The invention concerns systems, detectors, methods and memory devices for positioning a carrier of an object within a field of view of an imaging apparatus,
EP 1 092 391 A1 discloses positioning a carrier of a human body within a field of view of an X-ray imaging apparatus depending on user input indicating amount and direction of a shift of the body after generating a first X-ray image of the human body.
It is an object of the present invention to improve the prior art. This is accomplished by what is set forth in the appended independent claims, while the appended dependent claims define advantageous modifications thereof.
The invention allows efficient three-dimensional imaging on C-arm systems Before data for 3D reconstruction can be acquired, the examined organ, for example the heart, can efficiently be positioned in the iso-center of rotation of the C-arm such that it remains in the field of view during the entire rotational scan. The positioning according to the invention is efficient regarding time and X-ray dose.
Specifically, according to a first aspect of the present invention described in claim 1, there is provided a system for positioning a carrier of an object within a field of view of an imaging unit, the system comprising:
Preferably the object is a human body and the components of the objects are at least one of: organs and bones of the human body.
Preferably the carrier is a table.
Preferably the image data represents only one image of a front view or rear view of the object.
Preferably object position data represents a three-dimensional position of an object.
Preferably it further comprises a display unit displaying an image representing anatomic model components positions and object components positions.
Preferably anatomic model components positions are average positions of the components within the object.
Preferably the imaging apparatus is a cardio-vascular X-ray system or other X-ray system.
Preferably the imaging apparatus comprises a rotatable C-arm.
According to a second aspect of the present invention, there is provided an X-ray examination apparatus comprising:
an X-ray source for exposing an object to be examined to X-ray energy;
and an X-ray detector apparatus for generating image data representing an image of the object from an imaging unit,
a system according to any of the preceding claims and
a positioning system for positioning a carrier carrying the object.
According to a third aspect of the present invention, there is provided a method for positioning a carrier of an object within a field of view of an imaging apparatus,
the method comprising:
providing image data representing an image of the object,
determining object components position data representing positions of components of the object,
matching object components positions and anatomic model components positions based on object components position data and stored anatomic model data,
receiving input data representing a component of interest,
determining position shift data representing a direction and a distance by which the carrier is to be shifted, considering the input data, anatomic model data and object components position data,
shifting the carrier based on the position shift data.
Preferably, the object is a human body and wherein the components of the objects are at least one of: organs and bones of the human body.
Preferably, the carrier is a table.
Preferably, the image data represents a front view or rear view of the object.
Preferably, object position data represents a three-dimensional position of an object.
Preferably, the method further comprises displaying an image representing anatomic model components positions and object components positions.
Preferably, anatomic model components positions are average positions of the components within the object.
Preferably, the imaging apparatus is an X-ray apparatus.
Preferably, the imaging apparatus comprises a rotatable C-arm.
Preferably, the method is used in a cardiology examination or in a neurovascular examination.
According to a fourth aspect of the present invention, there is provided a Memory device comprising stored code means adapted to produce the steps of the methods when loaded into the memory of a computer.
The usually ill-posed 2D/3D matching problem, which occurs when fitting the model to a single x-ray projection, is simplified if the patient is lying with the back on a table top generating a rear view or front view of the patient's human body. This reduces the degrees of freedom for the matching of the positions of object components (organs, bones, rips etc) in an X-ray image with a stored anatomic model. Most important for the matching are the locations of bones and ribs because they are much more opaque in x-ray images than soft tissue.
The invention simplifies patient positioning and makes a C-arm system easier to use. Since full-body anatomic models are becoming available, the proposed system can be applied especially in cardiology but also in neurovascular examinations. If the anatomic models are detailed enough to include the locations of blood vessels (e.g., coronaries or cerebral vessels), the positioning can be done even on a vessel basis instead of an organ basis.
Other aspects, features and advantages of the present invention will become more fully apparent from the claims and the following detailed description of preferred embodiments thereof which is to be taken in conjunction with the appended drawings.
The workflow according to
In
an imaging receiving interface unit (14) for receiving image data (22) representing an image (9) of the object (10) from an imaging unit (7b),
an object components position determination unit (15) for determining object components (11, 12) position data (25) representing positions of components (11, 12) of the object (10),
a memory (16) with anatomic model data stored therein, the anatomic model data representing anatomic model (9*) component positions of anatomic model components (11*, 12*) of an atomic model (10*) and image data for producing an image 9* as in
a matching unit (17) designed to generate image data (29) representing an image (as e.g. the image 9* in
an input receiving unit (19) for receiving input data (23) representing a selected component (11) of interest,
an input receiving unit (19) for receiving input data (23) representing a selected component (11) of interest,
a positioning planning unit (18) for determining position shift data representing a direction and a distance by which the carrier (8) is to be shifted, considering the input data, anatomic model data and object components position data,
an interface (20) to a positioning system (21) for shifting the carrier (8) based on the position shift data (27).
What has been described above is what is presently considered to be a preferred embodiment of the present invention. However, as is apparent to the skilled reader, it is provided for illustrative purposes only and is in no way intended to that the present invention is restricted thereto. Rather, it is the intention that all variations and modifications be included which fall within the spirit and scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
08102523.1 | Mar 2008 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB2009/050958 | 3/9/2009 | WO | 00 | 8/31/2010 |