The present invention relates generally to monitoring a water vapor transfer (WVT) device used in a fuel cell system, and more particularly to using one or more hydration models to permit in-situ monitoring and evaluation of performance characteristics of the WVT device.
Fuel cells, particularly proton exchange membrane or polymer electrolyte membrane (in either event, PEM) fuel cells, require balanced water levels to ensure proper operation. For example, it is important to avoid having too much water in the fuel cell, which can result in the flooding or related blockage of the reactant flowfield channels. On the other hand, too little hydration limits the conductivity of the ion-transmissive membrane that is disposed between catalyzed electrodes; this high ionic resistance can lead to poor electrical performance, as well as premature cell failure. One popular way to promote proper levels of humidification or related water balance within the fuel cell is through one or more WVT units or devices (also referred to as a cathode humidifier unit, membrane humidifier, fuel cell humidifier or the like). In a typical WVT unit configuration, wet-side and dry-side reactant flowpaths (for example, a cathode exhaust and a cathode inlet) are in moisture-exchange communication with one another through a membrane media in the WVT unit such that excess moisture leaving the cathode exhaust may diffuse through the media to the drier flowpath on the cathode inlet. Examples of WVT units may be found in U.S. Pat. Nos. 7,749,661, 7,875,396 and 8,048,585, all of which are assigned to the assignee of the present invention and the entire contents of which are herein incorporated fully by reference.
In situations where numerous fuel cells are arranged as part of a module, stack or related larger assembly of fuel cell system components, a good measure of an overall humidification level for the various cell membranes can be derived from a relative humidity sensor placed in the cathode inlet gas stream. This measurement is used in conjunction with other factors, for example, cathode inlet air flowrate, cathode inlet temperature and cathode inlet pressure, to estimate the water transfer rate (WTR) of the WVT unit as one indicia of its performance.
There are other ways of acquiring humidity information besides using the aforementioned sensors. One way takes advantage of a fuel cell's inherent high frequency resistance (HFR), which is a directly-measurable property related to the ability of protons to pass through the cell's ion-transmissive membrane; this mobility is in turn is a function of the level of humidification of the cell. One approach to using HFR as a way to estimate and control cathode inlet and outlet flow humidities may be found in U.S. application Ser. No. 12/622,212, filed on Nov. 19, 2009 and entitled Online Estimation of Cathode Inlet and Outlet RH from Stack Average HFR, which is owned by the Assignee of the present application and incorporated herein by reference.
While determining an HFR between stack terminals may provide a good measure of average stack membrane relative humidity for helping to meet stack efficiency targets, it is not sufficient for identifying issues related to WVT unit degradation or wear. The conventional way of characterizing WVT unit degradation is to perform off-line testing of the unit while on a component test stand. This necessitates removing the WVT unit from the fuel cell system, testing it on the component test stand and reinstalling the unit back in the system; such an approach requires a lot of WVT unit downtime (for example, about 48 hours). Consequently, performing frequent off-line testing of fuel cell systems—such as those contemplated for vehicular applications—as a way to determine unit degradation is not practical.
According to one aspect of the invention, a method of in-situ WVT unit degradation detection or estimation includes using a combination of a backward-looking (i.e., reverse) model and a forward-looking model. In the present context, in-situ activities are those that are conducted without requiring the WVT unit to be removed from the fuel cell stack or system with which it is operative; as such, measurements and related determinations or predictions may be made while the fuel cell stack or system is operative, or at least without having to remove or otherwise decouple the WVT unit from the remainder of the fuel cell system. Using such models (the first for the unit itself and the second for stack HFR and hydration) as a basis for stack water management is a more accurate way to estimate and control relative humidity for both stack inlet and outlet conditions than through a mere averaging technique. For example, a loss in WVT unit effectiveness at any given vehicle operating condition or time (including, for example, historical operational data) generated by the first model based on WTR feedback coupled with operating condition information can be input into the second model which includes an algorithm to estimate both inlet and outlet relative humidity values of the stack; in one form, the second model may use expected maximum power operations conditions of the fuel cell stack, including temperatures, pressures and flows. Such estimation may form the basis for online control of the fuel cell system, as well as provide indicia of when WVT device service may be warranted. The use of the two models working in conjunction with one another helps compensate for situations where sensed values are prone to inaccuracies, such as due to sensor failure (for example, a humidity sensor is prone to failure when being exposed to liquid water).
According to another aspect of the invention, a method of servicing a WVT unit (also referred to as a WVT device) used in a fuel cell system is disclosed. The method includes, in addition to providing in-situ a WVT device water transfer rate and estimating a reduced WVT device effectiveness, estimating the WTR at maximum power conditions at a given vehicle life and comparing the estimated WTR with an initial Beginning of Life (BOL) WTR, and servicing the WVT device when a difference in the values determined by the compared estimations exceeds a predetermined threshold.
According to another aspect of the invention, a WVT device for use in a fuel cell system includes one or more dry side flowpaths, one or more wet side flowpaths, a membrane placed relative to the dry and wet side flowpaths such that upon passage of relatively dry and relatively wet fuel cell reactant through the respective flowpaths, an exchange in humidity occurs between the dry and wet reactant streams. The device also includes one or more sensors to measure WTR information, as well as a controller configured to estimate a reduced device effectiveness and estimate a WTR for the device, as well as to estimate a WTR loss in the device.
The following detailed description of specific embodiments can be best understood when read in conjunction with the following drawings, where like structure is indicated with like reference numerals and in which:
Referring first to
A stack humidity sensor S provides in-situ WTR feedback of WVT unit 60. Similarly, a resistor R may be connected across the stack 20. Controller 70 uses values obtained by sensor S and resistor R to measure respectively inlet relative humidity RHin of stack 20 and HFR. These measurements may form the basis of the two models discussed above. In particular, at least one of such measurements, in conjunction with water specie balance, can be used to estimate a humidity profile that includes outlet relative humidity RHout of stack 20. The resistor R may be particularly useful in situations where the sensor S fails to operate correctly, such as due to the presence of liquid water. Such backup measurement is particularly useful because failure circumstances are difficult to diagnose, and often occur during vehicle warm-up and vehicle idle to high power transients. Furthermore, an estimate of RHout based on water specie balance is very sensitive to temperature and stoichiometry; as such, errors in temperature, air flow or current measurement may limit the ability to provide proper stack humidification control absent a fallback measurement. More particularly, in such situations where the sensor S is not available, the stack HFR measurement from resistor R, which is based on HFR-λ-RH relationships such as described below and in the aforementioned U.S. application Ser. No. 12/622,212, can be used to estimate the in-situ WTR.
Referring next to
In the present context, the reverse nature of WVT model 120 amounts to estimating a loss in WVT unit effectiveness εt based on rearward-looking (i.e., past) vehicular data (mostly at low stack power conditions) in the form of the above operating condition information 110 and in-situ WTR feedback information 100 where the effectiveness εt is the ratio of the actual mass transfer rate of humidity to the maximum possible mass transfer rate of humidity that would be realized in a counter-flow mass exchanger having an infinite membrane area. Moreover, this measure of effectiveness εt depends on the number of mass transfer units, a non-dimensional ratio of the product (also called product value UA) of the mass transfer coefficient U and membrane area A to the minimum mass flow rate on a dry basis of the dry stream and the wet stream flowing through the dry side and the wet side of the WVT unit 60, respectively. This will be discussed in more detail below. A third non-dimensional parameter employed in the model is a capacity ratio CR, which is the ratio of the minimum mass flow rate on a dry basis of the wet side flow of the outlet flowpath 44 and the dry side flow of the inlet flowpath 42 of the WVT unit 60 to the maximum mass flow rate on a dry basis of the wet side flow of the outlet flowpath 44 and the dry side flow of the inlet flowpath 42 of the WVT unit 60. The capacity ratio CR may be expressed as:
The reverse WVT model 120 cooperates with controller 70 to adjust the position of one or more valves (not shown) that may be used to control the amount of water provided to the cathode inlet flowpath 42 as a way to control the desired amount of water transfer and related fuel cell humidity in the various membranes 67.
In particular, the calculated reduced effectiveness εt taken from the reverse WVT model 120 is next used, along with the expected maximum stack power operating conditions, in the forward WVT model 130 to project the WTR at maximum power at the given vehicle life time WTRmax
In one preferred form, the reverse WVT model 120 and the forward WVT model 130 may be implemented on-line in the control software that is loaded into controller 70. The difference 140 between the predicted BOL water transfer rate WTRmax
Furthermore, the forward WVT model 130 with the reduced mass transfer coefficients estimated real time can be adapted in the stack RH controls via controller 70 to improve stack operating conditions, resulting in enhanced stack performance and durability. For example, in scenarios where stack operates under greater than 100% cathode outlet RH conditions, HFR response does not have enough resolution for stack RH control, such forward WVT model will be used as a primary tool for stack RH control. Improving the WVT model WTR prediction by including WVT membrane material degradation can result in more accurate stack cathode outlet RH prediction and control, thus enhancing stack performance and durability. When the degree of WVT on-line degradation at maximum power ΔWTRtlifemax
For certain operating conditions for a given design of WVT unit 60, the amount of water transferred can be estimated using the relationships between the number of mass transfer units, the effectiveness, and the mass flow rates of streams established for heat exchanger designs. The well-established relationships between the heat transfer effectiveness and the number of heat transfer units for heat exchanger designs is available for use based on the analogy between heat transfer and mass transfer, as would be readily apparent to those skilled in the art.
As discussed with more particularity in the aforementioned U.S. application Ser. No. 12/755,315, the water vapor transfer performance of the WVT unit 60 is modeled using Equations (3) through (8) therein (which form the basis for dependent original claims 5 through 10 of the present application). Referring with particularity to
In the reverse WVT model 120, the degradation factor Kdeg,t at any given vehicle life can be obtained by minimizing the difference between the predicted water transfer rate Nw and the measured water transfer rate from a RH sensor based on the past vehicle data. If the WVT water transfer rate from RH sensor (denoted as Nsensor,RH) is not available as an input for the reversed WVT model 120, the stack HFR measurement (such as depicted in
HFR based estimation of internal humidification of stack 20 offers a “stack-as-sensor” approach that directly measures the internal state of MEA hydration. HFR is a strong function of MEA hydration λ and a weak function of temperature T, where the equations 1 and 2 below illustrate such relationships:
HFR resistance R is calculated as:
From the HFR measurement, stack temperature and stack membrane thickness, the average value of MEA hydration λ can be estimated. The correlation between MEA hydration λ and stack cathode average RH are well-known, as evidenced by the graph in
It is noted that terms like “generally”, “preferably,” “commonly,” and “typically” are not utilized herein to limit the scope of the claimed invention or to imply that certain features are critical, essential, or even important to the structure or function of the claimed invention. Rather, these terms are merely intended to highlight alternative or additional features that may or may not be utilized in a particular embodiment of the present invention.
For the purposes of describing and defining the present invention it is noted that the terms “substantially” and “about” are utilized herein to represent the inherent degree of uncertainty that may be attributed to any quantitative comparison, value, measurement, or other representation. These terms are also utilized herein to represent the degree by which a quantitative representation may vary from a stated reference without resulting in a change in the basic function of the subject matter at issue.
Having described the invention in detail and by reference to specific embodiments thereof, it will be apparent that modifications and variations are possible without departing from the scope of the invention defined in the appended claims. More specifically, although some aspects of the present invention are identified herein as preferred or particularly advantageous, it is contemplated that the present invention is not necessarily limited to these preferred aspects of the invention.