This invention relates to mobile wind-driven generating systems, and more particularly to systems, apparatus and methods by which wind-driven electric generators can be moved and located offshore to take best advantage of offshore and onshore winds.
Offshore structures are not unknown. In 1955 the U.S. Army Corps. of Engineers constructed radar stations along the New England coast, which were commonly referred to as “Texas Towers.” In constructing these radar stations, the radar platforms were lifted on supporting legs, using hydraulic cylinders. While the legs and the platform were pinned together, a plurality of hydraulic cylinders were manually attached between the supporting legs and the platform. The pins holding the platform stationary with respect to the legs were removed, and the hydraulic cylinders were then pressurized to extend their pistons and raise the radar platform. At the end of the pistons' strokes, the pins holding the platform in position with respect to the supporting legs were manually replaced to hold the platform in a stationary position with respect to the legs so the plurality of cylinders could be disconnected from the platform and the legs, and their pistons could be retracted without affecting the relative positions of the platform and the legs. The plurality of hydraulic cylinders were then manually reattached between the platform and the legs, and the pins holding the platform stationary with respect to the legs were manually removed, and the hydraulic cylinders were operated again to extend their pistons and raise the platform with respect to the legs. This procedure was repeated again and again until the platform was lifted to its desired position with respect to the plurality of legs. This method of construction was labor-intensive, slow, and expensive.
The increasing need for oil and gas has led to offshore exploration, requiring drilling into the earth's surface far below the water. Such drilling operations are accomplished from mobile offshore drilling units (MODUs). MODUs generally comprise submersible, semi-submersible and jack-up types. Jack-up MODUs are massive structures which can have platform surface areas as large as two acres to support the drilling equipment, drilling supplies, power sources, living quarters, helicopter landing ports, and the stores and fuel that are necessary to maintain a drilling crew and operate the MODU and its drilling equipment hundreds of feet above the underwater surface. Jack-up MODUs include a plurality of MODU supporting legs, most generally three legs that are movably engaged with the MODU platform. Following their construction, such MODUs, with their MODU platforms resting on footings at the base of each supporting leg are towed to an offshore drilling site, like a large vessel with three 700 foot masts. Once the MODU is positioned at a drilling site offshore, the MODU supporting legs are lowered to engage the earth's underwater surface and thereafter lift, or jack-up, the MODU platform sufficiently above the water level to reduce exposure of the MODU platform to wave action during severe storms. It is not uncommon for jack-up MODUs to weigh 30,000 to 40,000 tons, or more, with the MODU platform and its variable loads comprising as much as two-thirds of the weight. In addition, it is not uncommon for the MODU supporting legs to have lengths of 600 to 700 feet, and, to provide stability in their support of the MODU platform, to have cross sections, most commonly triangular, up to 50 feet on a side.
The jack-up MODUs currently in use and being constructed include, as the apparatus to adjust the relative position of the MODU platform and MODU supporting legs, a plurality of motor-driven spur gears which engage toothed racks running the length of each corner leg chord of each MODU supporting leg. The leg chords that comprise the corners of the MODU supporting legs of such currently existing jack-up MODUs are constructed with a central toothed rack, of expensive high strength (e.g, 100 KSI) steel, running the length of the supporting leg, with rigidifying semi-circular, tubular structural members welded along both sides of the toothed rack to increase the strength, section modulus and rigidity of the leg chords. Because the spur gears rotationally engage the toothed racks of the leg chords in raising and lowering the MODU supporting legs with respect to the MODU platform, the spur gear teeth and the teeth of the leg chord racks have cycloidal cross sections, and the spur gear drives are each engaged with the leg chord racks by line contact between a single tooth of the spur gear and a single mating tooth of a toothed rack, exposing the teeth of both the spur gear and the rack to extremely high shear forces and requiring that the spur gears and the toothed rack be made of an expensive high-grade steel, with a modulus of elasticity, for example, of 100,000 pounds per square inch (100 KSI).
Because of the great weights being handled and the high stress engagement between the spur gear teeth and rack teeth, as many as 18 spur gear drive units may be engaged with the six toothed racks on each supporting leg. In such systems, the plural spur gear drives are mounted vertically in sets of three units, one above another, so their pinion gears can engage the toothed racks that comprise the leg chords; however, the load is unequally shared by the plurality of engaged pinion gears, the lowest pinion gear and its engaged rack tooth carrying a significantly disproportionate portion of the load.
Because the tooth loading in current spur gear driven jack-up MODUs is approaching the stress and fatigue limits of the available materials, complex controls for the electric motors of the spur gear drives have been developed in an effort to equalize the loads that are borne by the plurality of engaged gears and the associated stresses and fatigue. Such controls control the torques generated by the electric motors to balance the loads on their pinion gears and gradually accelerate and decelerate in an effort to avoid overstressing and fatiguing the engaged teeth. Further, during operation of the spur gear drives, grease must be mopped onto the rack teeth by the MODU crew to reduce the friction between the pinion gears and the leg chord racks, and the grease inevitably falls into the sea.
In addition to requiring expensive controls, materials and manufacturing procedures, spur gear-driven jack-up MODUs also require expensive separate locking apparatus for each supporting leg to maintain the MODU platform in a stationary position with respect to its supporting legs
There is also an increasing need for electric energy, and a desire to increase electric generating capacity without the use of fossil fuels, which can pollute the environment. This need has led to “wind farms” in which a multiplicity of wind-driven electric generators and are grouped together in windy locations, such as in the passes of the mountains of Southern California, and in some offshore locations outside of the United States. The wind-driven electric generators in the foreign offshore locations are placed on stationary structures that comprise single tall poles or towers constructed on supporting foundations built on the bottom under the water at the location of the wind-driven generator.
There is, thus, a need for a wind-driven electric generating system that is mobile, and adjustable, permitting the location and elevation of one or more wind-driven electric generators to be adjusted to best take advantage of onshore and offshore winds as a single source of electric power or as one of a multiplicity of sources of electric power in a “wind farm.”
The invention provides a new system, method and apparatus for moving, locating and orienting wind-driven electric generators in offshore locations to favorably present one or more wind-driven electric generators for varying wind conditions, singly and in wind farms.
In the invention, a mobile structure that is transportable over water is provided with a plurality of supporting legs that are movable with respect to the mobile structure and with one or more wind-driven electric generators. The mobile structure, supporting legs and one or more wind-driven electric generators are transported over water to a selected offshore location, and the plurality of supporting legs are moved with respect to the mobile structure until they engage the bottom at the offshore location and lift the mobile structure and wind-driven electric generator to an elevation for favorable operation of the wind-driven electric generator by available winds.
Apparatus of the invention comprises a mobile offshore structure, one or more wind-driven electric generators carried by the mobile offshore structure, at least one supporting leg movably engaged with the mobile offshore structure, a linear motion motor, preferably a continuous linear motion motor, for each at least one supporting leg and a control for said linear motion motor whereby operation of said linear motion motor can lift the mobile offshore structure and wind-driven electric generator above the water surface by engaging the at least one supporting leg with the bottom at a selected offshore location. The offshore structure preferably comprises a central portion with a plurality of outwardly extending, leg-engaging portions, each of the leg-engaging portions carrying at least one linear motion motor for driving one of the structure-supporting legs. A single wind-driven generator may be carried by the central portion of the structure or for greater electric power generation, a plurality of wind-driven electric generators can be carried, preferably one by each of the outwardly extending, leg-engaging portions.
In one preferred aspect of the invention, a plurality of continuous linear motion motors are engaged with a plurality of supporting legs to provide continuous relative motion between the mobile offshore structure and its supporting legs, and to also maintain the mobile offshore structure and supporting legs locked in a stationary relationship. As used herein, the preferred “continuous linear motion motor,” refers to a plurality of hydraulic piston/cylinder units N whose piston operations are phased so that at most N−1 of the plurality of piston/cylinder units are engaged with a supporting leg and providing relative motion while at least one of the piston/cylinder units is disengaged from the supporting leg and being repositioned for re-engagement with the supporting leg to continue the relative motion. The preferred continuous linear motion motor thus permits a mobile offshore structure and wind-driven generator to be automatically and easily jacked up hydraulically with continuous motion.
In the preferred apparatus of the invention with a plurality of structure-supporting legs, a plurality of hydraulic piston/cylinder units are used to provide continuous relative motion of the mobile offshore structure with respect to a plurality of structure-supporting legs that carry a plurality of toothed racks, by phased operation of their pistons, that is, by sequentially engaging different groups of the piston/cylinder units with the plurality of toothed racks and driving their pistons with hydraulic pressure, while another group of the piston/cylinder units are disengaged from the toothed racks and are repositioned for reengagement by application of hydraulic pressure to the cylinders of the disengaged pistons. The pluralities of hydraulic piston/cylinders in their phased operations provide a plurality of continuous linear motion motors that can be controlled from the mobile offshore structure (or remotely) to jack the mobile offshore structure up or down, and to lock the mobile offshore structure in any stationary position. Such a plurality of continuous linear motion motors are substantially less expensive than a comparable plurality of spur gear drives, which can also be used to provide relative motion between the mobile offshore structure and its supporting legs.
In the preferred apparatus of the invention, a multiplicity of teeth are engaged in providing relative motion (and in lifting the mobile offshore structure) at any given moment of time, eliminating high tooth stress by spreading the load imposed by the weight of the mobile offshore structure and wind-driven electric generator(s) over the multiplicity of teeth provided by a plurality of toothed rack engagement members driven by the plurality of pistons. Furthermore, the teeth of the rack engagement members being driven by the pistons of the hydraulic cylinders, and the teeth of the plurality of racks being driven thereby are preferably formed with substantially planar engagement surfaces that spread the stresses from the driving forces uniformly over and through the engaged teeth, and the substantially planar engagement surfaces of the engaged teeth are preferably angled to be normal to the central axes of the plurality of pistons within the central portion of the pistons' movements.
In addition, where the plurality of piston/cylinder units are pivotally mounted to the mobile offshore structure, the angled substantially planar engagement surfaces of the teeth can generate forces resisting the disengagement of the engaged teeth of the rack engagement members and toothed racks when the pistons are substantially retracted within their cylinders to assist in locking the mobile offshore structure in a stationary position, and the angled substantially planar engagement surfaces of the engaged teeth of the rack engagement members and toothed racks can generate forces assisting the disengagement of the teeth for repositioning of the rack engagement members at the end of the pistons' stroke.
Furthermore, the plurality of driving piston/cylinder units, for at least each leg, are subjected to the same hydraulic pressure when providing relative motion between the MODU and its supporting legs, and any restriction to movement that may result in the exertion of increased pressure on one set of teeth results in increased pressure on all of the acting cylinders, thereby overcoming the restriction to movement without an excessive and unequal force being exerted against any set of teeth.
As indicated above, the preferred apparatus of the invention can further include a locking mode wherein all of the pistons of the plurality of piston/cylinder units are retracted substantially entirely within their cylinders, with their attached toothed rack engagement members engaged with the toothed racks, and providing, in their engagement, forces resisting their disengagement. The locking mode of operation eliminates the expensive separate locking apparatus for each supporting leg that are necessary in current spur gear driven jack-up systems.
Preferred methods of the invention include:
A method of locating a source of electricity to take advantage of wind traveling over water, comprising providing a structure that can be transported over water, providing one or more wind-driven sources of electricity carried by said structure, providing structure-supporting means carried by said structure for engaging the earth's surface under water, transporting the structure to an advantageous location for operation of the wind-driven sources of electricity, engaging said structure-supporting means with the underwater earth's surface at the advantageous location and elevating the one or more wind-driven sources of electricity to take advantage of the winds traveling over the water.
A method of elevating a wind-driven electric generator at an offshore location, comprising: providing a plurality of supporting legs for the wind-driven electric generator; providing a plurality of toothed racks fastened to said plurality of supporting legs; providing a plurality of hydraulic piston/cylinder units connected with said wind-driven electric generator, each of said plurality of hydraulic piston/cylinder units having a toothed rack engagement member attached to and driven in a vertical direction by its piston and engageable with one of said toothed racks; engaging a portion of the plurality of said toothed rack engagement members of a portion of said plurality of piston/cylinder units with said toothed racks; and driving said engaged portion of the plurality of toothed rack engagement members by applying hydraulic pressure to said pistons of said portion of the plurality of piston/cylinder units to extend the pistons and thereby continuously provide relative motion between the wind-driven electric generator and supporting legs while a remainder of the toothed rack engagement members are disengaged from the toothed racks and are being repositioned for re-engagement by applying hydraulic pressure to retract their pistons and thereafter for driving the toothed racks.
Further inventive features and combinations are presented in the drawings and more detailed descriptions of the invention that follow.
As illustrated in
In the embodiment, which is illustrated in
System and Apparatus 20 of the invention, such as those illustrated in
As indicated above, the preferred apparatus of the invention includes a plurality of continuous linear motion motors 30 engaged with the plurality of supporting legs 23 to provide continuous relative motion between the mobile offshore structure 22, 29 and its supporting legs 23. The preferred “continuous linear motion motor” comprises a plurality of hydraulic piston/cylinder units N whose piston operations are phased so that at most N−1 of the plurality of piston/cylinder units are engaged with a MODU-supporting leg 22 and providing relative motion while at least one of the piston/cylinder units is disengaged from the supporting leg 23 and is being repositioned for re-engagement with the supporting leg 23 to continue the relative motion. Continuous linear motion motors can comprise any number of piston/cylinder units necessary to provide relative motion between the mobile offshore structure 22, 29 (and its wind-driven generator(s)) and its supporting legs 23 in acting on one or more toothed racks; however, it is believed to be preferable that the plurality of hydraulic piston/cylinder units in the continuous linear motion motor comprise an even number of units divided into two sets of piston/cylinder units acting on two toothed racks 32 on opposite sides of a leg chord 30, as shown in
Because the number of hydraulic piston/cylinder units that may comprise a continuous linear motion motor is not limited in this invention, it is unnecessary to use expensive specially designed or sized hydraulic piston/cylinder units or hydraulic pumps, and the hydraulic piston/cylinder units and hydraulic pumps may be selected from the inexpensive, commercially available “standard” hydraulic piston/cylinder units and pumps. Such continuous linear motion motor jack-up systems can be made for much less than comparable spur gear driven jack-up systems of comparable lifting capacity, and are preferred for this reason and those explained below.
The plurality of piston/cylinder units 33 comprising the continuous linear motion motors 30 that move the supporting leg 23 with respect to the mobile offshore structure 22, 29 are pivotally attached to and carried by structural towers 40 on the mobile offshore structure 22, 29 adjacent the leg chords 26 of the supporting legs. The mobile offshore structure 22, 29 The mobile offshore structure 22, 29 includes structural members, as known in the art, to bear the load associated with the engagement of the mobile offshore structure 22, 29 and its plurality of supporting legs 23.
The continuous linear motion motor 30 includes a plurality of means 35 for the engagement and disengagement of the toothed shoes 34 of the piston/cylinder units 33 with the toothed racks 32 by pivoting the piston/cylinder units 33 through a small angle. The engagement/disengagement means 35 for the rack engagement members 34 preferably comprise compression springs that act on the rack engagement members 34 to urge them toward and into engagement with the toothed racks 32, and unclamp hydraulic piston/cylinder units acting in response to the imposition of hydraulic pressure within their cylinders to overcome the forces of the compression springs, moving the rack engagement members away and disengaged from the toothed racks 32. Such engagement/disengagement means 35 preferably comprise single-acting piston/cylinder units including a compression spring within the cylinder acting on one side of the piston to push it outwardly from the cylinder in the absence of pressure, with the application of pressure on the other side of the piston overcoming the force of the compression spring and moving the piston into the cylinder. With such preferred engagement/disengagement means, no power is required to engage and maintain the engagement of the toothed rack engagement members 34 with the toothed racks 32 in the locked mode; however, other controllable engagement/disengagement means, such as double acting hydraulic piston/cylinders, electric actuators and the like, may be used.
As described in greater detail below, the tooth profiles of the teeth of the toothed shoes 34 and of the teeth of the toothed racks 32 and the pivotal attachment of the cylinders 33 cooperate when the jacking system is in its locked mode with the pistons of piston/cylinder units 33 retracted into their cylinders to generate engagement forces assisting the engagement/disengagement means 35 in maintaining the toothed shoes 34 in engagement with the toothed racks 32 and maintaining the mobile offshore structure 22, 29 locked into a stationary position with respect to its supporting legs 23.
To simplify explanation of the operation of continuous liner motion motors two sets of three active hydraulic piston/cylinder units 33 are illustrated and described as comprising a continuous linear motion motor 30. It must be understood, however, that any plurality of piston/cylinder units N may comprise a continuous linear motion motor in the invention, provided their operation is sequentially phased, as, for example, illustrated in
In providing continuous linear motion, the piston strokes of each of the piston/cylinder units 33a, 33b and 33c of each set 31, and the engagement and disengagement of their toothed rack engagement means 34 are phased, that is, their operations are displaced in time so that two of the piston/cylinder units have their rack engagement members 34 engaged with the toothed racks 32 of a leg chord 26 with their pistons being extended to drive the leg chord 26 while the third piston/cylinder unit has its rack engagement member 34 disengaged from the toothed rack 32 of the leg chord 26 with its piston being retracted to reposition its rack engagement member 34 for reengagement with the toothed rack 32 and subsequent extension of its piston to drive the leg chord 26. This repetitive phased operation of the piston/cylinder units 33 to achieve linear motion is illustrated in the phase diagram
At the point in time illustrated on
As indicated above, it is not necessary that the continuous linear motion motors comprise sets of three piston/cylinder units, and in practical application, because of the substantial forces that are required to move the weights of a mobile offshore structure 22, 29 and wind-driven generator(s) and other loads that it carries, and the supporting legs with respect to each other, continuous linear motion motors incorporated into mobile offshore structure jacking systems may comprise substantially more than three piston/cylinder units each.
Another feature of the invention comprises the tooth profile preferably employed in the rack engagement members 34 and the toothed racks 32.
As indicated by
As well known in the art, the number of toothed racks and engaged teeth necessary to carry the maximum weight W of the mobile offshore structure and all of its topside loads may be determined by
S×T×N≧W
where S is the acceptable tensile stress of the material from which the engaged teeth will be manufactured, T is the total root area of the engaged teeth of each toothed rack and N equals the number of toothed racks. The total root area T equals the tooth pitch t (
In a continuous linear motion motor the geometric relationship of tooth pitch, vertical cylinder stroke, vertical distance between base mounting pins of cylinders, number of cylinders used, and cycling arrangement must meet certain geometric criteria for satisfactory operation. When configured as described below, the jacking operation will move the legs 23 of the apparatus of the invention up or down in relationship to the mobile offshore structure 22, 29 and will lock the legs in position for extended periods for drilling operations or for transit.
A typical calculation to determine the geometry of a specific jack-up design follows:
Typical Calculation Example
Other possibilities exist for determining numbers of cylinders or for determining workable tooth pitch “t”. Odd numbers of cylinders may be advantageous for some designs which will require the cylinders to act individually and alternately along the leg chord with the mounting of the cylinders determined in a similar manner as described in the above calculation to establish the proper geometry for cylinder position and tooth pitch.
The following table further illustrates the relationship between the number of phased piston/cylinder units and tooth spacing.
For smaller teeth, the maximum tooth spacing T can be divided by a whole number, e.g., 2 or more, to obtain t.
Furthermore, as indicated above, the angled planar tooth surfaces 53 of the preferred teeth in combination with the pivotal mounting of the driving piston/cylinders 33 permit the generation, by the engaged teeth of the rack engagement members 34 and toothed racks 32, of forces that resist disengagement of the rack engagement members 34 from the toothed racks 32 when the piston/cylinder units 33 are in their retracted positions in the locking mode of operation of the system, and forces assisting disengagement of the rack engagement members 34 from the toothed racks 32 when the piston/cylinder units 33 are fully extended and ready for disengagement and repositioning during their operation in the jack-up or jack-down modes.
The cooperation of the angled planar tooth engagements surfaces 53 of the preferred teeth 50 with the pivotal attachment of the piston/cylinder units 33 is illustrated in
As shown in
As shown in
As shown in
As the mobile offshore structure 22, 29 is lowered in the jack-down mode at a rate controlled by the plurality of piston/cylinder units 33, the upward forces generated by the resistance of the pistons in controlling the lowering of the mobile offshore structure 22, 29 will generate, by the engagement of the lower angled toothed surfaces 54 of the toothed racks 32 with the corresponding mated surfaces of the rack engagement members 34, an opening force (like force 58) acting to disengage the rack engagement members 34 from the toothed racks 32, and such forces must be overcome by the forces exerted by the compression springs of the engagement/disengagement means 35 that maintain the rack engagement members 34 in engagement with the toothed racks 32. These opening forces acting to disengage the rack engagement members 34 from the toothed racks 32 as the mobile offshore structure 22, 29 is lowered can be reduced by increasing the tooth angle α2 of the lower planar engagement surfaces to be, for example, more substantially normal to the vertical plane 55.
The hydraulic system will, preferably, use a pressure compensated variable volume hydraulic pump or pumps for generation of the hydraulic pressure, enabling the speed of movement of the pistons to be controlled. In addition, over center valves may be used to require the presence of positive hydraulic pressure at the cylinders before the pistons are moved in the jack down mode. The jacking system will, as apparent to those skilled in the art, also include the controllable hydraulic valves necessary to control the sequenced application of hydraulic fluid and pressure to the piston/cylinder units 33 and the unclamping piston/cylinder units of the preferred engagement/disengagement means 35, accumulators, if needed, to accelerate the operation of the pistons of the piston/cylinder units 33, and direction flow valves, relief valves, load cells and motion sensors, as needed.
As noted above, the piston/cylinder units of the continuous linear motion motors for each supporting leg can be connected to a common hydraulic fluid supply line so that the same hydraulic pressure is exerted on all the piston/cylinder units acting on that leg. Thus, any resistance to movement of one leg chord of a supporting leg will increase the pressure and forces acting on all of the leg chords of the supporting leg and tend to maintain uniform motion of all of the leg chords.
As set forth above, the invention provides a method of locating a source of electricity to take advantage of winds traveling over water, comprising providing a structure that can be transported over water, providing one or more wind-driven sources of electricity carried by said structure, providing structure-supporting means carried by said structure for engaging the earth's surface under water, transporting the structure to an advantageous location for operation of the wind-driven sources of electricity, engaging said structure-supporting means with the underwater earth's surface at the advantageous location and elevating the one or more wind-driven sources of electricity to take advantage of the winds traveling over the water.
The invention also provides a new mobile offshore wind-driven electric generating system with a preferred jacking system that can reliably handle loads several times greater than can be currently handled, can be readily and inexpensively designed and scaled for different jack-up loads, and can save millions of dollars in the manufacture of a single mobile offshore wind-driven electric generating apparatus.
Furthermore, the mobile offshore wind-driven electric generating system of the invention is less expensive to install than monopole structures and permanent structures, is movable at any time for repair, modification, reinstallation of electrical generators and for repositioning within a wind farm or to take advantage of seasonal shifts in the wind, creates less damage to the environment, permits the generation of power directly at sites of offshore manufacturing, for example, for fresh water, hydrogen, PV, etc.
The preferred jacking system for the mobile offshore structure provides, as indicated above, jack-up, jack-down and locking modes of operations and permits monitoring and control of leg loads and the rates of relative movement. Operation of the jacking system, in the invention, is preferably controlled by a programmable logic computer, which can control operation of one or a plurality of sources of hydraulic pressure, operation of each of the continuous linear motion motors driving each of the toothed racks of each of the supporting legs by sequencing the operations of valves controlling the flow of hydraulic fluid and the application of hydraulic pressure to the piston/cylinder units of the motors, and by controlling the rates of relative motion. The computer control can also sequence operation of the valves and piston/cylinder units to position the pistons and toothed rack engagement members of the continuous linear motion motors for providing motion, in changing from the locking mode to the jack-up or jack-down modes, and can cease motion of the pistons of the piston/cylinder units of the continuous linear motion motors and sequentially retract their pistons and engage their rack engagement members in changing from the jack-up or jack-down modes to the locking mode.
In addition, the computer control can also monitor the output signals of load cells sensing the loads on each of the leg chords of each of the supporting legs and/or outputs of motion sensors sensing the rate of movement of each of the leg chords of each of the supporting legs and can provide quantitative read-outs thereof and warnings of unacceptable operating conditions.
The description and illustrations of the invention presented here are of specific preferred embodiments and simplified examples. As will be apparent to those skilled in the art, the invention is not limited to the specific embodiments described and illustrated, but is defined in its scope by the following claims.
This patent application is a continuation-in-part of U.S. patent application Ser. No. 10/978,510, filed Nov. 1, 2004, which is a divisional of U.S. patent application Ser. No. 10/720,657, filed Nov. 24, 2003, which is a divisional of U.S. patent application Ser. No. 09/835,794, filed Apr. 16, 2001, now U.S. Pat. No. 6,652,194 B1.
Number | Date | Country | |
---|---|---|---|
Parent | 10720657 | Nov 2003 | US |
Child | 10978510 | Nov 2004 | US |
Parent | 09835794 | Apr 2001 | US |
Child | 10720657 | Nov 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10978510 | Nov 2004 | US |
Child | 11097493 | Apr 2005 | US |