Modeling and compensation method for the spindle's radial thermal drift error in a horizontal CNC lathe

Information

  • Patent Grant
  • 10838392
  • Patent Number
    10,838,392
  • Date Filed
    Monday, November 6, 2017
    7 years ago
  • Date Issued
    Tuesday, November 17, 2020
    4 years ago
Abstract
The invention provides a method for modeling and compensating for the spindle's radial thermal drift error in a horizontal CNC lathe, which belongs to the field of error compensation technology of CNC machine tools. Firstly, the thermal drift error of two points in the radial direction of the spindle and the corresponding temperature of the key points are tested; then the thermal inclination angle of the spindle is obtained based on the thermal tilt deformation mechanism of the spindle, and the correlation between the thermal inclination angle and the temperature difference between the left and right sides of the spindle box is analyzed. According to the positive or negative thermal drift error of the two points that have been measured and the elongation or shortening of the spindle box on the left and right sides, the thermal deformation of the spindle is then classified and the thermal drift error model under various thermal deformation attitudes is then established. Then the influence of the size of the machine tool's structure on the prediction results of the model is analyzed. In real-time compensation, the thermal deformation attitude of the spindle is automatically judged according to the temperature of the key points, and the corresponding thermal drift error model is automatically selected to apply the compensation to the spindle. The method is used to distinguish the thermal deformation attitude of the spindle in a CNC lathe, and the thermal deformation mechanism is used to predict the radial thermal drift error of the spindle.
Description
TECHNICAL FIELD

The invention belongs to the field of error compensation technology of CNC machine tools, and is specifically a modeling and compensation method for the spindle's radial thermal drift error in a horizontal CNC lathe.


BACKGROUND ART

The thermal error of machine tools is a difficult problem that has puzzled the machine tool industry for several decades. Due to the existence of the thermal error of machine tools, the problems are as follows: The machining accuracy of a single piece is not up to standard; The consistency of the parts processed in batches is poor and the rate of waste products is high; In order to reduce the thermal error, the machine tool needs a heat engine after starting, and the energy consumption is large; If the requirement of machining accuracy is high, a constant temperature workshop should be set up. These problems show that thermal error can cause a lot of adverse effects on machine tools.


At present, there are two main methods to reduce the thermal error of machine tools: the error prevention method and the error compensation method. The error prevention method is used to eliminate or reduce the heat source in machine tools by design and manufacturing, but the biggest disadvantage is its high cost. When the precision of a machine tool reaches a certain degree, the cost of improving the accuracy of the machine tool will then increase exponentially. Thermal error compensation technology, as a method to improve the accuracy and stability of CNC machine tools, has many advantages such as relatively low cost, a wide range of applications and so on.


The thermal error of a CNC machine tool mainly includes two parts: the thermal error of the feed axis and the thermal error of the spindle. The thermal error of the feed shaft can be greatly reduced through the closed loop feedback of the grating scale, but the thermal error of the main shaft lacks an effective means to restrain it. The spindle's thermal error includes the axial thermal elongation error and the radial thermal drift error. At present, scholars have carried out a lot of research into compensating for the axial thermal elongation error of the spindle, and they have tried many modeling methods, such as the multiple regression method, the neural network method, the thermal modal method, the time series method the support vector machine and so on. However, there have been few studies on modeling and compensating for the spindle's radial thermal drift error. The only similarity is where T. J. Ko analyzed the thermal bending deformation caused by the thermal gradient of a vertical machining center spindle system, in custom characterParticular behavior of spindle thermal deformation by thermal bendingcustom character, and they established the prediction model for the spindle's radial thermal error. However, there is no compensation for the spindle, let alone the determination criteria of the thermal deformation attitude of the spindle and the analysis of the influence of the size of the machine tool's structure on the prediction results of the model.


However, the spindle's radial thermal error in a CNC lathe is very important, because operators are more concerned about the X-axis accuracy of the lathe than its Z-axis accuracy. The invention is aimed at the difficult problem of the spindle's radial thermal error compensation in a CNC lathe, and proposes a method for modeling and compensating for the spindle's radial thermal drift error in a horizontal CNC lathe.


CONTENTS OF THE INVENTION

The object of the invention is to provide an effective method for modeling and compensating for the spindle's radial thermal drift error in a horizontal CNC lathe, and to solve the problem of compensating for the spindle's radial thermal error in a CNC lathe.


In order to solve the technical problem, the technical proposal of the invention is as follows: Firstly, the thermal drift error of two points in the radial direction of the spindle of a CNC lathe and the corresponding key temperature points are tested. Then, the thermal dip angle of the spindle is obtained based on the thermal tilt deformation mechanism of the spindle, and the correlation between the thermal inclination angle and the temperature difference between the left and right sides of the spindle box is analyzed using the correlation analysis method. According to the positive or negative thermal drift error of the two measured points and the elongation or shortening of the headstock on the left and right sides, the thermal deformation of the spindle is classified and the thermal drift error model for various thermal deformation attitudes is then established. Then, the asymptotic integral method is used to analyze the influence of the size of the machine tool's structure on the predicted results of the model. For real-time compensation, the thermal deformation attitude of the spindle is automatically judged according to the temperature of the key points, and the corresponding thermal drift error model is automatically selected to compensate for the movement of the spindle.


The technical proposal of the invention:


A method for modeling and compensating for the spindle's radial thermal drift error in a horizontal CNC lathe, which comprises the following steps:


Step one: measurement of the radial thermal drift error and the temperature of the key points of the spindle of a CNC lathe.


When testing the radial thermal drift error and temperature of the spindle 1 of a CNC lathe, two temperature sensors are used respectively to measure the temperatures T1 and T2 of both the left and right sides of the spindle box 2, two displacement sensors are used to measure the error in the X direction of the two location points of the detecting check bar 5 clamped by the spindle 1; during the test, the spindle 1 is first heated by rotating it at a certain speed for a few hours (e.g. 4 hours), and then the spindle 1 is stopped for a few hours (e.g., 3 hours) to cool down.


The thermal error e, of the spindle 1 in the vertical direction produces the thermal error component ei,x in the X direction, and the thermal errors e1,x and e2,X of the spindle 1 in the X direction are calculated according to the following formula:

e2,x=sin(αxdire2  (1)
e1,x=sin(αxdire1  (2)

In the above formula, αxDIR is the tilt angle of the X axis of lathe, i=1 or 2, 1 indicates the right side and 2 indicates the left side.


Step two: correlation analysis between the thermal inclination and the temperature difference of the spindle.


The thermal dip angle of the spindle 1, after being heated, is calculated using the following formula:










φ
s

=

arctan




e

1
,
x


-

e

2
,
x





sin


(

α
xdir

)


×

L
snr








(
3
)








In the above formula, φs is the thermal dip angle of the spindle 1, and Lsnr is the distance between the two error measuring points.


The relation diagram between the thermal dip φs of the spindle 1 and the difference of the two temperatures ΔT is then determined, ΔT=T1−T2, the similarity of the two curves is then analyzed; further, the correlation between φs and ΔT is calculated according to the following formula:










R


(


φ
s

,

Δ





T


)


=


Cov


(


φ
s

,

Δ





T


)





Cov


(


φ
s

,

φ
s


)




Cov


(


Δ





T

,

Δ





T


)









(
4
)








In the above formula, R is the correlation matrix between φs and ΔT, Coy (φs, ΔT) is the covariance matrix between φs and ΔT;


Step three: the error models of the spindle's radial thermal drift under different thermal deformations.


According to the sign of the two error data points, e1,x and e2,x, and the extension or shortening of the spindle box 2 on the left and right sides, the thermal deformation of the spindle 1 is divided into three categories and ten types; then δ1 is the thermal change on the left side of the spindle box 2 and δr is the thermal variation on the right side of the spindle box 2, both δ1 and δr are positive for thermal expansion and negative for thermal contraction; dcrs is the distance from the intersection point of the spindle 1 in the initial state and the deformed spindle 1 to the right side of the spindle box 2, dspl is the distance between the left and right ends of the spindle box 2, dss is the horizontal distance between the right end of the spindle box 2 and the left displacement sensor 7, dsnr is the horizontal distance between the left displacement sensor 7 and the right displacement sensor 8; When the spindle 1 has the thermal deformation attitude that δlr≥0, and the check bar 5 is close to the left displacement sensor 7 and the right displacement sensor 8, the relationship between the radial thermal drift error of the spindle 1 and the temperature is then established; the linear relationship between the thermal expansion of the left and right sides of the spindle box 2 and the temperature is expressed by the formulas (5) and (6):

δ1(t)=ζl1×(T1(t)−T1(0))+ζp2  (5)
δr(t)=ζr1×(T2(t)−T2(0))+ζr2  (6)

In the above formulas, ζl1, ζl2, ζr1 and ζr2 are the coefficients to be identified;


When the spindle 1 has the thermal deformation attitude that δlr≥0, and the check bar 5 is close to the left displacement sensor 7 and the right displacement sensor 8, the dcrs(t) for any time t can be calculated from formula (7):











d
crs



(
t
)


=




δ
r



(
t
)





δ
l



(
t
)


-


δ
r



(
t
)




×

d
spl






(
7
)







The thermal drift errors, e1,x(t) and e2,x(t), of the spindle 1 in the X direction at any time t can be calculated by formulas (8) and (9):











e

2
,
x




(
t
)


=





δ
l



(
t
)




d
ss


-



δ
r



(
t
)




d
ss


-



δ
r



(
t
)




d
spl






sin


(

α
xdir

)



-
1




d
spl







(
8
)








e

1
,
x




(
t
)


=




(



δ
l



(
t
)


-


δ
r



(
t
)



)



(


d
ss

+

d
snr


)


-



δ
r



(
t
)




d
spl






sin


(

α
xdir

)



-
1




d
spl







(
9
)







Step four: analysis of the influence of the size of the machine tool's structure on the predicted result of the model


The influence of the measurement bias of dspl and dss in the thermal drift error model on the predicted results of the model is analyzed, and the reliability of the fluctuation value of the predicted residuals within a certain allowable deviation range is analyzed using the asymptotic integration method; the expression of the function Z for the problem is described as:

Z=gx(X)=δ−δa(dspl,dss)  (10)

In the above formula, X is a random vector composed of dspl and dss, δ is the allowable deviation index, δa is the fluctuation value of the predicted residuals and is defined as:











δ
a



(


d
spl

,

d
ss


)


=





i
=
1

N










R


(
i
)


-


R
n



(
i
)






N





(
11
)








In the above formulas, R is the predicted residual of dspl and dss as random variables, which is a function of dspl and dss, Rn is the predicted residual of the model when dspl and dss are true values, and N is the number of sampling points when the thermal error is measured;


If fx(x) is a joint probability density function of X, then the probability that the fluctuation value of the predicted residuals do not fall within a certain allowable deviation range is calculated from formula (12):

pf=∫gx(x)≤0 exp [h(x)]dx  (12)

In the above formulas, h(x)=ln fx(x);


If x=(dspl*,dss*)T is a point on the surface of the limit state, at this point, then h (x) is expanded into a Taylor series and taken to the quadratic term:










h


(
x
)


=


h


(

x
*

)


+


1
2



v
T


Bv

-


1
2



(

x
-

x
*

-
Bv

)




B

-
1




(

x
-

x
*

-
Bv

)








(
13
)








In the above formulas:

υ=∇h(x*)  (14)
B=[∇2h(x*)]−1  (15)


The limit state surface Z=gx(X)=0 is replaced by a hyperplane at point x* to realize the asymptotic integration of the probability that the fluctuation value of the predicted residual error exceeds the allowable range; The First-order Second-moment Method is used to calculate the reliability index that the fluctuation value of the predicted residuals belongs in a certain allowable deviation range according to formula (16):










β
L

=



μ

Z
L



σ

Z
L



=




[



gx


(

x
*

)



]

T


Bv





[



gx


(

x
*

)



]

T


B




gx


(

x
*

)











(
16
)







The First-order Second-moment Method is used to calculate the failure probability index that the fluctuation value of the predicted residual belongs in a certain allowable deviation range according to formula (17):










p
fL

=



(

2

π

)


n


/


2





det





B





f
x



(

x
*

)




exp


(



v
T


Bv

2

)




Φ


(

-

β
L


)







(
17
)







According to the Lagrange multiplier method for solving optimization problems, the multiplier λ is introduced. From











L


(


x
*

,
λ

)





x


=
0

,





which is one of the stationary value conditions of the functional L (x,λ)=h(x)+λgx(x), the following result is then obtained:












gx


(

x
*

)



=



-

1
λ






h


(

x
*

)




=

-

v
λ







(
18
)







By substituting formula (18) into formula (16), the following result is obtained:

βL=√{square root over (υTBυ)}  (19)


By substituting formula (19) into formula (17), the following result is obtained:










p
fL





(

2

π

)



(

n
-
1

)



/


2





f
x



(

x
*

)






det





B



v
T


Bv








(
20
)







The reliability that the fluctuating value of the predicted residuals, calculated by the asymptotic integration method, falls within a certain allowable deviation range is then obtained according to (21):

pr=1−pfL  (21)


Step five: determination of the spindle's thermal deformation attitude and model selection.


The thermal deformation δl, δr and dσ of the two sides of the spindle box 2 is used to judge the thermal deformation attitude of the spindle 1 which changes irregularly in the processing process. Where dσ is the distance from the intersection point of the spindle 1 in the initial state and the deformed spindle 1 to the right side of the spindle box 2; under the various thermal deformation attitudes, the formulas of dσ are calculated from formula (22):











d
σ



(
t
)


=


d
spl

×






ζ

r





1




(



T
2



(
t
)


-


T
2



(
0
)



)


+

ζ

r





2









ζ

l





1




(



T
1



(
t
)


-


T
1



(
0
)



)


-








ζ

r





1




(



T
2



(
t
)


-


T
2



(
0
)



)


+

ζ

l





2


-

ζ

r





2














(
22
)







The ten criteria for determining the thermal deformation attitudes of the spindle are set as follows:


Attitude (1): δlr≥0, dσ≤dss


Attitude (2): δr<0<δl


Attitude (3): δr≤δl<0


Attitude (4): δlr<0, dss+dsnr<dσ


Attitude (5): δlr≥0, dss<dσ<dss±dsnr


Attitude (6): δlr<0, dss<dσ≤dss+dsnr


Attitude (7): δlr≥0, dss+dsnr<dσ


Attitude (8): δrr≥0


Attitude (9): δl<0<δr


Attitude (10): δlr<0, dσ≤dss


Finally, considering the thermal tilt of the spindle 1, the different errors are compensated for different lengths of the workpieces; if dwp is the distance between the processed point on the workpiece and the end face of the chuck 9, and ds is the distance between the left displacement sensor 7 and the end face of the chuck 9; under the various thermal deformation attitudes, whether dwp<ds, ds<dwp<ds+dsnr or dwp>ds+dsnr, the amount of thermal error compensation ewp of the machined spot on the workpiece is then calculated in accordance with formula (23):










e
wp

=




e

2
,
x




(


d
s

+

d
snr

-

d
wp


)


-


e

1
,
x




(


d
s

-

d
wp


)




d
snr






(
23
)







The thermal error's predicted value ewp is then inputted into the CNC system of the machine tool in real time to realize thermal error compensation for the spindle of the CNC lathe at any position or time.


The beneficial effects of the invention are as follows:


(1) it provides a new method for the spindle's radial thermal error compensation in a horizontal CNC lathe, and solves the problem of the radial thermal error compensation for a horizontal CNC lathe;


(2) it improves the accuracy and stability of the CNC lathe's spindle;


(3) it solves the problem of poor consistency in the processing of batches of discs and shaft parts, and reduces the rejection rate;


(4) it only needs to collect the error and temperature data at one time for a certain spindle speed, and the test process is simple and fast;


(5) the thermal error prediction model is based on the thermal tilt deformation mechanism of the spindle, and the model is robust;


(6) the thermal error prediction model takes into account ten thermal deformation postures obtained from the theoretical analysis, so the model is suitable for the case of arbitrary spindle speed changes and ambient temperature changes.


(7) the model can automatically judge the thermal deformation attitude of the spindle according to the temperature on the left and right sides of the spindle box, and then adopt the corresponding thermal error model.





DESCRIPTION OF FIGURES


FIG. 1 shows the configuration of the spindle system and the layout of the temperature sensor.



FIG. 2 shows the error test instrument and its installation diagram.



FIG. 3 shows the decomposition diagram of the radial thermal drift error of the spindle.



FIG. 4 shows the schematic diagram of the spindle in its initial thermal equilibrium state.



FIGS. 5(a)5(d) show the diagram of the spindle's thermal deformation attitude in the CNC lathe;



FIG. 5(a) shows the thermal deformation attitude (1) under the condition of e1>0, and e2>0;



FIG. 5(b) shows the thermal deformation attitude (2)-(4) under the condition of e1>0, and e2>0;



FIG. 5(c) shows the thermal deformation attitude (5) under the condition of e1>0, and e2<0; as well as the thermal deformation attitude (6) under the condition of e1<0, and e2>0;



FIG. 5(d) shows the thermal deformation attitude (7)-(10) under the condition of e1<0, and e2<0.



FIG. 6 shows the flow chart of the modeling and compensation for the radial thermal drift error of the spindle.



FIGS. 7(a)7(b) show the error and temperature diagram of the spindle at different rotational speeds;



FIG. 7(a) shows the spindle's error values in the X direction;



FIG. 7(b) shows the temperature values on the left and right sides of the spindle box.



FIG. 8 shows the diagram of the relationship between the thermal dip angle and the temperature difference of the spindle.



FIG. 9 shows the transition diagram of the thermal deformation state at 4000 rpm.



FIGS. 10(a)10(c) show the simulation result of the spindle at each of the speeds listed below;



FIG. 10(a) shows the result under the condition of 2000 rpm;



FIG. 10(b) shows the result under the condition of 3000 rpm;



FIG. 10(c) shows the result under the condition of 4000 rpm;



FIG. 11 shows the data diagram before and after compensation for the spindle at 4000 rpm.



FIG. 12 shows the data diagram before and after compensation for the spindle at 3500 rpm.





In the figure: 1 spindle; 2 spindle box; 3 left side temperature sensor; 4 right side temperature sensor; 5 check bar; 6 displacement sensor bracket; 7 left side displacement sensor; 8 right side displacement sensor; 9 chuck.


MODE OF CARRYING OUT THE INVENTION

In order to make the purpose, technical proposal and the advantages of the invention clearer, the present invention is described in detail in combination with a specific embodiment of the measurement, and the modeling and compensation for the spindle's radial thermal drift error, with reference to the drawings.


The description provides a detailed embodiment and a specific operation process based on the technical proposal of the invention, but the scope of the protection of the invention is not limited to the following embodiments.


The X-axis saddle of the horizontal CNC lathe has a tilt angle of 60°. The mechanical spindle 1 is installed horizontally on the bed and is driven by a belt; the highest rotational speed of which is 5000 rpm. The distance between the two sides of the spindle box 2 is 356 mm. The distance between the right side of the spindle box 2 and the left side displacement sensor 7 during the test is 251 mm. The distance between the left displacement sensor 7 and the right displacement sensor 8 is 76.2 mm.


The specific steps taken are as follows:


Step one: measurement of the radial thermal drift error and the temperature of the key points of the spindle in the CNC lathe


When testing the radial thermal drift error and temperature of the spindle 1 in the CNC lathe, two temperature sensors are used respectively to measure the temperatures T1 and T2 of both the left and right sides of the spindle box 2 (FIG. 1). Two displacement sensors are used to measure the error in the X direction of the two position points of the detecting check bar 5 clamped by the spindle 1 (FIG. 2). During the test, the spindle 1 is first rotated for 4 hours at 4000 rpm, and then the spindle 1 is stopped and left for 3 hours, and the error and the temperature data are then collected. In the same way, the error and temperature data of the spindle at 3000 rpm and 2000 rpm are collected.


Thus, the X direction's thermal drift errors e1, and e2, of the two measured points in the process of heating and cooling of the spindle 1 at different rotational speeds, as well as the temperatures of the left and right sides of the spindle box 2 (T1 and T2), are obtained. As shown in FIG. 7.


Step two: correlation analysis between the thermal inclination and the temperature difference of the spindle.


The thermal dip angle of the spindle 1 is calculated according to formula (3), and the relationship diagram between the thermal inclination φs and the temperature difference (ΔT=T1−T2) of the spindle 1 at different rotational speeds is then plotted (FIG. 8). It can be seen that at different speeds, there is a strong correlation between φs and ΔT.


Furthermore, the correlation between φs and ΔT is calculated according to formula (4). At speeds of 4000, 3000 and 2000 rpm, the correlation coefficients between the thermal dip φs and the temperature difference ΔT are 0.898, 0.940 and 0.992, respectively. Through these results, it can be further seen that there is a strong correlation between the thermal dip φs and the temperature difference ΔT at different rotational speeds, which fully shows that the thermal tilt of the spindle is mainly caused by the temperature difference between the two sides of the spindle box.


Step three: the error models of the spindle's radial thermal drift under different thermal deformations.


All possible thermal deformation attitudes of the spindle 1 are analyzed. Then according to the signs of the two error data readings, e1,x and e2,x, and the extension or contraction of the spindle box 2 on the left and right sides, the thermal deformation of the spindle 1 is divided into three categories and ten types, as shown in FIG. 5. Taking the thermal deformation attitude (1) in FIG. 5 as an example, the relationship between the radial thermal drift error of the spindle 1 and the temperature is then established. Although the temperatures on the left and right sides of the spindle box are not identical, the temperature field of the spindle box is continuous and approximately linear. Therefore, a linear relationship between the thermal expansion of the two sides of the spindle box and the temperature is then established, and the dynamic change of the thermal expansion of the two sides of the spindle box is characterized by the temperature. The relation model is expressed as formulas (5) and (6).


For the thermal deformation attitude shown in FIG. 5 (1), dcrs(t) for any time t can be calculated by formula (7).


The thermal drift errors, e1,x(t) and e2,x(t), of the spindle 1 in the X direction at any time t can be calculated by formulas (8) and (9).


The model of the relation between the thermal error and the temperature of the thermal deformation attitude shown in FIG. 5 is then obtained with reference to FIG. 5 (1).


The thermal variations δl and δr of the two sides of the spindle box 2 are obtained using the test error values, e1,x and e2,x, at 4000 rpm, respectively. Thus, from formulas (5) and (6), the independent variables, T1 and T2, and the dependent variables, δl and δr, are known, and the least squares method is then used to identify their parameters. The identified parameters are shown in Table 1.









TABLE 1







Identified parameters










Parameters
Parameter value














ζl1
5.26



ζl2
2



ζr1
4.37



ζr2
2










Step four: analysis of the influence of the size of the machine tool's structure on the prediction result of the model.


For this horizontal CNC lathe, dspl=356 mm, dss=251 mm, dsnr=76.2 mm. The measured values of dspl and dss are set to fluctuate within a certain range and they meet the mean values μdspl=350 and μdss=257, with a variance of σdspl2=24 and σdss2=19, respectively. As the distribution types of the measured values of dspl and dss are unknown, the asymptotic integral method is then used to analyze the reliability of the fluctuation value of the predicted residual error being less than 1 μm. For this problem, the expression of its function Z is defined as in formula (10).


According to formulas (12)-(20), the reliability of the fluctuation value of the predicted residual error being less than 1 μm is calculated to be







p
r

=


1
-



(

2





π

)



(

n
-
1

)

/
2





f
x



(

x
*

)






det





B



v
T


B





υ






1






using the asymptotic integration method.


As can be seen, pr is approximately equal to 1, indicating that the fluctuations in dspl and dss have little effect on the predicted results. Therefore, although the values of dspl and dss measured in the test site have errors, they do not affect the prediction accuracy of the model.


Step five: determination of the spindle's thermal deformation attitude and model selection.


The thermal deformations δl, δr and dσ of the two sides of the spindle box 2 are used to judge the thermal deformation attitude of the spindle 1 which changes irregularly in the processing process. Where dσ is the distance from the intersection point of the spindle 1 in the initial state and the deformed spindle 1 to the right side of the spindle box 2; under various thermal deformation attitudes, the value of dσ is calculated from formula (22).


According to the criteria for determining the ten thermal deformation attitude of the spindle 1, FIG. 9 shows the thermal attitude switching diagram obtained by the spindle 1 at 4000 rpm according to the above criteria. It can be seen that, in the time range of 0 to 0.57 h, the spindle has the attitude (1); in the time range of 0.58 and 0.71 h, the spindle has the attitude (5); in the time range of 0.72 h to 4.93 h, the spindle has the attitude (7); in the time range of 4.94 h and 7 h, the spindle has the attitude (8).


Since the spindle 1 generates a thermal tilt error, the amount of compensation required for workpieces of different lengths is different. Setting that dwp is the distance between the processed point on the workpiece and the end face of the chuck 9, and ds is the distance between the left displacement sensor 7 and the end face of the chuck 9; for the ten thermal deformation attitudes shown in FIG. 5, when dwp<ds, ds<dwp<ds+dsnr and dwp>ds+dsnr, the amount of thermal error compensation ewp of the machined spot on the workpiece is then calculated in accordance with formula (23).



FIG. 10 shows the simulation results for the spindle 1 at different speeds. Where e1,x,t represents the test value of e1,x, e1,x,c, represents the calculated value of e1,x, e1,x,r represents the simulated residual value of e1,x, e2,x,t represents the test value of e2,x, e2,x,c represents the calculated value of e2,x, and e2,x,r represents the simulated residual value of e2,x.


Under the condition of compensation and non-compensation, the experiment is carried out again at 4000 rpm and 3500 rpm on the horizontal CNC lathe, and the two temperature sensors and two displacement sensors are used to collect the temperature and the thermal error of spindle 1 at the same time. The comparison of before and after compensation is shown in FIG. 11 and FIG. 12.


It should be noted that the above specific embodiments of the invention are only used to illustrate the principles and processes of the invention and do not constitute a limitation to the invention. Accordingly any modification and equivalent substitution made without departing from the spirit and scope of the present invention shall be covered by the protection of the present invention.

Claims
  • 1. The invention relates to a method for modeling and compensating for the spindle's radial thermal drift error in a horizontal CNC lathe, comprising: measuring the radial thermal drift error and the temperature of the key points of the spindle of a CNC; lathe, said measuring the radial thermal drift error comprising: testing the radial thermal drift error and temperature of the spindle of a CNC lathe; using two temperature sensors respectively to measure the temperatures T1 and T2 of both the left and right sides of the spindle box, using two displacement sensors to measure the error in the X direction of the two location points of the detecting check bar clamped by the spindle; during the test, heating the spindle by rotating the spindle at a certain speed for a few hours, and then stopping the spindle for a few hours to cool down, wherein the thermal error ei of the spindle in the vertical direction produces the thermal error component ei,x in the X direction, and the thermal errors e1,x and e2,x of the spindle in the X direction are calculated according to the following formula: e2,x=sin(αxdir)×e2  (1)e1,x=sin(αxdir)×e1  (2)wherein in the above formula, αxdir is the tilt angle of the X axis of lathe, i=1 or 2, 1 indicates the right side and 2 indicates the left side;analyzing between the thermal inclination and the temperature difference of the spindle, said analyzing comprising: calculating the thermal dip angle of the spindle, after being heated, using the following formula:
PCT Information
Filing Document Filing Date Country Kind
PCT/CN2017/109492 11/6/2017 WO 00
Publishing Document Publishing Date Country Kind
WO2019/084948 5/9/2019 WO A
US Referenced Citations (11)
Number Name Date Kind
6269284 Lau Jul 2001 B1
6456896 Ito Sep 2002 B1
7245983 Suzuki Jul 2007 B2
10088826 Jalluri Oct 2018 B2
20100152881 Ou et al. Jun 2010 A1
20150370242 Takeno Dec 2015 A1
20170023417 Koyama Jan 2017 A1
20180178339 Hwang Jun 2018 A1
20180196405 Maekawa Jul 2018 A1
20180364677 Jalluri Dec 2018 A1
20190033820 Zhi Jan 2019 A1
Foreign Referenced Citations (4)
Number Date Country
104597842 May 2015 CN
105607575 May 2016 CN
107168242 Sep 2017 CN
107942934 Apr 2018 CN
Non-Patent Literature Citations (2)
Entry
Ko et al., “Particular behavior of spindle thermal deformation by thermal bending,” 2003, International Journal of Machine Tools & Manufacture, 43, pp. 17-23. (Year: 2003).
Haitao et al., “Simulation of thermal behavior of a CNC machine tool spindle,” 2007, International Journal of Machine Tools & Manufacture, 47, pp. 1003-1010. (Year: 2007).
Related Publications (1)
Number Date Country
20200064810 A1 Feb 2020 US