The present invention relates generally to digital predistortion for compensating an input signal for distortion introduced by an electronic device.
The design of radio-frequency power amplifiers for communications applications often involves a trade-off between linearity and efficiency. Power amplifiers are typically most efficient when operated at or near the saturation point. However, the response of the amplifier at or near the point of saturation is non-linear. Generally speaking, when operating in the high-efficiency range, a power amplifier's response exhibits nonlinear and memory effects.
One way to improve a power amplifier's efficiency and its overall linearity is to digitally pre-distort the input to the power amplifier to compensate for the distortion introduced by the power amplifier. In effect, the input signal is adjusted in anticipation of the distortion to be introduced by the power amplifier, so that the output signal is largely free of distortion products. Adaptive digital predistortion is a proven technology that can achieve high linearity and efficiency in power amplifiers. Generally, an adaptive digital predistorter is implemented based on a behavior model. The behavior model can be adapted by an adaptation circuit to model the distortions introduced by a particular power amplifier.
Two types of behavior models are commonly used in digital predistorters. One type of behavior models is neural network based and the other is polynomial function based. In a polynomial function based behavior model (referred to as “PF model” hereafter) a non-linear function is represented by a weighted sum of collection of basis functions. The collection of basis functions may be a set of power series functions or a set of orthogonal basis functions. In the present application, for notational simplicity, a behavior model based on a set of power series functions is referred to as a PSF model and a behavior model based on a set of orthogonal basis functions is referred to as an OBF model. A non-linear function can also be implemented by a look-up table. A behavior model for a digital predistorter based on look-up tables is referred to as a LUT model hereafter.
An adaptive digital predistorter can be implemented based on any one of the three models, PSF, OBF and LUT. However, the complexity of the adaptive digital predistorter varies depending on the model used. As an adaptive digital predistorter needs to be adapted or trained for a particular power amplifier by an adaptation circuit, the complexity of the adaptation circuit depends on the model as well.
Besides complexity, other factors, such as costs, stability, dynamic range, are also important in selecting a model for both predistorter circuit and adaptation circuit. When the model selected for a predistorter circuit is different from the model selected for an adaptation circuit, conversion techniques are required to convert model coefficients trained in the adaptation circuit to coefficients suitable for the predistorter circuit model.
The present invention provides methods and apparatus for predistorting an input signal to compensate for non-linearity in an electronic device that operates on the input signal. Different models are available for constructing a digital predistorter, for example, a PSF, OBF, or LUT model. During the training process of a digital predistorter, an adaptation circuit is used to adapt the model of the digital predistorter to a particular power amplifier.
When implementing a predistorter, some models may be preferred to other models. But models that are desirable for implementing a predistorter may be undesirable when implementing an adaptation circuit. In embodiments of the present invention, a digital predistorter may be implemented using a model different than the model used by the adaptation circuit. In such case, a conversion process converts coefficients of the model used in the adaptation circuit into model coefficients suitable for use in the adaptive digital predistorter.
In some exemplary embodiments, methods are provided for compensating, in a predistorter, for distortions of an input signal by an electronic device that operates on the input signal to produce an output signal. In one exemplary method, a predistorter generates a predistorted signal for an electronic device. The electronic device takes the predistorted signal as input and generates an output signal. Based on the predistorted signal and output signal from the electronic device, a first set of model coefficients is generated using a first predistorter model. The first predistorter model is used to model the electronic device. From the first set of model coefficients, a second set of model coefficients for a second predistorter model are generated by applying a conversion function to the first set of model coefficients. The second predistorter model is used to configure the predistorter.
In other exemplary embodiments of the invention, a circuit is provided to compensate for distortions introduced by an electronic device. The circuit comprises an adaptation circuit, a coefficient conversion circuit, and a first modeling circuit. The adaptation circuit comprises a second modeling circuit and is configured to compute a first set of model coefficients for a first predistorter model. The coefficient conversion circuit is configured to generate a second set of model coefficients for a second predistorter model. The first modeling circuit is configured to adapt the predistorter using the second set of model coefficients based on the second predistorter model.
Of course, the present invention is not limited to the features, advantages, and contexts summarized above, and those familiar with pre-distortion circuits and techniques will recognize additional features and advantages upon reading the following detailed description and upon viewing the accompanying drawings.
a, 6b, 6c, and 6d are graphs illustrating the steps of constructing a look-up table.
Referring now to the drawings,
As seen in
The structure 204 operates on the input signal x(n) to produce data samples {u0(n), u1(n), . . . uP−1(n)}. The distortion modeling circuit 200 computes a sum of the scaled data samples, {u0(n), u1(n), . . . uP−1(n)} to obtain a distorted signal z(n), which is the input signal to the power amplifier 104. Each data sample, ui(n), is scaled by a coefficient wi(n). The set of coefficients, {w0(n), w1(n), . . . wP−1(n)}, may be derived by the adaptation circuit 106. The distortion modeling circuit 200 can be used to implement a PSF or OBF model.
The predistorter model can also be implemented by means of a look-up table. In some embodiments, a LUT type predistorter maintains a look-up table that lists, for each reference signal, a gain factor. The reference signal represents the input to the predistorter. The gain factor represents the adjustment to be applied to the input signal. In a LUT type predistorter, the output of the predistorter is the product of the input signal and the gain factor. A LUT model usually involves operations such as interpolation using cubic spline techniques, but does not require multiplication, significantly reducing the costs. This is because a circuit implementing a LUT model does not need multipliers. A LUT model also has a fixed input range and is easy to modify to include memory effects. However, when using a LUT model in an adaptation circuit, a separate adaptation process or training process is needed for each entry in the look-up table. The computation complexity of a LUT model increases dramatically when the number of entries of the look-up table increases. The computation complexity of a LUT model also increases when advanced interpolation schemes are used. Therefore, a LUT model is not suitable for use in an adaptation circuit.
On the other hand, a PSF or OBF model is more suitable than a LUT model for use in the adaptation circuit 106. A PSF or OBF model usually has a small number of coefficients that need to be trained. The adaptation circuit 106 used to train a PSF or OBF model therefore is less complex. On the other hand, a PSF or OBF model is not as suitable as a LUT model for use in a predistorter, because, for example, a large number of multiplication operations are required by a PSF or an OBF model. Multiplication operations are costly to implement in a modeling circuit. It is therefore advantageous to use different models for a predistorter and its adaptation circuit.
The predistorter model implemented in the modeling circuit 310 and in the modeling circuit 308 can be a LUT model, a PSF or an OBF model. The two predistorter models can be the same or different. In
When the model adopted by the modeling circuit 310 is different from the model used by the modeling circuit 308, the coefficients generated by the adaptation circuit 106 need to be converted by the coefficient converter 306. The coefficient converter 306 converts a first set of coefficients, which are fitted by the adaptation circuit 106 based on the model used in the modeling circuit 308, into a second set of coefficients for use by the modeling circuit 310 in the predistorter 102.
In
In
obtained for every sample in each bin as the entry in the LUT table for that particular bin. In such approach, each entry in the LUT is a gain factor for an input sample in the corresponding bin. This corresponds to the 0-th order interpolation of the LUT entries in the predistorter. More sophisticated algorithms involve solving n-th interpolation equations for the gain factor.
After repeating step 410 for every input sample in a particular bin, an LUT entry for that bin is generated (step 412). An LUT table can be established by repeating the same process for each of the multiple bins.
Once an LUT table has been established, a LUT model can be constructed based on the LUT table.
In the LUT table 506, each entry in the LUT table is a gain factor for the corresponding bin.
a illustrates the magnitude of the response of the power amplifier 104, |y(n)|, as a function of the magnitude of the input signal |z(n)| to the power amplifier 104.
In
i.e., the magnitude of the gain factor. The input range of the input signal is divided into a number of bins, bin1, bin2, bin3 . . . etc. Inside each bin, bin i, three input samples are selected. For each input sample xi,j, there is a corresponding output sample yi,j. The gain factor for each of the three input samples are averaged to generate an entry Li for the look-up table in the input range represented by bin i.
d illustrates an exemplary look-up table. For each address(bin) i, the LUT entry is designated as gi. In some embodiments, gi is determined from an average value of the gain factors obtained for each of the input samples in bin i.
Besides a look-up table based behavior model, the predistorter can also use PSF models. When the modeling circuits 308 and 310 use the same behavior model, there is no need to convert the first set of coefficients generated by the modeling circuit 308 into a second set of coefficients for use by the predistorter 102. The first set of coefficients can be used directly to configure the predistorter 102. When the predistorter 102 and the adaptation circuit 106 use different models, for example, orthogonal basis function based versus power series basis function based model, the coefficient converter 306 essentially represents a matrix multiplication operation that converts a first set of coefficients, (w1, w2, . . . wp)T into a second set of coefficients, (w1′, w2′, . . . wp′)T.
Fortho,1( )=C0,1Fpower,1( )+C0,2Fpower,2( )+ . . . +C0,P−1Fpower,P−1( ).
Essentially, the elements in matrix C are the coefficients for the orthogonal basis function model computed by the coefficient evaluation circuit of the modeling circuit 308. The matrix multiplication circuit 604 receives matrix C as input and carries out the multiplication and summation operations embodied in Equation (8.2) shown in
As mentioned above, Equation (8.1) illustrates Matrix C as related to the set of power series basis functions and the set of orthogonal basis functions. Equation (8.1) is applicable to those embodiments in which the predistorter 102 uses an OBF model and the adaptation circuit 208 uses a PSF model. When the models used by the predistorter 102 and the adaptation circuit 106 are switched, the relationship between matrix C and the two sets of basis functions are reversed, as shown in Equation (8.3). In such case, the matrix derivation unit 602 needs to perform an additional matrix inversion operation to derive C−1. The rest structure of the coefficient converter 306 remains unchanged.
which is a scaled output signal from the electronic device, e.g., the power amplifier 104 (step 902). G represents the net gain achieved by the power amplifier 104. Scaling the output signal y(n) by the inverse of the gain G permits the non-linearities introduced by the power amplifier 104 to be analyzed independently from its gain. Based on the input signal to the predistorter and the output signal of the power amplifier, the modeling circuit 308 generates a first set of model coefficients for a first predistorter model, for example, a PSF or OBF model (step 904). The coefficient converter 306 generates a second set of model coefficients by applying a conversion function to the first set of model coefficients (step 906). The second set of model coefficients are generated for a second predistorter model used by the predistorter 102. The predistorter 102 can be adapted based on the second set of model coefficients (step 908).
The foregoing description and the accompanying drawings represent non-limiting examples of the methods and apparatus taught herein. As such, the present invention is not limited by the foregoing description and accompanying drawings. Instead, the present invention is limited only by the following claims and their legal equivalents.
Number | Name | Date | Kind |
---|---|---|---|
6141390 | Cova | Oct 2000 | A |
6462617 | Kim | Oct 2002 | B1 |
6642786 | Jin et al. | Nov 2003 | B1 |
7720171 | Honcharenko et al. | May 2010 | B2 |
8023588 | Benson et al. | Sep 2011 | B1 |
8238849 | Pratt | Aug 2012 | B2 |
20030202615 | Bach et al. | Oct 2003 | A1 |
20040142667 | Lochhead et al. | Jul 2004 | A1 |
20040199559 | McAdam et al. | Oct 2004 | A1 |
20040252784 | Honcharenko et al. | Dec 2004 | A1 |
20050157814 | Cova et al. | Jul 2005 | A1 |
20050253652 | Song et al. | Nov 2005 | A1 |
20060229036 | Muller et al. | Oct 2006 | A1 |
20060240786 | Liu | Oct 2006 | A1 |
20080187035 | Nakamura et al. | Aug 2008 | A1 |
20090252255 | Lee et al. | Oct 2009 | A1 |
20090302940 | Fuller et al. | Dec 2009 | A1 |
20100248658 | Pratt | Sep 2010 | A1 |
20120200355 | Braithwaite | Aug 2012 | A1 |
20120268191 | Ananthaswamy et al. | Oct 2012 | A1 |
Number | Date | Country |
---|---|---|
2007117187 | Oct 2007 | WO |
2012066380 | May 2012 | WO |
2012066383 | May 2012 | WO |
Entry |
---|
Raich, Raviv; Qian, Hua; and Zhou, G. Tong, “Orghogonal Polynomials for Power Amplifier Modeling and Predistorter Design,” IEEE Transactions on Vehicular Technology, vol. 53, No. 5, Sep. 2004, pp. 1468-1479. |
Number | Date | Country | |
---|---|---|---|
20130329833 A1 | Dec 2013 | US |