The present invention relates to a system, apparatus and method for deriving models of blood flow in vessels based on a sequence of images matching the derived models with standard blood vessel models to automatically measure properties of blood flow, identify anomalies, and visualize the results for further consideration by a physician or interventionalist by exploiting the model.
Many medical imaging modalities provide information to physicians and interventionalists concerning blood flow in different vascular systems. Automated and computer-aided analysis of clinical observations has been one focus of research and development for more than a decade. This also holds for flow analysis of angiographic acquisitions. The main objective of such an analysis is the robust extraction of quantitative and characteristic flow properties from a sequence of observed images showing the dynamics of a contrast agent in the blood stream.
Such an analysis has to deal with fluid properties of blood, the heartbeat, image noise, the contrast agent injection, and other properties that cannot be fixed in clinical acquisitions or are patient-specific. Therefore, an important property of any automated flow analysis is that it be able to deal with all known influences that determine the appearance of features. However, this a-priori knowledge of such a large set of different influences is difficult to incorporate into an analysis based on the interpretation of observed features, therefore leaving most currently known methods insufficiently robust for clinical usage.
The extraction of functional information from diagnostic acquisitions of the vascular system that image the advance of contrast agent through a vessel subsystem can provide a primary measurement of these influences. For example, for stenosis grading, the pressure decrease over the stenosis is of major interest to the treating physician. For aneurysm grading, the amount of blood that passes by the aneurysm without taking a detour through the aneurysm might be of interest, whereas for a bifurcation the fraction of flow into the branches is important functional information. The case at hand dictates what functional information is relevant. All known algorithms for quantitative blood flow assessment are based on a simple feature analysis such as the arrival time of a bolus of injected contract material and are unspecific as well as insufficient for the assessment of complex vessel configuration.
Blood flow measurements are essential for assessing the severity of diseases in arteries or veins (e.g. stenoses or aneurysms). The advance of contrast agent can be imaged by interventional x-ray, Ultrasound, repeated acquisitions using computed tomography or magnetic resonance imaging and other modalities. Examples are given for interventional x-ray; however, this is by way of example only and does not imply any limitation to x-ray modalities.
In a minimally-invasive procedure, an interventionalist inserts a catheter into the vessels of interest and injects a contrast agent to make the blood flow visible in an x-ray sequence thereof. Subsequently, the physician can assess the blood flow by a visual inspection of the spreading of the contrast agent in an acquired x-ray sequence. For the optimal visual impression of the fluid dynamics in the x-ray sequence, image pre-processing is required. For example, the removal of background noise is essential since it results in unsatisfactory visual impression. This applies, in particular, to flow sequences acquired at high frame rates because low image quality is obtained due to the low frame dose that has to be used in order to keep the overall patient dose expectable. One common noise suppression method is temporal filtering in which a given number of frames are weighted and averaged.
Up to now, signal processing has been performed with a fixed parameter set without accounting for the patient's individual blood flow. As a result, the visual impression of the fluid dynamic effects can be disturbed by inappropriate parameters. In the case of temporal filtering, the strength of temporal filtering is crucial. If the filtering strength is chosen too high, the bolus of contrast agent radically changes its position during imaging. As a result, a blurred bolus is displayed and important functional information is lost. Hence, the strength of temporal filtering has to be adapted to the actual flow speed, which is highly patient-, disease-, and organ-dependent. Furthermore, contrast agent mainly arrives in a bolus of high concentration and the visualization of observations is often tuned to show this bolus arrival whereas much diagnostically relevant information is contained in microflow phenomena which manifest in local, smaller variations of contrast agent concentration. These are often obscured by the major contrast agent bolus and methods to reveal and visualize microflow phenomena are desired.
Functional information allows a direct measurement of the impact of a disease on the human body and while not normally available is highly desirable. Thus, there is a growing demand for the extraction of functional information from medical imaging. However, blood flow analysis is not clinically routine because the information that can be automatically obtained from contrasted x-ray images or other modalities is not yet sufficient.
The system, apparatus and method of the present invention provide specific flow analysis based functional information concerning the underlying physical blood flow of an individual, i.e., parameters of the blood flow of a specific patient in an imaged vascular subsystem of interest. The flexible incorporation of a-priori knowledge into the blood flow analysis of the system, apparatus and method of the present invention is a paradigm shift from the prior art computational analysis of features to a new model-based functional analysis based on suitably selected prediction models.
In a first embodiment, a priori knowledge is derived from fluid dynamics and is complemented by available patient-specific information obtained from a sequence of one or more blood flow images, wherein the images are used to adapt a suitably selected model of the behavior of blood flow to the real physiological process represented by the sequence of patient blood flow images. As a basic advantage of the present invention, it is no longer necessary to formulate and implement feature analysis algorithms to explain all possible deviations of an observation (sequence of blood flow images obtained from a patient). Instead, using the model-based approach of the present invention, different influences are incorporated to allow the prediction of the wide range of observations and features that can be encountered in diagnostic acquisitions. The approach of the first embodiment of the present invention offers the advantage of a well-defined possibility to include all a-priori knowledge on the observed process into the analysis over prior art computational feature analysis.
The further embodiments focus on the beneficial usage of extracted flow information for visualization and the presentation to observers in an easily accessible way. Different information and phenomena are either extracted and enhanced or filtered out and based on any deviations from predictions are brought to the attention of the physician/interventionalist such that further visualization of microflow phenomena (more detailed visualizations of identified anomalous flows) can be accomplished and visually compared by the physician/interventionalist with expected values.
In a second embodiment, contrast agent propagation contained in a sequence of diagnostic images is compared to modeled physiologic flow patterns that are matched to the observed sequence. The visualization and quantification of respective residual deviations is used to first identify anomalous flows and then to perform detailed analysis, such as comparison of the parameters extracted to distributions of expected values in the target vascular structures.
In a third embodiment, adaptive signal pre-processing (filtering) is applied during a filtering step to account for a specific patient's blood flow velocity, total blood flow, and other relevant flow parameter. An alternative includes adaptive filtering that depends on the replay speed in slow-motion replays.
It is to be understood by persons of ordinary skill in the art that the following descriptions are provided for purposes of illustration and not for limitation. An artisan understands that there are many variations that lie within the spirit of the invention and the scope of the appended claims. Unnecessary detail of known functions and structure may be omitted from the current descriptions so as not to obscure the present invention. Examples are for expository purposes only and are not intended as limitations on the scope of the invention.
In a first embodiment, the system, apparatus and method of the present invention provide an exemplary set of mathematical flow models covering the important vessel configurations and pathologies of interest to a physician/interventionalist and provide a manual or automatic selection technique of an appropriate model for a case under consideration. Each model comprises a parameter set that covers a set of specific flow parameters of a vessel topology or pathology. The aim of the model-based analysis of a preferred embodiment is to optimize this set and provide the parameters to the user when a model gives a prediction that is as similar as possible to an observation. Thus, the optimized model parameters comprise the clinically relevant information for diagnosis and outcome control for a vessel structure under consideration. In an alternative preferred embodiment, complex vessel systems can be analyzed by connecting several tailored models. Model selection depends on the vessel topology depicted in a sequence of at least one image and can either be performed manually or automatically.
Referring now to
In a preferred embodiment, each model comprises a parameter set that spans the specific flow parameters of at least one of a vessel configuration and a vessel pathology. The present invention optimizes model parameters to reflect the clinically relevant information for diagnosis and outcome control for the vessel structure under consideration.
In an alternative preferred embodiment it is possible to connect several tailored models for analysis of a particular complex vessel system configuration. The resulting case-specific flow models and their selection enable blood flow assessment for any physiologically relevant structure, which is a prerequisite for such an analysis to be applicable to all different vascular configurations that can be observed in a patient. The model selection procedure of the present invention employs a vessel topology depicted in diagnostic imaging, i.e., a sequence of images.
For the model-based flow analysis of human blood flow, the main problems that can now be dealt with are the pulsatile nature of blood flow, all non-Newtonian fluid properties of blood with strong inter- and intra-patient variabilities and the influence of the contrast agent injection itself.
Thus, the model-based flow analysis paradigm provided by the system, apparatus, and method of the present invention incorporates required features into an algorithmic framework that allows its use for the analysis of clinical observations captured as a sequence of images. It is assumed in this model-based analysis paradigm that model parameters are valid and explain a real-world observation such that a plausible model prediction using these parameters results in features that have been observed previously.
A preferred embodiment of a method for the model-based flow analysis is illustrated in
The model instance 106 predicts 107 features 108 dependent on flow properties when configured with boundary conditions. An adaptation loop 110-113 modifies flow properties until the predicted features 108 match, within a pre-determined tolerance, the extracted features 104 from the observation 101.
Once created, an adapted model instance 106 is available that can now predict features when controlled by flow parameters. This prediction is the characteristic step of the model-based analysis of the present invention because here, all available a-priori knowledge is included in the process. The comparison of features 104 extracted 102 from an observation 101 and the predicted 107 features 108 gives a measure of deviation or prediction error for the model. Relevant flow parameters are selected depending on the target application and form a search space. A suitable optimization algorithm is applied to adapt 110 these flow parameters 112 to reduce and finally minimize the prediction error. According to the model-based paradigm of a preferred embodiment of the present invention, those parameters that minimize the residual error between observation and model prediction are the result of the analysis and can be provided 114 to an application 115.
The quality of these results then depends on the validity and plausibility of the prediction and configuration of the model. In a preferred embodiment, these two essential properties are tuned for each application without the need to modify the analysis framework itself.
Model-based analysis determines a configured instance of a model that is able to predict and, therefore, explain an observation using plausible a-priori knowledge to deal with complex observations. In the creation of such a model-based analysis, in a preferred embodiment, every effect that should be represented in the analysis is included in the prediction 107 of features 108.
An example of a method 100 according to a first embodiment is given for interventional x-ray but is not meant to limit the method to this modality:
Q(t)=v(t)πR2. (1)
Referring now to
Use of Models for Flow Visualization
A second embodiment, see
In the model-based visualization framework of the second embodiment, selected parts of a real observation 201 are explained by a configured model 206 and can be either suppressed or specially handled. The difference 210 between a predicted observation 208 and a real observation 201 contains all information filtered by the a-priori knowledge available in the model prediction step 207.
For the model-based visualization scheme of the second embodiment, the model instance is fixed. Boundary conditions on vascular geometry are again extracted 202 from the real observation. For a flow analysis of contrasted angiograms, this prediction includes the local amount of contrast agent in vascular subsystems of interest. Furthermore, dynamic flow parameters are fixed as well. These are usually provided by a prior flow analysis. The model instance 206 provides increased prediction abilities in this second embodiment. The filtering or selection of relevant contents of the visualization is obtained by a subtraction from the true observation 201 of the model-predicted observation 208. This difference contains all flow phenomena that have not been explained by the model instance itself 206. Advantageously, the model instance 206 is created such that it can explain and predict physiologic flow phenomena. The difference 210 of the observation predicted 208 by the model instance 206 and the real observation 201 then contains all deviations from normal physiologic flow. A fusion 213 of original observation 201 with residual differences of the physiologic prediction is then used in the second embodiment to enhance, e.g., color-code, all pathologic or inexplicable flow phenomena.
The enhanced visualization 214 of these differences in the second embodiment is a significant advance over the prior art because, usually, all microflow effects are obscured by the contrast agent in physiologic flow patterns and, therefore, the presence of the contrast agent strongly attenuates the vascular structures of interest. The fusion and image filter 213 parameters that are applied in a second preferred embodiment of such a visualization 214 are beneficially taken from the flow parameters themselves. In particular, the expected temporal dynamics of the contrast agent are used to control 205 noise reduction filters in this fusion step 202, in a third embodiment disclosed below.
Referring now to
In an example of the second embodiment, see
An alternative second embodiment introduces color (not shown) that allows enhancement of the appearance of greylevel angiograms without modification of the original diagnostic information and greatly improves the attention-getting quality of the colored angiogram as well as its diagnostic usefulness. For such a color visualization, in the diagnostic observation I(x,y,t), the greylevels I correspond to the local concentration of contrast agent at a position (x,y) at time instance and, therefore, image frame t. The model prediction provides an image sequence P(x,y,t) that contains all the predicted contrast agent concentrations P provided by the model at positions (x,y) and time t. The difference D (x,y,t) of these two image sequences therefore contains all non-explained contrast agent variations. In a preferred visualization, the original acquisition I is used to determine the local intensity of a visualization and the local difference D is used to select the coloration, preferably without a modification of the intensity itself.
In yet a further alternative second embodiment, a synthetic view of an imaged vascular structure is created. For this, the extracted geometry is displayed as a sketch of the vasculature. Color schemes can be used for each vessel segment with a selected flow parameter. The volume flow or the degree of pulsatility is a possible local parameter in the flow tree that can be visualized in such an overview sketch. In particular, unexpectedly high or low values can be indicated by a classification of extracted data in statistical distributions obtained from physiologic vasculatures. Such a colored sketch can either serve as an overview for the state of subtrees in a complex vasculature or as a function of the runlength in a pathologically affected vessel. In contrast to the first alternative embodiments, here a new and synthetic display is created from the model and extracted parameters.
Use of Flow and Replay Parameters for Filtering
Image filtering to reduce noise and artifacts is regularly applied to all medical image data. However, filtering with improper technical parameters can obscure important observations or even create artifact structures that are visible to the observer's eye but have never been in the acquired data. A third embodiment addresses these issues by using information concerning individual patient blood flow speeds (that vary over time due to heart beat) to tune filters such that the images contain as little noise as possible but on the other hand always show contrast agent bolus motion without blurring (which is one of the most frequent image quality degradations that a filter can introduce when not properly tuned). In the third embodiment image (pre-) processing and its parameters are dependent on an estimated flow velocity, total blood flow, or any other relevant flow parameter of a patient's anatomy depicted in a sequence of at least one image, e.g., x-ray.
An example of the third embodiment is the reduction of image noise by temporal filtering. Here, the strength of temporal filtering depends on the blood flow velocity. The filtering strength can vary with time and location since the flow velocity is time-dependent due to pulsatility and the flow velocity strongly varies in different vascular systems that can be observed.
A preferred embodiment of a method according to the third embodiment comprises the steps of:
In an alternative third embodiment, the strength of the applied noise filters further depends on the replay speed that a user has selected when a slow motion replay is offered by the apparatus. The strength of temporal filters can be increased for faster replays giving a noise-free visualization whereas for lower replay speeds, the temporal filter strength is reduced to avoid a respective blurring that becomes more and more obvious when individual frames are seen in slow motion.
Referring now to
Referring now to
While the preferred embodiments of the present invention have been illustrated and described, it will be understood by those skilled in the art that the system, apparatus and methods as described herein are illustrative and various changes and modifications may be made and equivalents may be substituted for elements thereof without departing from the true scope of the present invention. In addition, many modifications may be made to adapt the teachings of the present invention to a particular situation without departing from its central scope. Therefore, it is intended that the present invention not be limited to the particular embodiments disclosed as the best mode contemplated for carrying out the present invention, but that the present invention include all embodiments falling within the scope of the claims appended hereto.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB2006/054279 | 11/15/2006 | WO | 00 | 6/6/2008 |
Number | Date | Country | |
---|---|---|---|
60748808 | Dec 2005 | US |