The present disclosure relates generally to geological drilling and downhole procedures, and, more particularly, to a modular mobility platform configured to travel through diverse downhole environments, and to a system and method using such a modular mobility platform.
During procedures in geological environments, such as a downhole of a well or pipe, it is advantageous to explore the environment and to inspect the walls of the well using robots or mobility platforms having electronic-based instruments. However, travel of a robot through a downhole longitudinally, such downhole environments, has presented challenges to known robots, since the lateral width within such environments can various substantially. Accordingly, the sides of the robot can brush against or collide with the walls, potentially damaging the robot and its instruments.
Many robots in the prior art also have a fixed structure, such as a housing for retaining a fixed set of motors for travel, as well as a fixed set of instruments for monitoring and inspecting the downhole environment. However, once such robots are constructed, the robot cannot be modified without disassembling the robot, if possible. Therefore, a robot in the prior art is limited to its motors and instruments included during construction.
There are other limitations of known robots that have been used in downhole environments. It is to these constraints that the present disclosure is directed.
According to an embodiment consistent with the present disclosure, a modular mobility platform has extendable and retractable tractor treads for engaging the walls of a downhole environment. Such tractor treads allow the platform to successfully navigate longitudinally through the downhole environment. Moreover, the platform can be composed of a plurality of different modules removably interconnected together longitudinally. Each module can have a specific function, such as sensing, navigation, mobility, control, communication, and power. The platform can have generally longitudinally-directed detectors for detecting the forward or reverse direction through which the platform is to travel. The present disclosure also includes a system and method using such a modular mobility platform.
In an embodiment, a mobility platform is capable of traveling in a downhole environment. The mobility platform includes a sensor module, which is configured to detect a feature of the downhole environment. The mobility platform also includes a computing module configured to determine a first width of an upcoming portion of the downhole environment from the feature. The mobility platform further includes a drive module having extendable and retractable tractor treads. The computing module is further configured to control the drive module to extend or retract the tractor treads to a second width less than a first width to fit the mobility platform in the upcoming portion. The computing module also controls the drive module to drive the tractor treads to move the mobility platform in the upcoming portion. The sensor module, computing module, and drive module can be interconnected. Furthermore, the sensor module, computing module, and drive module can be removably interconnected. Each of the sensor module, computing module, and drive module have housings that are substantially cylindrical with a respective module longitudinal axis. The sensor module, computing module, and drive module are interconnected with the respective longitudinal axes substantially aligned to form the mobility platform and to define a substantially cylindrical shape along a mobility platform longitudinal axis. The tractor treads are extended or retracted laterally relative to the mobility platform longitudinal axis. The sensor module includes a sensor emitting a detection signal in a forward direction at an acute angle to the mobility platform longitudinal axis for detecting the feature. The computing module controls the drive module using wireless signals.
In another embodiment, a system comprises a control apparatus having a controller for a user to enter a command, and a mobility platform capable of traveling in an downhole environment. The mobility platform includes a sensor module configured to detect a feature of the downhole environment. The mobility platform also includes a computing module configured to receive the command and to determine a first width of an upcoming portion of the downhole environment from the feature. The mobility platform further includes a drive module having extendable and retractable tractor treads. The computing module is further configured to control the drive module to extend or retract the tractor treads to a second width less than a first width to fit the mobility platform in the upcoming portion of the downhole environment. The computing module is responsive to the received command to control the drive module to drive the tractor treads to move the mobility platform to and within the upcoming portion of the downhole environment. The sensor module includes a camera for capturing an image of the downhole environment. The computing module is further configured to transmit the image to the control apparatus, which includes a display and displays the image on the display. The displayed image is conveyable to the user. The controller is further configured to await a second command whether to move the mobility platform into the upcoming portion of the downhole environment. The sensor module, computing module, and drive module can be interconnected. The sensor module, computing module, and drive module can be removably interconnected. Each of the sensor module, computing module, and drive module have housings that are substantially cylindrical with a respective module longitudinal axis. The sensor module, computing module, and drive module are interconnected with the respective longitudinal axes substantially aligned to form the mobility platform and to define a substantially cylindrical shape along a mobility platform longitudinal axis. The tractor treads are extended or retracted laterally relative to the mobility platform longitudinal axis. The sensor module includes a sensor emitting a detection signal in a forward direction at an acute angle to the mobility platform longitudinal axis for detecting the feature. The computing module controls the drive module using wireless signals.
In a further embodiment, a method comprises interconnecting a plurality of modules. The plurality of modules comprise at least a drive module. The interconnected modules define a mobility platform. The method further includes deploying the mobility platform into a downhole environment, detecting a feature of the downhole environment, determining a width of an upcoming portion of the downhole environment, moving a tractor tread from the drive module to fit the mobility platform into the upcoming portion, and advancing the mobility platform into the upcoming portion of the downhole environment. The moving of the tractor tread comprises either extending the tractor tread from the drive module or retracting the tractor tread toward the drive module prior to advancing the mobility platform into the upcoming portion of the downhole environment.
Any combinations of the various embodiments and implementations disclosed herein can be used in a further embodiment, consistent with the disclosure. These and other aspects and features can be appreciated from the following description of certain embodiments presented herein in accordance with the disclosure and the accompanying drawings and claims.
It is noted that the drawings are illustrative and are not necessarily to scale.
Example embodiments consistent with the teachings included in the present disclosure are directed to a modular mobility platform capable of traveling through diverse downhole environments, as well as a system and method using such a modular mobility platform.
As shown in
The mobility platform 10 carries instruments capable of navigating and inspecting the downhole environments. Referring to
The sensor module 12 can include a housing with apertures through which a camera 24 and a Time of Flight (ToF) sensor 26 can detect the downhole environment and local geological geometry at the front end of the platform 10. As with other modules described herein, each is associated with a hardware processor and a memory unit which contains code. The code is loaded from the memory into the processor and configures the processor to implement the functionality of the respective module, such as the sensor module 12.
The sensor module 12 is described in greater detail below with reference to
Referring again to
In an embodiment, shown in
In an embodiment as shown in
Each drive module 14, 18 has two subsystems: a preload system and a drive system. The drive system actuates the treads 28, 30 on each of the modules 14, 18, respectively, using a worm-gear drive, allowing the platform 10 to move longitudinally forward and backward. The drive module(s) are associated with a hardware processor and a memory unit which contains code. The code is loaded from the memory into the processor and configures the processor to implement the functionality of the drive modules 14, 18. As noted above, the processor and memory can be dedicated to the respective drive modules 14, 18, or can be associated with other modules, depending on the particular implementation approach.
Under control of code executing to implement each respective drive module, each of the treads 28, 30 on arms of the drive modules 14, 18, respectively, can retract and extend independently, although the treads of a specific drive module are linked together by the worm gear drive for radial symmetry. Also under control of code executing to implement each respective drive module, the preload system controls the lateral distance of the platform 10 from the downhole walls by extending and retracting the arms of each drive module. The preload system and the drive system are actuated using one motor for each subsystem in the illustrated embodiment. Under control of code executing each respective drive module, a preload motor turns the leadscrew and applies a preload of the treads against the downhole wall by moving the arms radially. In addition, under control of code executing each respective drive module, a drive motor is energized to drive the mobility platform 10 so as to move forward or in reverse in a direction parallel to the mobility platform longitudinal axis by moving the treads 28, 30.
Referring to
As shown in
As shown in
The preload subsystem allows the arms having the treads 28 to extend to accommodate the various diameters that the platform 10 is expected to have the ability to traverse, as well as to retract to be stowed during traversal of a narrow well, such as a XN Nipple. The preload subsystem translates the three treads 28 radially towards/away from longitudinal axis. On each drive module 14, all three treads 28 are coupled and move together. The treads cannot be extended or retracted individually. However, the preload subsystem for each drive module can be extended or retracted independently of the other drive modules of the platform 10.
The preload subsystem of each drive module 14, 28 is driven by a motor. For example, the motor can comprise the Maxon brushless EC-max 22 DC motor 36. For the preload motor 36 in the illustrated embodiment, the planetary gearhead 6 with, for example, a reduction ratio of 128:1 is used to reduce the rotational speed and increase the torque of the leadscrew 66. The torque transmission starts at the brushless DC motor 36, when the paired planetary gearhead 36 turns the leadscrew 66, thereby moving the leadscrew nut 62 forward or backward along the longitudinal direction. The leadscrew nut 62 is threaded while the linkage slider 64 floats freely on the leadscrew 66. The leadscrew 66 and the leadscrew nut 62 are fastened with three shoulder screws that provide a gap for the preload compliance springs 60. As the leadscrew 66 moves, the nut 62 compresses the dual preload springs 60. The preload springs 60 then apply a force to the base of the actuation arms 54, 56. The lateral distance of the platform 10 from a downhole wall is controlled by moving the leadscrew nut 62 along the longitudinal direction. The preload force on the treads 28 pushes the arms 54, 56 downward towards the longitudinal axis, which in turn compresses the springs 60 and applies pressure on the loadcell 68 embedded within the leadscrew nut 62. The applied pressure on the loadcell 68 allows for a measurement of a preload force of the tread 28 against the downhole wall. The objective is to maintain a constant preload value by controlling the operating current of the drive motor 34, and reading the load values from the embedded loadcell 68.
The preload subsystem has both active and passive compliance. The passive compliance is in the preload springs 60 which float between the leadscrew nut 62 and the linkage slider 64 allowing the linkage arms 54, 56 some freedom of movement even when the nut 62 is fixed in position. The active compliance is in the constant adjustment of operating current of the drive motor 34 according to the readings from the loadcell 68 embedded in the leadscrew nut 62 and keeping the preload value within an optimal range.
In an alternative embodiment, a limit switch can be positioned in the housing 32 of the drive module 14. The limit switch can be triggered when the leadscrew nut 62 is in the fully collapsed position and is used mainly for homing purposes. After the homing procedure is complete, the position of the limit switch can be known, for example, with the treads 28 in a fully-retracted position. The drive motor 34 can include hall sensors in certain embodiments. Using pulse-counting on the hall sensors, the fully extended position of the nut 62 can be calculated within an on-board processor. Software executing in the computing module 16 can implement soft stops before the leadscrew nut 62 reaches two integral positions.
Referring to
As shown in
Transversal of an XN-nipple requires at least two drive modules, since one of the drive modules needs to be extended and preloaded against the pipe wall to support the platform 10, while the other drive module is retracted to pass through the constriction of the XN-nipple. No matter how many drive modules are incorporated into a different configuration of the platform 10, the process of passing through a constriction remains the same. Each drive module retracts and passes through the XN-nipple while being supported by the other drive modules. Such retraction and extension of arms 54, 56 and treads 28, 30 can be performed for each drive module until the end of the platform 10 clears the constriction of a narrow downhole environment such as an XN-nipple.
For the drive modules 14, 18, power to the motor 36 can be supplied by at least one battery internal to the drive modules 14, 18. The battery can be rechargeable. Alternatively, for any drive module attached to the connector 20, such as the drive module 18 in
Referring to
Each end of the computing module 16 is connected to an adjacent drive module 14, 18, respectively. The motor controller can be directly connected to the drive motor 34 of an adjacent drive module, such as the drive module 14. Accordingly, signals from the motor controller are communicated to the drive motor 34 to control the application of electricity from the battery of the drive module 14 to the drive motor 34. In an alternative embodiment, the motor controller and the drive motor 34 can be connected to respective wireless communication units. Using the wireless communication units, the motor controller can wirelessly control the drive motor 34 of the drive module 14. The wireless control can be performed using WIFI, BLUETOOTH, or other known communication protocols.
Using the motor controller and the core processing unit, the computing module 16 can perform local, closed loop motion and preload control by virtue of the logic being implemented by the code executing in the processor. In conjunction with data gathered from the sensor module 12, the platform 10 implements autonomous position estimation of the platform 10, downhole feature detection, and downhole feature navigation, or, in certain implementations, semi-autonomous downhole feature navigation in response to commands received from a remote user. Using the data gathered from the sensor module 12, the code executing in the processor of the computing module 16 determines a feature in an upcoming portion of the downhole environment. The code determines a width of the upcoming portion of the downhole environment from the feature. The computing module 16 uses first predetermined logic implemented by the code executing in the processor. By using the first predetermined logic, the computing module 16 generates a first signal, transmitted to the drive modules 14, 18, which causes the arms 54, 56 and treads 28, 30 to extend or retract in order to preload the treads 28, 30 against the walls of the downhole environment to fit the mobility platform 10 into the upcoming portion. The computing module 16 uses second predetermined logic implemented by the code executing in the processor. By using the second predetermined logic, the computing module 16 generates a second signal, transmitted to the drive modules 14, 18, to rotate the treads 28, 30. The treads 28, 30 are preloaded against the walls of the downhole environment. Accordingly, the mobility platform 10 advances into the upcoming portion of the downhole environment.
Referring to
The processor 85 includes a wireless communication device 86 for wirelessly transmitting the distance data and images to the computing module 16. In addition, the wireless communication device 86 receives control signals from the computing module 16 for controlling the components within the sensor module 12. The wireless communication device 86 has an antenna for transmitting and receiving signals using WIFI, BLUETOOTH, or other known communication protocols.
The housing 72 also includes a ring 88 of light emitting devices, such as light emitting diodes (LEDs), incandescent lights, or other known light emitting devices. The ring 88 extends around the longitudinal axis of the sensor module 12, and is configured to emit light which is then diffused by the light diffusor 78. The ring 88 and light diffusor 78 illuminate the frontward direction of the sensor module 12, allowing the camera 80 to capture images in the frontward direction of the platform 10.
Each ToF sensor 76, as a range sensor, can emit signals through the aperture 74, in a range 92 represented in
Referring to
The present disclosure also includes a system having at least the mobility platform 10 and a control apparatus 94, shown in
The display 96 can display images from the camera 80, and can also display distance data from the measurements of the ToF sensor 76. The wireless antenna 98 is configured to operate at the frequency of the wireless communications of the computing module 16. Through the wireless antenna 98, the control apparatus 94 can communicate with the computing module 16 using WIFI, BLUETOOTH, or other known communication protocols. The hand-held controller 102 can be a teleop joystick, resembling a game controller, for instructing the mobility platform 10 to move forward or rearward.
The present disclosure also includes a method 200 for operating the mobility platform 10. The method 200 includes the step of interconnecting a plurality of modules to form the mobility platform 10, including a sensor module, a drive module, and a computing module in step 210. The step of interconnecting can include physically joining discrete modules with a rigid coupling or a joint which allows relative angles to be achieved from one module to a next during traversal of a downhole environment. The method includes deploying the so-connected modules as a unified mobility platform 10 into a downhole environment in step 220. Once in the downhole environment, the method includes detecting a feature of the downhole environment in step 230, determining a width of an upcoming portion of the downhole environment in step 240, and extending or retracting tractor treads from a drive module in step 250 in order to fit the mobility platform 10 within the upcoming portion of the downhole environment. Each of these steps can be implemented using the modules described above. The method proceeds with the mobility platform 10 advancing into the upcoming portion of the downhole environment in step 260.
Portions of the methods described herein can be performed by software or firmware in machine readable form on a tangible (e.g., non-transitory) storage medium. For example, the software or firmware can be in the form of a computer program including computer program code adapted to cause the modular mobility platform to perform various actions described herein when the program is run on a computer or suitable hardware device, and where the computer program can be embodied on a computer readable medium. Examples of tangible storage media include computer storage devices having computer-readable media such as disks, thumb drives, flash memory, and the like, and do not include propagated signals. Propagated signals can be present in a tangible storage media. The software can be suitable for execution on a parallel processor or a serial processor such that various actions described herein can be carried out in any suitable order, or simultaneously.
It is to be further understood that like or similar numerals in the drawings represent like or similar elements through the several figures, and that not all components or steps described and illustrated with reference to the figures are required for all embodiments or arrangements.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “contains”, “containing”, “includes”, “including,” “comprises”, and/or “comprising,” and variations thereof, when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
Terms of orientation are used herein merely for purposes of convention and referencing and are not to be construed as limiting. However, it is recognized these terms could be used with reference to an operator or user. Accordingly, no limitations are implied or to be inferred. In addition, the use of ordinal numbers (e.g., first, second, third) is for distinction and not counting. For example, the use of “third” does not imply there is a corresponding “first” or “second.” Also, the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” “having,” “containing,” “involving,” and variations thereof herein, is meant to encompass the items listed thereafter and equivalents thereof as well as additional items.
While the disclosure has described several exemplary embodiments, it will be understood by those skilled in the art that various changes can be made, and equivalents can be substituted for elements thereof, without departing from the spirit and scope of the invention. In addition, many modifications will be appreciated by those skilled in the art to adapt a particular instrument, situation, or material to embodiments of the disclosure without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiments disclosed, or to the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.
The subject matter described above is provided by way of illustration only and should not be construed as limiting. Various modifications and changes can be made to the subject matter described herein without following the example embodiments and applications illustrated and described, and without departing from the true spirit and scope of the invention encompassed by the present disclosure, which is defined by the set of recitations in the following claims and by structures and functions or steps which are equivalent to these recitations