This application relates to the field of communications, and more particularly, to wireless communication systems and related methods.
Mobile communications devices have become an integral part of society over the last two decades. Indeed, more than eighty-two percent of Americans own a mobile communications device, for example, a cell phone device. Even further, international cell phone device penetration has reached 3.3 billion units. In other words, approximately half the world's population has a cell phone device. The typical cell phone device includes an antenna, and a transceiver coupled to the antenna. The transceiver and the antenna cooperate to transmit and receive communications signals with a network infrastructure, usually maintained by a cell phone provider. Although the first cell phone devices typically included only voice or limited short message service capabilities, the capabilities of cell phone devices have increased greatly over the last decade.
One desirable cell phone device feature is an integrated broadcast radio receiver, such as a frequency modulation (FM) radio receiver and an amplitude modulation (AM) radio receiver. Due to the size constraints of typical cell phones, it may be difficult to provide an effective internal broadcast radio antenna. An external broadcast radio antenna may be effective, but may reduce the aesthetic appeal of the cell phone device. Once approach to this drawback may include utilizing a typical wired headset, i.e. headphones, as the broadcast radio antenna. The typical wired headset includes a plurality of lines, such as stereo audio output lines, a microphone line, a ground line, and a connector comprising a plurality of contact rings.
Depending on the manufacturing standard of the wired headset, the contact rings on the connector of the wired headset may have varying arrangements. Typical cell phone devices that use the wired headset as a broadcast radio antenna may specifically couple the wireless broadcast receiver to the audio signal line for that purpose. One drawback to this approach may include degraded voice quality, such as noise, echo or the requirement of additional external or internal filtering components.
The present description is made with reference to the accompanying drawings, in which embodiments are shown. However, many different embodiments may be used, and thus the description should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete. Like numbers refer to like elements throughout.
Generally speaking, a mobile wireless communications device may include a housing, and circuitry carried by the housing and comprising a wireless transceiver, a wireless broadcast receiver, audio circuitry coupled to the wireless transceiver and the wireless broadcast receiver, a wired headset jack, and a reference voltage device line (typically connected to system ground through an inductor), and at least one wired headset device line coupled between the audio circuitry and the wired headset jack. The reference voltage device line may be also coupled to the wireless broadcast receiver so that a corresponding reference voltage headset line of a wired headset serves as an antenna for the wireless broadcast receiver.
More specifically, the wired headset may be coupled to the wired headset jack and comprises a plurality of contacts, and a plurality of headset lines respectively coupled to the plurality of contacts. The plurality of contacts may comprise a reference voltage contact, and at least one wired headset line contact, and the plurality of headset lines may include the reference voltage headset line coupled to the reference voltage contact, and at least one wired headset audio line coupled to the at least one headset line contact.
In some embodiments, the circuitry may be configured to determine the reference voltage contact and to selectively couple the reference voltage device line to the reference voltage contact. The circuitry may be configured to determine the at least one wired headset line contact and to selectively couple the at least one wired headset device line to the at least one wired headset contact.
For example, the wired headset may comprise an audio input transducer, and an audio output transducer configured to provide audio input and output for the audio circuitry. The at least one wired headset audio line may comprise a plurality thereof comprising an input transducer signal line coupled to the input transducer, and an output transducer line coupled to the output transducer.
Additionally, the at least one wired headset audio line may comprise a plurality thereof comprising stereo audio channel lines. The wireless broadcast receiver may comprise at least one of an FM radio receiver and an AM radio receiver. The wireless transceiver may comprise a cellular transceiver.
Another aspect is directed to a method for making a mobile wireless communications device. The method may comprise providing a housing, coupling circuitry to be carried by the housing and comprising a wireless transceiver, a wireless broadcast receiver, audio circuitry coupled to the wireless transceiver and the wireless broadcast receiver, a wired headset jack, and a reference voltage device line, and at least one wired headset device line coupled between the audio circuitry and the wired headset jack. The method also may comprise coupling the reference voltage device line to the wireless broadcast receiver so that a corresponding reference voltage headset line of a wired headset serves as an antenna for the wireless broadcast receiver.
Yet another aspect is directed to a method of operating a mobile wireless communications device comprising a wireless transceiver, a wireless broadcast receiver, audio circuitry coupled to the wireless transceiver and the wireless broadcast receiver, a wired headset jack to be coupled to a wired headset, and a reference voltage device line coupled to the wireless broadcast receiver, and at least one wired headset device line coupled between the audio circuitry and the wired headset jack. The wired headset may comprise a reference voltage contact, and the method may comprise determining the reference voltage contact and selectively coupling the reference voltage device line to the reference voltage contact so that a corresponding reference voltage headset line of the wired headset serves as an antenna for the wireless broadcast receiver.
Referring now to
The mobile wireless communications device 10 illustratively includes a housing 13, and circuitry carried by the housing. The circuitry illustratively includes a wireless transceiver 11, and a wireless broadcast receiver 12. For example, the wireless broadcast receiver 12 may comprise at least one of an FM radio receiver, an AM radio receiver, and a television broadcast receiver, such as an ultra high frequency (UHF) or very high frequency (VHF) broadcast receiver. The wireless transceiver 11 may comprise a cellular transceiver, such as a transceiver based upon an Advanced Mobile Phone System (AMPS), time division multiple access (TDMA), code division multiple access (CDMA), Wideband code division multiple access (W-CDMA), personal communications service (PCS), GSM (Global System for Mobile Communications), enhanced data rates for GSM evolution (EDGE), etc. The wireless broadcast receiver 12 illustratively receives broadcast signals from a broadcast radio antenna 19.
The audio circuitry 14 is coupled to the wireless transceiver 11 and the wireless broadcast receiver 12. The audio circuitry 14 may comprise digital signal processing circuitry, such as noise canceling circuitry. The mobile wireless communications device 10 illustratively includes a wired headset jack 15. For example, the wired headset jack 15 may comprise a three terminal connector with labeling tip, ring, sleeve (TRS). For stereo headsets, a fourth terminal is necessary, and this TRRS connector will be labeled: tip, ring 1, ring 2, and sleeve. In other embodiments, the headset audio circuitry 14 may include low pass filters to remove RF before entering the audio sections.
The mobile wireless communications device 10 illustratively includes a reference voltage device line 17a, and a plurality of wired headset device lines 17b-17c coupled between the audio circuitry 14 and the wired headset jack 15. For example, the reference voltage device line 17a may comprise a ground line, and the plurality of wired headset device lines 17b-17c may comprise audio input and output lines.
More specifically, the wired headset 16 may be coupled to the wired headset jack 15 and comprises a plurality of contacts 22-24, and a plurality of headset lines 26a-26c respectively coupled to the plurality of contacts. The plurality of contacts 22-24 illustratively includes a reference voltage contact 22, an audio input transducer contact 23, and an audio output transducer contact 24.
In the illustrated embodiment, the wired headset 16 illustratively includes an audio input transducer 20 coupled to the audio input transducer contact 23, and an audio output transducer 21 coupled to the audio output transducer 21 and configured to provide audio input and output for the audio circuitry 14. The plurality of headset lines 26a-26c illustratively includes a reference voltage headset line 26a (e.g. an unshielded reference voltage headset line) coupled to the reference voltage contact 22, an input transducer signal line 26b coupled between the audio input transducer contact 23 and the audio input transducer 20, and an output transducer signal line 26c coupled between the audio output transducer contact 24 and the audio output transducer 21. In the illustrated embodiment, the wired headset 16 illustratively includes one audio output transducer contact 24 and one audio output transducer line 26c, i.e. a monochannel headset, but other embodiments may include a plurality of wired headset speaker line contacts and lines, i.e. a stereo channel headset.
In typical wired headsets, the arrangement of the various headset lines on the TRS/TRRS connector may be varied. For example, for one connector, the sleeve in the TRRS connector may be the ground line while in another TRRS connector, that sleeve contact may be coupled to a microphone line. Advantageously, the circuitry, in the illustrated embodiment, the audio circuitry 14, determines the arrangement of the plurality of contacts 22-24 in the TRS connector (not shown) of the wired headset 16. (Blocks 63, 65, & 67). In particular, the audio circuitry 14 is determining the TRS connector position of the reference voltage contact 22. Once the reference voltage contact 22 has been located, the audio circuitry 14 couples the reference voltage device line 17a to the wireless broadcast receiver 12 so that the corresponding reference voltage headset line 26a of a wired headset 16 serves as an antenna for the wireless broadcast receiver (Blocks 69 & 71).
Helpfully, the user can now connect any standard of wired headset to the wired headset jack 15 of the mobile wireless communications device 10, and the wireless broadcast receiver 12 is coupled to the wired headset line 26a-26c that provides best performance. More specifically, in the typical device, the audio input/output lines are used as an antenna for the wireless broadcast receiver, which may result in poor performance depending on the configuration. Moreover, the audio quality of these lines may be negatively impacted by the wireless broadcast receiver using these lines as an antenna or require extra filters. Advantageously, the reference voltage headset line 26a is not typically shielded, which provides for enhanced antenna receive characteristics.
Referring now additionally to
Example components of a mobile wireless communications device 1000 that may be used in accordance with the above-described embodiments are further described below with reference to
The housing 1200 may be elongated vertically, or may take on other sizes and shapes (including clamshell housing structures). The keypad may include a mode selection key, or other hardware or software for switching between text entry and telephony entry.
In addition to the processing device 1800, other parts of the mobile device 1000 are shown schematically in
Operating system software executed by the processing device 1800 is stored in a persistent store, such as the flash memory 1160, but may be stored in other types of memory devices, such as a read only memory (ROM) or similar storage element. In addition, system software, specific device applications, or parts thereof, may be temporarily loaded into a volatile store, such as the random access memory (RAM) 1180. Communications signals received by the mobile device may also be stored in the RAM 1180.
The processing device 1800, in addition to its operating system functions, enables execution of software applications 1300A-1300N on the device 1000. A predetermined set of applications that control basic device operations, such as data and voice communications 1300A and 1300B, may be installed on the device 1000 during manufacture. In addition, a personal information manager (PIM) application may be installed during manufacture. The PIM may be capable of organizing and managing data items, such as e-mail, calendar events, voice mails, appointments, and task items. The PIM application may also be capable of sending and receiving data items via a wireless network 1401. The PIM data items may be seamlessly integrated, synchronized and updated via the wireless network 1401 with corresponding data items stored or associated with a host computer system.
Communication functions, including data and voice communications, are performed through the communications subsystem 1001, and possibly through the short-range communications subsystem 1020. The communications subsystem 1001 includes a receiver 1500, a transmitter 1520, and one or more antennas 1540 and 1560. In addition, the communications subsystem 1001 also includes a processing module, such as a digital signal processor (DSP) 1580, and local oscillators (LOs) 1601. The specific design and implementation of the communications subsystem 1001 is dependent upon the communications network in which the mobile device 1000 is intended to operate. For example, a mobile device 1000 may include a communications subsystem 1001 designed to operate with the Mobitex™, Data TACT™ or General Packet Radio Service (GPRS) mobile data communications networks, and also designed to operate with any of a variety of voice communications networks, such as Advanced Mobile Phone System (AMPS), time division multiple access (TDMA), code division multiple access (CDMA), Wideband code division multiple access (W-CDMA), personal communications service (PCS), GSM (Global System for Mobile Communications), enhanced data rates for GSM evolution (EDGE), etc. Other types of data and voice networks, both separate and integrated, may also be utilized with the mobile device 1000. The mobile device 1000 may also be compliant with other communications standards such as 3GSM, 3rd Generation Partnership Project (3GPP), Universal Mobile Telecommunications System (UMTS), 4G, etc.
Network access requirements vary depending upon the type of communication system. For example, in the Mobitex and DataTAC networks, mobile devices are registered on the network using a unique personal identification number or PIN associated with each device. In GPRS networks, however, network access is associated with a subscriber or user of a device. A GPRS device therefore typically involves use of a subscriber identity module, commonly referred to as a SIM card, in order to operate on a GPRS network.
When required network registration or activation procedures have been completed, the mobile device 1000 may send and receive communications signals over the communication network 1401. Signals received from the communications network 1401 by the antenna 1540 are routed to the receiver 1500, which provides for signal amplification, frequency down conversion, filtering, channel selection, etc., and may also provide analog to digital conversion. Analog-to-digital conversion of the received signal allows the DSP 1580 to perform more complex communications functions, such as demodulation and decoding. In a similar manner, signals to be transmitted to the network 1401 are processed (e.g. modulated and encoded) by the DSP 1580 and are then provided to the transmitter 1520 for digital to analog conversion, frequency up conversion, filtering, amplification and transmission to the communication network 1401 (or networks) via the antenna 1560.
In addition to processing communications signals, the DSP 1580 provides for control of the receiver 1500 and the transmitter 1520. For example, gains applied to communications signals in the receiver 1500 and transmitter 1520 may be adaptively controlled through automatic gain control algorithms implemented in the DSP 1580.
In a data communications mode, a received signal, such as a text message or web page download, is processed by the communications subsystem 1001 and is input to the processing device 1800. The received signal is then further processed by the processing device 1800 for an output to the display 1600, or alternatively to some other auxiliary I/O device 1060. A device may also be used to compose data items, such as e-mail messages, using the keypad 1400 and/or some other auxiliary I/O device 1060, such as a touchpad, a rocker switch, a thumb-wheel, or some other type of input device. The composed data items may then be transmitted over the communications network 1401 via the communications subsystem 1001.
In a voice communications mode, overall operation of the device is substantially similar to the data communications mode, except that received signals are output to a speaker 1100, and signals for transmission are generated by a microphone 1120. Alternative voice or audio I/O subsystems, such as a voice message recording subsystem, may also be implemented on the device 1000. In addition, the display 1600 may also be utilized in voice communications mode, for example to display the identity of a calling party, the duration of a voice call, or other voice call related information.
The short-range communications subsystem enables communication between the mobile device 1000 and other proximate systems or devices, which need not necessarily be similar devices. For example, the short-range communications subsystem may include an infrared device and associated circuits and components, a Bluetooth™ communications module to provide for communication with similarly-enabled systems and devices, or a NFC sensor for communicating with a NFC device or NFC tag via NFC communications.
Many modifications and other embodiments will come to the mind of one skilled in the art having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is understood that various modifications and embodiments are intended to be included within the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
5991637 | Mack, II et al. | Nov 1999 | A |
6032064 | Devlin et al. | Feb 2000 | A |
6236969 | Ruppert et al. | May 2001 | B1 |
6394953 | Devlin et al. | May 2002 | B1 |
7119750 | Kinney et al. | Oct 2006 | B2 |
7515944 | Zhu et al. | Apr 2009 | B2 |
7656353 | Qi et al. | Feb 2010 | B2 |
8063836 | Qi et al. | Nov 2011 | B2 |
8150046 | Hansson et al. | Apr 2012 | B2 |
8831234 | Turner et al. | Sep 2014 | B2 |
20050053243 | Ganton | Mar 2005 | A1 |
20070120745 | Qi et al. | May 2007 | A1 |
20080167087 | Tang et al. | Jul 2008 | A1 |
20090033574 | Hung | Feb 2009 | A1 |
20090180630 | Sander et al. | Jul 2009 | A1 |
20100069114 | Lee et al. | Mar 2010 | A1 |
20100094552 | Qi et al. | Apr 2010 | A1 |
20100215183 | Hansson et al. | Aug 2010 | A1 |
20100279734 | Karkinen et al. | Nov 2010 | A1 |
20110002496 | Meesters | Jan 2011 | A1 |
20110045789 | Sinton et al. | Feb 2011 | A1 |
20120064943 | Qi et al. | Mar 2012 | A1 |
20120134503 | Poulsen et al. | May 2012 | A1 |
20120215467 | Poulsen | Aug 2012 | A1 |
20130044892 | Lafky et al. | Feb 2013 | A1 |
Number | Date | Country |
---|---|---|
2613407 | Jul 2013 | EP |
2358990 | Aug 2001 | GB |
2380861 | Aug 2005 | GB |
Entry |
---|
“Cell phones 4-pole headset pinout,” Pinouts Guide.com, 4 pages, 2011. |
“Motorola Talkabout headset pinout,” Pinouts Guide.com, 2 pages, 2010. |
European Search Report for EP Application No. 12150411.2 dated Jun. 29, 2012, 5 pages. |
Response to European Search Report for EP Application No. 12150411.2 dated Oct. 31, 2012, 13 pages. |
Number | Date | Country | |
---|---|---|---|
20130178149 A1 | Jul 2013 | US |