This invention relates to alkaline earth silicate fibres.
Inorganic fibrous materials are well known and widely used for many purposes (e.g. as thermal or acoustic insulation in bulk, mat, or blanket form, as vacuum formed shapes, as vacuum formed boards and papers, and as ropes, yarns or textiles; as a reinforcing fibre for building materials; as a constituent of brake blocks for vehicles). In most of these applications the properties for which inorganic fibrous materials are used require resistance to heat, and often resistance to aggressive chemical environments.
Inorganic fibrous materials can be either glassy or crystalline. Asbestos is an inorganic fibrous material one form of which has been strongly implicated in respiratory disease.
It is still not clear what the causative mechanism is that relates some asbestos with disease but some researchers believe that the mechanism is mechanical and size related. Asbestos of a critical size can pierce cells in the body and so, through long and repeated cell injury, have a bad effect on health. Whether this mechanism is true or not regulatory agencies have indicated a desire to categorise any inorganic fibre product that has a respiratory fraction as hazardous, regardless of whether there is any evidence to support such categorisation. Unfortunately for many of the applications for which inorganic fibres are used, there are no realistic substitutes.
Accordingly there is a demand for inorganic fibres that will pose as little risk as possible (if any) and for which there are objective grounds to believe them safe.
A line of study has proposed that if inorganic fibres were made that were sufficiently soluble in physiological fluids that their residence time in the human body was short; then damage would not occur or at least be minimised. As the risk of asbestos linked disease appears to depend very much on the length of exposure this idea appears reasonable. Asbestos is extremely insoluble.
As intercellular fluid is saline in nature the importance of fibre solubility in saline solution has long been recognised. If fibres are soluble in physiological saline solution then, provided the dissolved components are not toxic, the fibres should be safer than fibres which are not so soluble. Alkaline earth silicate fibres have been proposed for use as saline soluble, non-metallic, amorphous, inorganic oxide, refractory fibrous materials. The invention particularly relates to glassy alkaline earth silicate fibres having silica as their principal constituent.
International Patent Application No. WO8705007 disclosed that fibres comprising magnesia, silica, calcia and less than 10 wt % alumina are soluble in saline solution. The solubilities of the fibres disclosed were in terms of parts per million of silicon (extracted from the silica containing material of the fibre) present in a saline solution after 5 hours of exposure. WO8705007 stated that pure materials should be used and gave an upper limit of 2 wt % in aggregate to the impurities that could be present. No mention of alkali metals was made in this patent.
International Patent Application No. WO8912032 disclosed additional fibres soluble in saline solution and discusses some of the constituents that may be present in such fibres. This disclosed the addition of Na2O in amounts ranging from 0.28 to 6.84 wt % but gave no indication that the presence of Na2O had any effect.
European Patent Application No. 0399320 disclosed glass fibres having a high physiological solubility and having 10-20 mol % Na2O and 0-5 mol % K2O. Although these fibres were shown to be physiologically soluble their maximum use temperature was not indicated.
Further patent specifications disclosing selection of fibres for their saline solubility include for example European 0412878 and 0459897, French 2662687 and 2662688, PCT WO8604807, WO9002713, WO9209536, WO9322251, WO9415883, WO9716386 and U.S. Pat. No. 5,250,488.
The refractoriness of the fibres disclosed in these various prior art documents varies considerably and for these alkaline earth silicate materials the properties are critically dependent upon composition.
As a generality, it is relatively easy to produce alkaline earth silicate fibres that perform well at low temperatures, since for low temperature use one can provide additives such as boron oxide to ensure good fiberisation and vary the amounts of the components to suit desired material properties. However, as one seeks to raise the refractoriness of alkaline earth silicate fibres, one is forced to reduce the use of additives since in general (albeit with exceptions) the more components are present, the lower the refractoriness.
WO9315028 disclosed fibres comprising CaO, MgO, SiO2, and optionally ZrO2 as principal constituents. Such fibres are frequently known as CMS (calcium magnesium silicate) or CMZS ((calcium magnesium zirconium silicate) fibres. WO9315028 required that the compositions used should be essentially free of alkali metal oxides. Amounts of up to 0.65 wt % were shown to be acceptable for materials suitable for use as insulation at 1000° C. WO9315028 also required low levels of Al2O3 (<3.97%).
WO9415883 disclosed a number of such fibres usable as refractory insulation at temperatures of up to 1260° C. or more. As with WO9315028, this patent required that the alkali metal oxide content should be kept low, but indicated that some alkaline earth silicate fibres could tolerate higher levels of alkali metal oxide than others. However, levels of 0.3% and 0.4% by weight Na2O were suspected of causing increased shrinkage in materials for use as insulation at 1260° C. The importance of keeping the level of alumina low was stressed is stressed in this document.
WO9716386 disclosed fibres usable as refractory insulation at temperatures of up to 1260° C. or more. These fibres comprised MgO, SiO2, and optionally ZrO2 as principal constituents. These fibres are stated to require substantially no alkali metal oxides other than as trace impurites (present at levels of hundredths of a percent at most calculated as alkali metal oxide). The fibres have a general composition
with the components MgO and SiO2 comprising at least 82.5% by weight of the fibre, the balance being named constituents and viscosity modifiers. Such magnesium silicate fibres may comprise low quantities of other alkaline earths. The importance of keeping the level of alumina low was stressed is stressed in this document.
WO2003059835 discloses certain calcium silicate fibres certain calcium silicate compositions for which fibres show a low reactivity with aluminosilicate bricks, namely:—
This patent also discloses the use of La2O3 or other lanthanide additives to improve the strength of the fibres and blanket made from the fibres. This patent application does not mention alkali metal oxide levels, but amounts in the region of ˜0.5 wt % were disclosed in fibres intended for use as insulation at up to 126° C. or more.
WO2003060016 claims a low shrinkage, high temperature resistant inorganic fiber having a use temperature up to at least 1330 C, which maintains mechanical integrity after exposure to the use temperature and which is non-durable in physiological fluids, comprising the fiberization product of greater than 71.25 to about 85 weight percent silica, 0 to about 20 weight percent magnesia, about 5 to about 28.75 weight percent calcia, and 0 to about 5 weight percent zirconia, and optionally a viscosity modifier in an amount effective to render the product fiberizable.
EP 1323687 claims a biosoluble ceramic fiber composition for a high temperature insulation material comprising 75-80 wt % of SiO2, 13-25 wt % of CaO, 1-8 wt % of MgO, 0.5-3 wt % of ZrO2 and 0-0.5 wt % of Al2O3, wherein (ZrO2+Al2O3) is contained 0.5-3 wt % and (CaO+MgO) is contained 15-26 wt %.
Alkaline earth silicate fibres have received a definition in the Chemical Abstract Service Registry [Registry Number: 436083-99-7] of:—
This definition reflects European Health and Safety regulations which impose special labelling requirements on silicate fibres containing less than 18% alkaline earth oxides.
However as is clearly indicated in relation to WO2003059835, WO2003060016 and EP 1323687, the silica content of alkaline earth silicate fibres is increasing with the demand for higher use temperatures and this is leading to lower alkaline earth contents.
The present invention is applicable not only to alkaline earth silicate fibres in this narrow definition reflected in the Chemical Abstracts definition, but also to alkaline earth silicate fibres having lower levels of alkaline earth oxides.
Accordingly, in the present specification alkaline earth silicate fibres should be considered to be materials comprising predominantly of silica and alkaline earth oxides and comprising less than 10 wt % alumina [as indicated in WO8705007—which first introduced such fibres], preferably in which alumina, zirconia and titania amount to less that 6 wt % [as indicated in the Chemical Abstracts definition]. For regulatory reasons, preferred materials contain more than 18% alkaline earth metal oxides.
The prior art shows that for refractory alkaline earth silicate fibres, alkali metals have been considered as impurities that can be tolerated at low levels but which have detrimental affects on refractoriness at higher levels.
The applicant has found that, contrary to received wisdom in the field of refractory alkaline earth silicate fibres, the addition of minor quantities of alkali metals within a certain narrow range improves the mechanical quality of fibres produced (in particular fibre strength) without appreciably damaging the refractoriness of the fibres.
Accordingly, the present invention provides a method of making refractory alkaline earth silicate fibres from a melt, comprising the inclusion as an intended melt component of alkali metal to improve the mechanical andor thermal properties of the fibre in comparison with a fibre free of alkali metal.
Preferably, the amount of alkali metal (M) expressed as the oxide M2O is greater than 0.2 mol % and preferably in the range 0.2 mol % to 2.5 mol %, more preferably 0.25 mol % to 2 mol %.
By “a fibre free of alkali metal” is meant a fibre in which all other components are present in the same proportions but which lacks alkali metal.
The alkali metal is preferably present in an amount sufficient to increase the tensile strength of a blanket made using the fibre by >50% over the tensile strength of a blanket free of alkali metal, and less than an amount that will result in a shrinkage as measured by the method described below of greater than 3.5% in a vacuum cast preform of the fibre when exposed to 1250° C. for 24 hours.
It will be apparent that the alkali metal may be provided either as an additive to the melt (preferably in the form of an oxide), or by using as ingredients of the melt appropriate amounts of materials containing alkali metal as a component or impurity, or both as an additive and as a component or impurity. The invention lies in ensuring that the melt has the desired quantity of alkali metal to achieve the beneficial effects of the invention.
The invention may be applied to all of the prior art alkaline earth silicate compositions mentioned above.
The scope and further features of the invention will become apparent from the claims in the light of the following illustrative description and with reference to the drawings in which:—
The inventors produced fibre blanket using a production trial line at their factory in Bromborough, England. Fibre was produced by forming a melt and allowing the melt to fall onto a pair of spinners (as is conventionally known).
The base melt had a nominal composition in weight percent:—
with other components forming minor impurities and sodium oxide being added in specified amounts.
The melt stream temperature was monitored using a two colour pyrometer.
Fibres produced from the spinners were passed onto a conveyer and then needled to form blanket in a conventional manner.
The blanket thickness, density, and tensile strength were measured for fibres produced using a range of conditions.
The blanket was produced with a view to determining the effect on fibre quality of melt stream temperature, since it was believed that this had an effect on fibre quality.
The inventors also decided to add alkali metal oxides with the view of flattening the viscosity-temperature curve of the melt as this was thought a relevant factor in fibre production as explained further below.
The results of these tests are set out in Table 1 and illustrated graphically in
The first thing that is noteworthy is that the blanket strengths show a high variability. This is because the manufacture of a blanket involves many variables, including:—
By producing a range of fibres on a single line and significantly varying only melt stream temperature and composition (each of which will have an affect on shot content, fibre diameter and fibre length) it was hoped to reduce such variability. However because a blanket is an aggregated body of individual fibres, there is inevitably a statistical variation in such aggregate properties as tensile strength.
As can be seen from
However, it can be seen that with progressive increases in Na2O content, the strength tends to increase.
The fibres with nominal zero Na2O content of course had minor trace amounts (average measured content 0.038%-maximum 0.11%). Extrapolating back to zero Na2O gives an average tensile strengthdensity of 0.0675 kPa[kgm3]. The average tensile strengthdensity for the addition of 0.3% Na2O is 0.1426. The increase in blanket strength is over 100% and smaller additions (e.g. 0.25 mol %) would be expected to exceed a 50% improvement.
Encouraged by this, and with a view to determining the upper limit of alkali metal oxide that was appropriate, the inventors produced a range of further alkaline earth silicate fibres using an experimental rig in which a melt was formed of appropriate composition, tapped through a 8-16 mm orifice, and blown to produce fibre in a known manner. (The size of the tap hole was varied to cater for the viscosity of the melt—this is an adjustment that must be determined experimentally according to the apparatus and composition used). Shrinkage of performs of the fibre at 1150° C. and 1250° C. were measured in the same manner as in WO2003059835. Total solubility in ppm of the major glass components after a 24 hour static test in a physiological saline solution were also measured for some of the examples.
The results of these studies are shown in Table 2. The fibres in the left of the table were aimed at assessing the effect of adding approximately equimolar amounts of alkali metal addition to calcium silicate fibre containing La2O3 (as in WO2003059835), whereas those to the right were aimed at assessing the effect of varying the quantity of Na2O in such a fibre. While not conclusive, the results indicate that for these fibres Na2O and K2O show shrinkages no worse or even better than fibre free of Na2O, whereas Li2O appears detrimental to shrinkage.
However, this latter conclusion is thought unsafe since it was determined that the lithium had been added in the form of lithium tetraborate, and the boron addition may have had a significant effect. Until proven otherwise, the applicants are assuming that all alkali metals can be used in the invention, but that the absolute amount of alkali metal may vary from metal to metal and fibre to fibre. The solubility figures show that total solubility is slightly increased by the addition of alkali metal oxide.
The right side of Table 2 shows firstly that only a ˜1% higher silica content has a big effect on shrinkage, giving a much lower shrinkage. For these fibres, linear shrinkage at 850° C.24 hrs seemed unaffected by all soda additions tested, however the same is not true for thickness shrinkage, although it is still low. At 1150° C.24 hrs there is a slight increase in both linear and through thickness shrinkage, but at 1250° C.24 hrs through thickness whilst still acceptable grows more significantly for the highest soda addition. All of these figures are acceptable for some applications whereas other applications could not tolerate the highest Na2O level tested.
The improvement in shrinkage with higher silica levels led the inventors to look to materials containing still higher silica levels and the results are set out in Table 3 below.
These results show low shrinkage and a reasonably high solubility across the range. It appears that addition of alkali metal oxide may increase the amount of silica that can be added to produce a workable alkaline earth silicate fibre, and perhaps with an acceptable solubility. This is of great significance since, in general, increasing silica content permits higher use temperatures for alkaline earth silicate fibres.
It can be seen that all of the SW613 fibres have a shrinkage lower than that of RCF and the MgO silicate fibres up to 1350° C. but rise thereafter. However, there is a progressive increase in refractoriness with increasing silica content. For the SW613 fibre containing 77 and 79% SiO2, the shrinkage remains below that of RCF and the MgO silicate fibres up to 1400° C. and better could be expected for higher silica contents. In contrast, it can be seen also that addition of 2% MgO to the SW613 compositions is detrimental to shrinkage. High silica alkaline earth silicate fibres are difficult to make and addition of alkali metals to such compositions should improve the quality of such fibres and ease manufacture.
Having shown such effects the applicants conducted a trial to make blanket on a production line, to see whether the initial results on shrinkage were confirmed. A base composition comprising:—
was used and varying amounts of Na2O were added. Blanket having a density 128 kgm3 was produced having a thickness of ˜25 mm. The results, summarised in
These findings relate to compositions containing La2O3 as a component, but similar effects of alkali metal additions are found with alkaline earth silicate fibres not containing La2O3 as a component.
The inventors also tested other alkaline earth silicate fibres comprising predominantly magnesium as the alkaline earth component (magnesium silicate fibres) and the results are set out in Table 4.
This table shows that whereas Na2O and K2O have a small or large respectively detrimental effect on shrinkage, Li2O has hardly any effect on shrinkage. This does not imply no effect at all, the inventors observed that whereas the fibres with Na2O and K2O were similar to fibres without such additives (coarse) the fibre with Li2O addition was significantly finer and of better quality. At lower quantities, Na2O and K2O may still give shrinkages that are tolerable in most applications.
The purpose of adding alkali metal is to try to alter the viscosity temperature curve for alkaline earth silicates so as to provide a more useful working range for the silicates.
The viscositytemperature graph of the high soda glass is a smooth line rising as temperature falls.
For the known alkaline earth silicate melt (SW) the viscosity is lower and then rises steeply at a critical temperature value (this is shown as a slope in the graph but that is an artefact of the graphing process—it actually represents a much steeper change).
Addition of Na2O to the melt moves this rise in viscosity to lower temperatures.
This extends the working range of the melt so that it becomes less dependent upon temperature so increasing the tolerance of the melt to fibre forming conditions. Although the melt stream temperature is important, the melt cools rapidly during the fibre forming process and so a longer range of workability for the composition improves fibre formation. The addition of the alkali metal oxides may also serve to stabilise the melt stream so that for a given set of conditions there is an amount that reduces shot.
Additionally, it is surmised that in small quantities the alkali metal oxides serve to suppress phase separation in alkaline earth silicate fibres.
Since the alkaline earth silicate systems have a two liquid region in their phase diagrams, the applicants suspect that addition of alkali metal oxides may move the melts out of a two-liquid region into a single phase region.
The addition also has the effect of lowering melt stream temperature which may assist in stability.
The effectiveness of these measures is also shown by the amount of shot present in the finished material. In the fibre forming process, droplets of melt are rapidly accelerated (by being flung off a spinning wheel or being blasted by a jet of gas) and form long tails which become the fibres.
However that part of the droplets that does not form fibre remains in the finished material in the form of particles known in the industry as “shot”. Shot is generally detrimental to the thermal properties of insulation formed from the fibres, and so it is a general aim in the industry to reduce the quantity of shot.
The applicants have found that addition of minor amounts of alkali metal to the melt has the effect of reducing the amount of shot, and this is shown in
Similar effects apply to lanthanum free materials. Table 5 shows the analysed compositions of a range of alkaline earth silicate fibres (having a lower maximum use temperature) made in accordance with the compositions of WO9315028, which were made by spinning using a melt stream temperature of 1380-1420° C., and with a pair of rotating spinners.
Since there seems no detrimental effect on shrinkage at such levels (and indeed a slight improvement) it can be seen that addition of alkali metal oxides is beneficial for the production of such materials.
Addition of the alkali metal should be at levels that do not excessively detrimentally affect other properties of the fibre (e.g. shrinkage), but for different applications what is “excessive” will vary.
The fibres can be used in thermal insulation and may form either a constituent of the insulation (e.g. with other fibres andor fillers andor binders) or may form the whole of the insulation. The fibres may be formed into blanket form insulation.
Although initial work was primarily related to the addition of Na2O to alkaline earth silicate fibres, the applicants discovered that when Na2O was used as the additive to high calcium—low magnesium fibres it had a tendency to promote crystallisation (and hence powderiness of the fibres) after exposure to temperatures of ˜1000° C. This can be seen in
Fibres a), b) and c) show the effect on surface appearance of fibres after exposure to 1050° C. for 24 hours on fibres containing increasing amounts of Na2O (from ˜0 through 0.5 wt % to 1.06 wt % respectively). As can be seen, the fibre absent Na2O has a smooth appearance indicating little crystallisation, whereas increasing Na2O leads to an increase in surface roughness indicative of crystallisation.
In contrast, fibres d) and e) show that at 1100° C. a fibre containing ˜0.5 wt % K2O is little different from a fibre free of K2O, and only starts to show slight surface roughness at 1150° C.
Table 6 shows relative thermal conductivities of blankets having approximate density of 96 kg.m−3 formed from fibres having the principal ingredients shown. It also shows thermal conductivities of these blankets and these figures are shown in
The applicants have therefore identified further advantages of the use of alkali metal oxides as additives to alkaline earth silicate blanket materials, and particular advantage to the use of potassium. In particular, to avoid promotion of crystallisation by sodium, preferably at least 75 mol % of the alkali metal is potassium. More preferably at least 90%, still more preferably at least 95% and yet still more preferably at least 99% of the alkali metal is potassium.
To test the mutual interaction of La2O3 and K2O on the fibre properties a range of fibres were made into blankets and tested for shrinkage at various temperatures [24 hours at temperature].
It was found that La2O3 could be reduced and replaced by K2O without significant harm to the shrinkage properties of the materials, but this led to onset of crystallisation at lower temperatures than for the La2O3 containing materials. However, replacement of La2O3 in part by alumina cured this problem. Table 7 indicates a range of materials tested, the temperature at which crystallisation commenced, and temperature at which the crystals reached ˜1 μm in size. The materials all had a base composition of approximately 73.1-74.4 wt % SiO2 and 24.6-25.3 wt % CaO with all other ingredients amounting to less than 3% in total.
Accordingly, a preferred range of compositions comprises:—
More preferably SiO2 plus CaO>95%, and usefully a preferred range of compositions comprises:—
A particularly preferred range is
And these preferred ranges may comprise additionally R2O3<0.5 wt % where R is selected from the group Sc, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y or mixtures thereof.
During further trials a second range of fibres was found that gave good results. These fibres had the composition:—
These fibres had a high strength (80-105 kPa for a blanket of thickness ˜25 mm and density ˜128 kg·m3) and and low shot content (˜41% total shot).
The fibres may also be used in other applications where alkaline earth silicate fibres are currently employed (e.g. as constituents of friction materials).
Number | Date | Country | Kind |
---|---|---|---|
0424190.7 | Nov 2004 | GB | national |
0502701.6 | Feb 2005 | GB | national |
This application claims the benefit of priority from applicants' provisional application 60/717,516 filed Sep. 15, 2005 and British patent applications GB 0424190.7 filed Nov. 1, 2004 and GB 0502701.6 filed Feb. 9, 2005, all of which are relied on and incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
1759919 | Singer | May 1930 | A |
2051279 | Thorndyke | Aug 1936 | A |
2116303 | Coss | May 1938 | A |
2155107 | Tyler et al. | Apr 1939 | A |
2308857 | Bowes | Jan 1943 | A |
2335220 | Edwards | Nov 1943 | A |
2428810 | Powell | Oct 1947 | A |
2520168 | Powell | Aug 1950 | A |
2520169 | Powell | Aug 1950 | A |
2576312 | Minnick | Nov 1951 | A |
2577431 | Powell | Dec 1951 | A |
2823416 | Powell | Feb 1958 | A |
3183104 | Thomas | May 1965 | A |
3189471 | Thomas | Jun 1965 | A |
3348956 | Ekdahl | Oct 1967 | A |
3348994 | Rees et al. | Oct 1967 | A |
3380818 | Smith | Apr 1968 | A |
3402055 | Harris et al. | Sep 1968 | A |
3449137 | Ekdahl | Jun 1969 | A |
3459568 | Rinehart | Aug 1969 | A |
3573078 | Bacon | Mar 1971 | A |
3597179 | Simmons | Aug 1971 | A |
3687850 | Gagin | Aug 1972 | A |
3783092 | Majumdar | Jan 1974 | A |
3799836 | Rogers et al. | Mar 1974 | A |
3804608 | Gaskell et al. | Apr 1974 | A |
3804646 | Dumbaugh, Jr. | Apr 1974 | A |
3835054 | Olewinski et al. | Sep 1974 | A |
3854986 | Chvalovsky et al. | Dec 1974 | A |
3887386 | Majumdar | Jun 1975 | A |
3900329 | Grubb et al. | Aug 1975 | A |
3904424 | Aoki et al. | Sep 1975 | A |
3969121 | Atkinson | Jul 1976 | A |
4002482 | Coenen | Jan 1977 | A |
4011651 | Bradbury | Mar 1977 | A |
4014704 | Miller | Mar 1977 | A |
4026715 | Erickson et al. | May 1977 | A |
4036654 | Yale et al. | Jul 1977 | A |
4041199 | Cartwright | Aug 1977 | A |
4046948 | Zlochower | Sep 1977 | A |
4047965 | Karst et al. | Sep 1977 | A |
4054472 | Kondo et al. | Oct 1977 | A |
4055434 | Chen et al. | Oct 1977 | A |
4078939 | Schwochow et al. | Mar 1978 | A |
4102692 | Schartau et al. | Jul 1978 | A |
4153439 | Tomic et al. | May 1979 | A |
4199364 | Neely | Apr 1980 | A |
4205992 | Mogensen et al. | Jun 1980 | A |
4238213 | Pallo et al. | Dec 1980 | A |
4251279 | Ekdahl | Feb 1981 | A |
4274881 | Langton et al. | Jun 1981 | A |
4303722 | Pilgrim | Dec 1981 | A |
4325724 | Froberg | Apr 1982 | A |
4330628 | Cockram et al. | May 1982 | A |
4342581 | Neubauer et al. | Aug 1982 | A |
4351054 | Olds | Sep 1982 | A |
4363878 | Yamamoto et al. | Dec 1982 | A |
4366251 | Rapp | Dec 1982 | A |
4377415 | Johnson et al. | Mar 1983 | A |
4379111 | Smith et al. | Apr 1983 | A |
4387180 | Jen et al. | Jun 1983 | A |
4430369 | Payne | Feb 1984 | A |
4437192 | Fujiu et al. | Mar 1984 | A |
4443550 | Kume et al. | Apr 1984 | A |
4461840 | Massol et al. | Jul 1984 | A |
4482541 | Telfer et al. | Nov 1984 | A |
4492722 | Ritter, II et al. | Jan 1985 | A |
4542106 | Sproull | Sep 1985 | A |
4555492 | Ekdahl et al. | Nov 1985 | A |
4558015 | Ekdahl et al. | Dec 1985 | A |
4604097 | Graves, Jr. et al. | Aug 1986 | A |
4615988 | Le Moigne et al. | Oct 1986 | A |
4661134 | Hartung | Apr 1987 | A |
4678659 | Drake et al. | Jul 1987 | A |
4693740 | Noiret et al. | Sep 1987 | A |
4778499 | Beaver | Oct 1988 | A |
4830989 | Trivedi et al. | May 1989 | A |
4857489 | Bearden | Aug 1989 | A |
4867779 | Meunier et al. | Sep 1989 | A |
4873209 | Gnyra | Oct 1989 | A |
4882302 | Horiuchi et al. | Nov 1989 | A |
4933307 | Marshall et al. | Jun 1990 | A |
4957559 | Tiesler et al. | Sep 1990 | A |
5032552 | Nonami et al. | Jul 1991 | A |
5055428 | Potter | Oct 1991 | A |
5064785 | Kawamoto et al. | Nov 1991 | A |
5108957 | Cohen et al. | Apr 1992 | A |
5121748 | Ditz et al. | Jun 1992 | A |
5135893 | Dohi et al. | Aug 1992 | A |
5217529 | Tiesler et al. | Jun 1993 | A |
5248637 | Taneda et al. | Sep 1993 | A |
5250488 | Thelohan et al. | Oct 1993 | A |
5284807 | Komori et al. | Feb 1994 | A |
5290350 | Besnard et al. | Mar 1994 | A |
5312806 | Mogensen | May 1994 | A |
5332699 | Olds et al. | Jul 1994 | A |
5346868 | Eschner | Sep 1994 | A |
5401693 | Bauer | Mar 1995 | A |
5407872 | Komori et al. | Apr 1995 | A |
5552213 | Eschner et al. | Sep 1996 | A |
5569629 | Teneyck et al. | Oct 1996 | A |
5583080 | Goldberg et al. | Dec 1996 | A |
5585312 | Teneyck et al. | Dec 1996 | A |
5614449 | Jensen | Mar 1997 | A |
RE35557 | Thelohan et al. | Jul 1997 | E |
5691255 | Jensen et al. | Nov 1997 | A |
5714421 | Olds et al. | Feb 1998 | A |
5811360 | Jubb | Sep 1998 | A |
5821183 | Jubb | Oct 1998 | A |
5843854 | Karppinen et al. | Dec 1998 | A |
5874375 | Zoitos et al. | Feb 1999 | A |
5880046 | Delvaux et al. | Mar 1999 | A |
5912201 | Couture et al. | Jun 1999 | A |
5928975 | Jubb | Jul 1999 | A |
5955389 | Jubb | Sep 1999 | A |
5962354 | Fyles et al. | Oct 1999 | A |
5994247 | Jubb et al. | Nov 1999 | A |
5998315 | Jubb | Dec 1999 | A |
6025288 | Zoitos et al. | Feb 2000 | A |
6030910 | Zoitos et al. | Feb 2000 | A |
6037284 | Holstein et al. | Mar 2000 | A |
6043172 | Hart | Mar 2000 | A |
6043173 | Hart | Mar 2000 | A |
6060414 | Holstein et al. | May 2000 | A |
6180546 | Jubb et al. | Jan 2001 | B1 |
6214102 | Vandermeer | Apr 2001 | B1 |
6287994 | Hart | Sep 2001 | B1 |
6358872 | Karppinen et al. | Mar 2002 | B1 |
7153796 | Jubb et al. | Dec 2006 | B2 |
20020032116 | Jubb et al. | Mar 2002 | A1 |
20030162019 | Zoitos et al. | Aug 2003 | A1 |
20040092379 | Lewis | May 2004 | A1 |
20040254056 | Jubb et al. | Dec 2004 | A1 |
20050037912 | El Khiati et al. | Feb 2005 | A1 |
Number | Date | Country |
---|---|---|
255803 | Jul 1963 | AU |
588493 | Dec 1959 | CA |
1 271 785 | Jul 1990 | CA |
2017344 | Nov 1990 | CA |
2043699 | Apr 2001 | CA |
2017344 | Sep 2002 | CA |
1 544 371 | Nov 2004 | CN |
1544371 | Nov 2004 | CN |
1207232 | Jun 2005 | CN |
1 94 2 991 | Mar 1970 | DE |
27 48 127 | May 1978 | DE |
2732 387 | Nov 1978 | DE |
34 44 397 | Jun 1986 | DE |
39 05 394 | Sep 1989 | DE |
44 17 230 | Nov 1995 | DE |
44 17 231 | Nov 1995 | DE |
44 21 120 | Dec 1995 | DE |
44 47 576 | May 1996 | DE |
44 47 577 | May 1996 | DE |
0 019 600 | Nov 1980 | EP |
0 076 677 | Apr 1983 | EP |
0 091 866 | Oct 1983 | EP |
0 135 449 | Mar 1985 | EP |
0 144 349 | Jun 1985 | EP |
0 250 259 | Dec 1987 | EP |
0 390 223 | Oct 1990 | EP |
0 399 320 | Nov 1990 | EP |
0 399 652 | Nov 1990 | EP |
0 412 878 | Feb 1991 | EP |
0 459 897 | Dec 1991 | EP |
0 546 984 | Jun 1993 | EP |
0 585 547 | Mar 1994 | EP |
0 586 797 | Mar 1994 | EP |
0 588 251 | Mar 1994 | EP |
0 591 696 | Apr 1994 | EP |
0 685 434 | Dec 1995 | EP |
0 710 628 | May 1996 | EP |
0 917 045 | May 1999 | EP |
0 936 199 | Aug 1999 | EP |
0 115 673 | Jul 2001 | EP |
1 184 348 | Mar 2002 | EP |
1 288 172 | Mar 2003 | EP |
1 288 172 | Mar 2003 | EP |
1 323 687 | Jul 2003 | EP |
1 561 732 | Aug 2005 | EP |
1 165 275 | Oct 1958 | FR |
1 589 410 | Mar 1970 | FR |
2 118 026 | Jul 1972 | FR |
1 662 688 | Dec 1991 | FR |
2 662 687 | Dec 1991 | FR |
2 662 687 | Dec 1991 | FR |
2 662 688 | Dec 1991 | FR |
2 781 788 | Feb 2000 | FR |
520247 | Apr 1940 | GB |
790397 | Feb 1958 | GB |
810773 | Mar 1959 | GB |
954836 | Apr 1964 | GB |
1006524 | Oct 1965 | GB |
1 045 848 | Oct 1966 | GB |
1 204 472 | Sep 1970 | GB |
1 209 244 | Oct 1970 | GB |
1 273 205 | May 1972 | GB |
1 391 384 | Apr 1975 | GB |
1 399 556 | Jul 1975 | GB |
1 446 910 | Aug 1976 | GB |
1 462 173 | Jan 1977 | GB |
1 473 908 | May 1977 | GB |
1 532 612 | Nov 1978 | GB |
2 011 379 | Jul 1979 | GB |
2 081 703 | Feb 1982 | GB |
2 083 017 | Mar 1982 | GB |
2 122 537 | Jan 1984 | GB |
2 150 553 | Jul 1985 | GB |
2 164 557 | Mar 1986 | GB |
2 259 700 | Mar 1993 | GB |
2 289 673 | Nov 1995 | GB |
2 365 422 | Dec 2000 | GB |
2 383 793 | Jul 2003 | GB |
49-27620 | Mar 1974 | JP |
51-13819 | Feb 1976 | JP |
51-43429 | Apr 1976 | JP |
51-133311 | Nov 1976 | JP |
52-4519 | Jan 1977 | JP |
52-139113 | Nov 1977 | JP |
56-54252 | May 1981 | JP |
6-305773 | Nov 1994 | JP |
P2001-180977 | Jul 2001 | JP |
2003-3335 | Jan 2003 | JP |
2 139 261 | Oct 1999 | RU |
276349 | Jul 1970 | SU |
259337 | Aug 1970 | SU |
607807 | May 1978 | SU |
881025 | Nov 1981 | SU |
1203045 | Jan 1986 | SU |
1 726 411 | Apr 1992 | SU |
WO 8404296 | Nov 1984 | WO |
WO 8502393 | Jun 1985 | WO |
WO 8502394 | Jun 1985 | WO |
WO 8604807 | Aug 1986 | WO |
WO 8705007 | Aug 1987 | WO |
WO 8912032 | Dec 1989 | WO |
WO 9002713 | Mar 1990 | WO |
WO 9011756 | Oct 1990 | WO |
WO 9111403 | Aug 1991 | WO |
WO 9207801 | May 1992 | WO |
WO 9209536 | Jun 1992 | WO |
WO 9315028 | Aug 1993 | WO |
WO 9319596 | Oct 1993 | WO |
WO 9322251 | Nov 1993 | WO |
WO 9414717 | Jul 1994 | WO |
WO 9414718 | Jul 1994 | WO |
WO 9415883 | Jul 1994 | WO |
WO 9423801 | Oct 1994 | WO |
WO 9521799 | Aug 1995 | WO |
WO 9529135 | Nov 1995 | WO |
WO 9531410 | Nov 1995 | WO |
WO 9531411 | Nov 1995 | WO |
WO 9532925 | Dec 1995 | WO |
WO 9532926 | Dec 1995 | WO |
WO 9532927 | Dec 1995 | WO |
WO 9535265 | Dec 1995 | WO |
WO 9601793 | Jan 1996 | WO |
WO 9602478 | Feb 1996 | WO |
WO 9604213 | Feb 1996 | WO |
WO 9604214 | Feb 1996 | WO |
WO 9614274 | May 1996 | WO |
WO 9616913 | Jun 1996 | WO |
WO 9630314 | Oct 1996 | WO |
WO 9716386 | May 1997 | WO |
WO 9720782 | Jun 1997 | WO |
WO 9721636 | Jun 1997 | WO |
WO 9729057 | Aug 1997 | WO |
WO 9730002 | Aug 1997 | WO |
WO 9749643 | Dec 1997 | WO |
WO 9802394 | Jan 1998 | WO |
WO 0119744 | Mar 2001 | WO |
WO 03059835 | Jul 2003 | WO |
WO 03059835 | Jul 2003 | WO |
WO 03060016 | Jul 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20060094583 A1 | May 2006 | US |
Number | Date | Country | |
---|---|---|---|
60717516 | Sep 2005 | US |