The present invention relates to automotive transmissions, and more particularly to controlling kickdown shifts in automotive transmissions based on accumulator feedback.
Due to relatively high instances of system inertia and delay in automotive transmissions, feedback control of various components in automotive transmissions is not appropriate for certain transient elements. Control of transmission turbine speed during a kickdown shift is one example of a transient condition in automotive transmissions. During a kickdown shift, such as a drop from 4th gear to 3rd gear, or from 3rd gear to 2nd gear, the speed of the turbine must increase to correspond to a targeted gear ratio. Additionally, the acceleration of the turbine must be controlled to correspond to a targeted acceleration according to current vehicle acceleration. In such transient cases, feedforward control can be used to anticipate system changes. For example, mixed feedforward and feedback control can be used for a smooth kickdown shift without causing significant “feel” issues for the driver, thereby improving overall shift quality. Shift quality has been shown to be an important factor for driver satisfaction.
Automotive transmissions may use accumulators to absorb apply pressure fluid during certain shift operations. The presence of the accumulator reduces sensitivity of torque variations in torque phase during shifts. However, accumulators cause the pressure response to be slower and more difficult to predict since the solenoid current directly controls the flow rate and indirectly controls the pressure. With reference to
Target volume control can be determined according to desired volume change due to turbine inertia force and/or desired volume change due to engine inertia force. Conventionally, empirical methods are used to determine target volume control. For example, change in volume can be calculated according to relationships between turbine inertia force, engine inertia force, accumulator pressure, and/or release element clutch pressure. However, such empirical methods are not particularly accurate in practice because turbine acceleration and engine acceleration each belong to independent dynamic systems. Therefore, the release element clutch cannot directly control engine acceleration. When the release element clutch is used to control turbine acceleration, turbine torque from the engine must be assumed as a fixed input through the torque converter and is a function of slip speed between the engine and the turbine.
If only the engine dynamic system is considered, the engine resistance torque, or turbine torque, can be changed to control engine acceleration if the throttle opening is fixed. However, turbine torque, or engine resistance torque, that is required to control the engine acceleration into a desired acceleration is different from the fixed turbine torque when turbine acceleration is controlled into a desired value. The control may be overcompensated because the torque required to change the engine acceleration is much larger than the turbine torque received from the engine. Therefore, it is desirable to provide optimized control during a kickdown shift to further improve shift quality. A continuous variable and speed-based desired acceleration method to provide consistent and accurate transmission control based in part on accumulator pressure is proposed.
A vehicle transmission comprises a plurality of gears. A torque converter assembly transmits torque between an engine and the plurality of gears through a plurality of engagement elements. A plurality of solenoids are operable to actuate the plurality of engagement elements. An accumulator is indicative of a pressure of at least one of the engagement elements. A controller calculates a torque of the at least one engagement element based on a first relationship between a volume of the accumulator and the pressure, and controls the torque based on a second relationship between the torque and a duty cycle of at least one of the solenoids.
In another aspect of the invention, a transmission control method for kickdown shifts comprises releasing a release engagement element. The release engagement element is applied when a volume of the release engagement element reaches a threshold capacity of the release engagement element. The volume of the release engagement element is decreased, thereby increasing transmission turbine speed. A volume of an apply engagement element is increased when the transmission turbine speed reaches a first threshold. A target volume of the apply engagement element is determined. The volume of the apply engagement element is controlled according to the target volume.
Further areas of applicability of the present invention will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating the preferred embodiment of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.
The present invention will become more fully understood from the detailed description and the accompanying drawings, wherein:
The following description of the preferred embodiment(s) is merely exemplary in nature and is in no way intended to limit the invention, its application, or uses.
The present invention uses a model-based approach to identify speed and torque dynamics for each transmission element during transmission shift operations. Referring now to
Kickdown shifts are controlled based on target volume control and continuous variable, speed based desired acceleration. Referring now to
During the inertia phase of a kickdown shift, the torque required for releasing an element clutch is determined. Hereinafter, all references to the release clutch refer to clutch 54 with respect to a 4-3 kickdown shift wherein the clutch 54 is the release element clutch and clutch 48 is the apply element clutch. Although the following equations refer to a 4-3 kickdown shift, it should be understood that analogous calculations can be applied to other kickdown shifts. For a 4-3 kickdown shift (from 4th gear to 3rd gear), the torque for release element clutch 54 is:
where Tt is turbine output torque, Tucl is torque at element clutch 48, αt is turbine acceleration, α0 is output vehicle acceleration, and I1 through I5 are the inertia of each transmission element clutch as indicated in
In a pulse width modulated solenoid system, the indication of clutch torque is accumulator volume. According to the relationship between the accumulator volume and the clutch pressure, equation 1 becomes:
T4c=P4CApμfReffn4C, and subsequently,
where P4C is the clutch pressure, AP is the friction material area, μf is the coefficient of friction, Reff is the effective radial, and n4C is the number of friction surfaces. The relationship between the accumulator volume and the clutch pressures is expressed as:
and
where VA is current accumulator volume, AA is accumulator piston area, KA is the accumulator spring coefficient, PA is accumulator pressure, Ppre is pre-loaded accumulator pressure, and VAmin is the minimum accumulator volume.
Equation 1 is the required clutch torque during steady state conditions. Additionally, equation 1 is the theoretical initial value for feedback controls. In a transient case, the torque change required for acceleration can be estimated by taking the derivative of equation 1 as follows:
This differential equation is discretized as:
However, torque is not the actual control actuator in the preferred embodiment. Instead, the duty cycle of the solenoid is the control force used to change the torque in the element clutches. Therefore, the relationship between clutch torque and the duty cycle of the solenoid must be determined. The relationship between clutch torque and the duty cycle of the solenoid is based in part on a relationship between accumulator pressure and the flow rate:
where QDC is the transmission oil flow rate, Va is accumulator volume, Aa is accumulator area, Ka is the accumulator spring coefficient, and P4C is the clutch pressure of clutch 54. Torque on the clutch 54 can be calculated based on accumulator pressure according to T4C=P4CApμfReffn4C, substituting the relationships between the clutch and the accumulator into the control equation, which is equation 1, results in a formulation of target volume control duty cycle flow rate as:
The first term in equation 5 is the torque required to overcome the torque input change from the torque converter. The second term is torque required to change the turbine and planetary gear inertias. Therefore,
and
where
is desired volume change due to turbine inertia force over time and
is desired volume change due to engine inertia force over time.
Input torque is equal to engine flywheel torque when the converter clutch is in lock-up and/or partial lock positions. When the converter is in an unlock position, the input torque can be calculated by a torque converter slip regression model:
T
t
i
=└C
0Nei+C1(Nei−Nti)┘Nei for Nt<0.85Ne, otherwise:
where C0 and C1 are constants, Nei is engine speed, and Nti is turbine speed.
Using the above models, the present invention determines transmission kickdown control according to a release phase 60, a target volume control phase 62, an apply element fill phase 64, and an apply element control phase 66 as shown in
(I1+4I2+I3+16I4+9I5)αt=Tt−3TUD−4T4C.
At the beginning of the kickdown shift, clutch 54 is released quickly. The clutch 54 is reapplied when the track volume V4C reaches the calculated volume from Equation 3. Then, V4C is slowly ramped down until the turbine speed reaches a desired acceleration. Thereafter, the character time of 96 is increased to satisfy the condition:
During the release phase 60, the turbine speed begins to increase from the turbine speed 68 toward the target gear speed 70 as the turbine acceleration 72 decreases.
In the target volume control phase 62, turbine speed approaches and/or reaches desired initial turbine acceleration
Actual target volume control activates according to a target gear turbine speed and desired acceleration
where τ1 is a desired time for the turbine to travel from the current gear speed to the desired gear speed and τ2 is the decal rate of the desired acceleration.
When t>τ2−tf, where tf is the required apply element fast fill clutch volume time, the apply element clutch begins to fill. As shown in
In the apply element fill phase 64, DCt is applied to the apply element clutch after Nt>Nj. In other words, as the turbine speed 68 surpasses the target gear speed 70, torque is applied to the apply element clutch. In a 4-3 kickdown shift, the apply element clutch 48 pressure is:
PUD=Tt−4T4C−(I1−2I2+I3+4I4+3I5)α0+Prs, where PUD is the apply element clutch 48 pressure and Prs is pre-loaded accumulator spring pressure. The targeted volume to achieve this pressure is
where A is accumulator piston area and KS is spring stiffness.
In the apply element control phase 66, the turbine speed 68 begins to exhibit a negative slope. The release element is fast-vented in order to rapidly dump the pressure to the release element. Torque is managed to quickly ramp the apply element to full pressure. Therefore, the release element clutch is fully released based on the values of Nt>Nj and αt−αj. In this manner, the release element is fully released and the apply element is fully applied, completing the gear change.
The description of the invention is merely exemplary in nature and, thus, variations that do not depart from the gist of the invention are intended to be within the scope of the invention. Such variations are not to be regarded as a departure from the spirit and scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
4996894 | Holbrook et al. | Mar 1991 | A |
5115694 | Sasaki et al. | May 1992 | A |
5385511 | Iizuka | Jan 1995 | A |
5612874 | Schulz et al. | Mar 1997 | A |
5646842 | Schulz et al. | Jul 1997 | A |
5722519 | Kirchhoffer et al. | Mar 1998 | A |
5758302 | Schulz et al. | May 1998 | A |
5842949 | Kuriyama | Dec 1998 | A |
6093133 | Danielsen et al. | Jul 2000 | A |
6332855 | Murasugi | Dec 2001 | B1 |