
5038853 | Callaway, Sr. et al. | Aug 1991 | A |
5183029 | Ranger | Feb 1993 | A |
5197415 | Stretch et al. | Mar 1993 | A |
5207211 | Hanning et al. | May 1993 | A |
5279261 | Moscone | Jan 1994 | A |
5479913 | Adams | Jan 1996 | A |
5520165 | Khinkis et al. | May 1996 | A |
5588088 | Flaman | Dec 1996 | A |
5623990 | Pirkle | Apr 1997 | A |
5656136 | Gayaut | Aug 1997 | A |
5699756 | Ross et al. | Dec 1997 | A |
5765546 | Mandeville et al. | Jun 1998 | A |
5893341 | Cox | Apr 1999 | A |
5924391 | Baker et al. | Jul 1999 | A |
6024290 | Dosani et al. | Feb 2000 | A |
6412561 | Brown et al. | Jul 2002 | B1 |
6776153 | Walker et al. | Aug 2004 | B1 |
7298968 | Boros et al. | Nov 2007 | B1 |
7477836 | White, III | Jan 2009 | B2 |
7681536 | Kaupp | Mar 2010 | B2 |
7694731 | Decker | Apr 2010 | B2 |
7744007 | Beagen et al. | Jun 2010 | B2 |
7798237 | Korach et al. | Sep 2010 | B2 |
7845411 | Vinegar et al. | Dec 2010 | B2 |
8044000 | Sullivan et al. | Oct 2011 | B2 |
8171993 | Hefley | May 2012 | B2 |
8176937 | Zhang et al. | May 2012 | B2 |
8220537 | Leon et al. | Jul 2012 | B2 |
8286595 | Cerney et al. | Oct 2012 | B2 |
20070056726 | Shurtleff | Mar 2007 | A1 |
20070170273 | McIllwain | Jul 2007 | A1 |
20080029267 | Shampine et al. | Feb 2008 | A1 |
20080107410 | White | May 2008 | A1 |
20090060659 | Wallace | Mar 2009 | A1 |
20090308613 | Smith | Dec 2009 | A1 |
20100000508 | Chandler | Jan 2010 | A1 |
20100031506 | Hartwig et al. | Feb 2010 | A1 |
20100032031 | Neal | Feb 2010 | A1 |
20100276149 | Pope et al. | Nov 2010 | A1 |
20140144393 | Chandler | May 2014 | A1 |
20140144394 | Chandler | May 2014 | A1 |
20140144641 | Chandler | May 2014 | A1 |
Number | Date | Country |
---|---|---|
1114727 | Jan 1996 | CN |
0164816 | Dec 1985 | EP |
0255919 | Feb 1988 | EP |
0341185 | Nov 1989 | EP |
Entry |
---|
Heatec.com, Firestorm direct-contact water heaters, http://www.heatec.com/products—concrete/firestorm/firestorm.htm, internet accessed Dec. 7, 2012, 3 pages. |
Kemcosystems.com, TE 100 Direct Contact Water Heater, http://www.kemcosystems.com/Water-System-Components/TE100-Water—heater.html, internet accessed Dec. 7, 2012, 1 page. |
PSNC Energy, “Commercial and Industrial Facilities Go ‘Tankless,’” Retrieved from: http://web.archive.org/web/20061118194825/http://www.psncenergy.com/en/small-to-medium- business/business-sectors/hospitality/commercial-industrial-facilities-go-tankless.htm; last accessed on Aug. 13, 2014. |
Habib D. Zughbi et al., “Mixing in Pipelines with Side and Opposed Tees,” Ind. Eng. Chem. Res., American Chemical Society, 42 (21), pp. 5333-5344 (2003). |
Keng Seng Chan et al., “Oilfield Chemistry at Thermal Extremes,” Oilfield Review, pp. 4-17 (Autumn 2006). |
Heatec, Inc., Webpage describing Firestorm Direct-Contact Water Heaters, Retrieved from: http://web.archive.org/web/20080511165612/http://www.heatec.com/products—concrete/firestorm/firestorm.htm; last accessed on Aug. 13, 2014. |
CAT, “Hydration Unit mixing unit for preparation fracturing fluids,” Retrieved from: http://www.consulting-agencytrade.com/files/hydration unit 04.pdf; last accessed on Oct. 8, 2014. |
Armstrong, “Flo-Rite-Temp Steam heats water instantly-in a fraction of space,” Retrieved from: https://web.archive.org/web/20071213171904/http://www.armstronginternational.com/files/products/wheaters/pdf/ay408.pdf: last accessed on Oct. 3, 2014. |
KOMAX Steam Heaters, “Inline Steam Heater,” Retrieved from: https://web.archive.org/web/20080420074231/http://www.komax.com/products/inline steam heater.html: last accessed on Oct. 7, 2014. |
English Translation of Chinese Patent Publication No. CN1114727; Machine translation retrieved from Espacenet Patent Search, http://worldwide.espacenet.com/?locate=en—EP on Aug. 13, 2014. |
Number | Date | Country | |
---|---|---|---|
20130145996 A1 | Jun 2013 | US |
Number | Date | Country | |
---|---|---|---|
61564988 | Nov 2011 | US | |
61613449 | Mar 2012 | US | |
61656951 | Jun 2012 | US | |
61681587 | Aug 2012 | US |