Modification of multi-view interactive digital media representation

Information

  • Patent Grant
  • 11776229
  • Patent Number
    11,776,229
  • Date Filed
    Monday, June 21, 2021
    2 years ago
  • Date Issued
    Tuesday, October 3, 2023
    8 months ago
  • CPC
  • Field of Search
    • CPC
    • G06T19/20
    • G06T19/006
    • H04N5/23238
    • H04N13/156
  • International Classifications
    • G06T19/20
    • H04N23/698
    • H04N13/156
    • Term Extension
      16
Abstract
Provided are mechanisms and processes for inserting a visual element into a multi-view digital media representation (MVIDMR). In one example, a process includes analyzing an MVIDMR to determine if there is an appropriate location to insert a visual element. Once a location is found, the type of visual element appropriate for the location is determined, where the type of visual element includes either a three-dimensional object to be inserted in the MVIDMR or a two-dimensional image to be inserted as or projected onto a background or object in the MVIDMR. A visual element that is appropriate for the location is then retrieved and inserted into the MVIDMR, such that the visual element is integrated into the MVIDMR and navigable by a user.
Description
TECHNICAL FIELD

The present disclosure relates to modification of a multi-view interactive digital media representation (MVIDMR).


DESCRIPTION OF RELATED ART

Various image capturing applications and devices, such as smartphone cameras and applications, are popular with consumers. Large numbers of people use these types of applications and devices, and people of varied backgrounds, interests, and demographics make use of these features. These image capturing applications include capabilities relating to taking and storing images and three-dimensional views, such as panoramas, 360 degree views, etc. Such applications help people to save images of various people, places, and events.


Although these capturing applications and devices allow users to record and store various views, these applications and devices are typically limited to providing the images or views as they were recorded. However, users and providers of the applications and devices may want to modify or edit the images and/or views for various reasons. Although existing photo editing software allows users to modify two-dimensional images, existing technology typically does not provide editing capabilities for three-dimensional views. Accordingly, it is desirable to develop improved mechanisms and processes for modifying three-dimensional views.


OVERVIEW

Provided are various mechanisms and processes relating to inserting a visual element into a multi-view interactive digital media representation (MVIDMR).


In one aspect, which may include at least a portion of the subject matter of any of the preceding and/or following examples and aspects, a process includes analyzing an MVIDMR to determine if there is an appropriate location to insert a visual element. Once a location is found, the type of visual element appropriate for the location is determined, where the type of visual element includes either a three-dimensional object to be inserted in the MVIDMR or a two-dimensional image to be inserted as or projected onto a background or object in the MVIDMR. A visual element that is appropriate for the location is then retrieved and inserted into the MVIDMR, such that the visual element is integrated into the MVIDMR and navigable by a user.


In another aspect, which may include at least a portion of the subject matter of any of the preceding and/or following examples and aspects, a process includes receiving images and associated information from a mobile device, where the images include views of a scene captured from different locations. The process further includes generating an MVIDMR from the images and associated information and analyzing the MVIDMR to determine if there is an appropriate location to insert a visual element. Next, a type of visual element that is appropriate for the location is determined, where the type of visual element is a three-dimensional object to be inserted in the MVIDMR or a two-dimensional image to be inserted as or projected onto a surface, background scenery, or three-dimensional object within the MVIDMR. A visual element that is appropriate for the location within the MVIDMR is then retrieved and inserted into the MVIDMR to generate an augmented MVIDMR, such that the visual element is integrated into the augmented MVIDMR and navigable by the user. The augmented MVIDMR is then transmitted to the mobile device.


In yet another aspect, which may include at least a portion of the subject matter of any of the preceding and/or following examples and aspects, a system includes an MVIDMR server and MVIDMR storage device, which are designed to insert a visual element into an MVIDMR, where the MVIDMR is a multi-view interactive digital media representation that includes multiple views of a scene from different locations that can be navigated in three dimensions on a mobile device by a user. In one example, the MVIDMR server is designed to analyze an MVIDMR to determine if there is an appropriate location to insert a visual element, determine the type of visual element that is appropriate for the location, retrieve a visual element that is appropriate for the location within the MVIDMR, and insert the visual element into the MVIDMR, such that the visual element is integrated into the MVIDMR and navigable by the user. The MVIDMR storage device is designed to store multiple MVIDMRs, where the multiple MVIDMRs are retrievable and viewable at one or more mobile devices.


In yet another aspect, which may include at least a portion of the subject matter of any of the preceding and/or following examples and aspects, a computer readable medium includes computer code for analyzing an MVIDMR to determine if there is an appropriate location to insert a visual element and a type of visual element that is appropriate for the location, where the type of visual element is a three-dimensional object to be inserted in the MVIDMR or a two-dimensional image to be inserted as or projected onto a background or object in the MVIDMR. The computer readable medium further includes computer code for retrieving a visual element that is appropriate for the location within the MVIDMR and inserting the visual element into the MVIDMR, such that the visual element is integrated into the MVIDMR and navigable by the user.


These and other embodiments are described further below with reference to the figures.





BRIEF DESCRIPTION OF THE DRAWINGS

The disclosure may best be understood by reference to the following description taken in conjunction with the accompanying drawings, which illustrate particular embodiments of the present invention.



FIG. 1 illustrates an example of an MVIDMR acquisition system.



FIG. 2 illustrates an example of a device capturing multiple views of an object of interest from different locations for an MVIDMR.



FIG. 3 illustrates an example of a device capturing views of an object of interest for an MVIDMR.



FIG. 4A illustrates one example of a top view of an MVIDMR that includes 3D content and 2D context.



FIG. 4B illustrates one example of a view from a particular viewpoint location of an MVIDMR.



FIG. 4C illustrates one example of a view from an MVIDMR augmented with a 3D visual element.



FIG. 4D illustrates one example of a view from an MVIDMR augmented with a 2D visual element.



FIG. 5 illustrates one example of a surface projected visual element added to an MVIDMR object.



FIG. 6 illustrates an example of a process for inserting a visual element into an MVIDMR.



FIG. 7 illustrates an example of process for generating an augmented MVIDMR that includes an added visual element.



FIG. 8 illustrates a particular example of a system that can be used with various embodiments of the present invention.





DETAILED DESCRIPTION

Reference will now be made in detail to some specific examples of the present disclosure including the best modes contemplated by the inventors for carrying out various embodiments of the present disclosure. Examples of these specific embodiments are illustrated in the accompanying drawings. While the present disclosure is described in conjunction with these specific embodiments, it will be understood that it is not intended to limit the present disclosure to the described embodiments. On the contrary, it is intended to cover alternatives, modifications, and equivalents as may be included within the spirit and scope of the present disclosure as defined by the appended claims.


In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. Particular example embodiments of the present invention may be implemented without some or all of these specific details. In other instances, well known process operations have not been described in detail in order not to unnecessarily obscure the present invention.


Various techniques and mechanisms of the present invention will sometimes be described in singular form for clarity. However, it should be noted that some embodiments include multiple iterations of a technique or multiple instantiations of a mechanism unless noted otherwise. For example, a system uses a processor in a variety of contexts. However, it will be appreciated that a system can use multiple processors while remaining within the scope of the present invention unless otherwise noted. Furthermore, the techniques and mechanisms of the present invention will sometimes describe a connection between two entities. It should be noted that a connection between two entities does not necessarily mean a direct, unimpeded connection, as a variety of other entities may reside between the two entities. For example, a processor may be connected to memory, but it will be appreciated that a variety of bridges and controllers may reside between the processor and memory. Consequently, a connection does not necessarily mean a direct, unimpeded connection unless otherwise noted.


Image capturing applications and devices, such as smartphone cameras and applications, are popular with consumers. These image capturing applications include capabilities relating to taking and storing images and three-dimensional views, such as panoramas, 360 degree views, etc. These images and three-dimensional views of various people, places, and events, serve to preserve memories for many users.


One type of three-dimensional (3D) view is a multi-view digital media representation. An MVIDMR provides an interactive experience for a user that allows the user to navigate through the MVIDMR such that the user can move around the scene virtually. For instance, the user can move around an object to see different sides of the object. In particular, the user can either provide touch input, such as swiping or tapping the screen, or movement, such as tilting and/or translating the device, to navigate through an MVIDMR that is displayed on a smart phone or other device.


According to various embodiments, mechanisms and processes are provided that allow modification of an MVIDMR. For instance, backgrounds, objects, or other aspects can be added to an MVIDMR according to the desires of the user, a provider, or an advertiser. In one particular application, an MVIDMR can be modified by adding a visual element to the scene. A visual element may be an object, an image, a video, an advertisement, etc. In particular, a visual element can be a 2D background or 3D object that can be inserted into an MVIDMR, such that the inserted material is navigable with the rest of the MVIDMR. According to various embodiments, visual elements are advertisements. Although advertisements are used as examples of visual elements in some of the following description, it should be noted that visual elements are not limited to advertisements.


Typically, advertisements are used to promote a product, brand, movie, show, idea, or other interest by advertisers. These advertisements can take various forms such as print ads in newspapers and magazines, banner ads on websites, video ads shown before, during, or after a video media presentation (such as a television show or an online video), or billboard ads along roadways. Advertisers want to reach as many consumers as possible through numerous platforms and channels. Accordingly, advertisers are always looking for new and additional places to provide advertisements that will reach viewers.


Currently, advertisements are displayed through various applications, such as smartphone applications, in the form of banner or video advertisements. In addition, these advertisements may be included on a website or other digital interface. However, if these advertisements are used with programs or applications that display images and three-dimensional views, these banner and video advertisements can often be intrusive and distracting to the viewer. Accordingly, various embodiments herein describe improved mechanisms and processes for presenting advertisements to users viewing images or three-dimensional views through applications, websites, or other digital interfaces.


According to various example embodiments, improved mechanisms and processes are described that allow advertisements to be inserted into MVIDMRs. In particular, a two-dimensional (2D) and/or three-dimensional (3D) advertisement can be integrated into an MVIDMR, such that the advertisement is part of the MVIDMR that the user can navigate. For instance, an object with branding information can be inserted into an MVIDMR as a 3D advertisement. A user can navigate around this 3D object just like any other object in the MVIDMR. In some examples, a 2D advertisement can be included as a background or scenery for the MVIDMR. In addition, a 2D advertisement can also be projected onto a planar or 3D surface within the MVIDMR, in particular examples.


Implementing improved mechanisms and processes for including advertisements in 3D images, such as multi-view digital media representations or MVIDMRs, provides numerous benefit and advantages. For instance, digital applications and programs that are used to view MVIDMRs can obtain funding from advertisers wishing to purchase advertising space within MVIDMRs. Because providers of the digital applications and programs would receive at least partial funding from advertisers, the providers have the option of offering free or reduced priced applications and programs to users. In addition, advertisements can be presented to the user in a way that enhances their experience when viewing the images and three-dimensional views. Specifically, the advertisements can make scenes more pleasant or can add decorative aspects that improve the overall aesthetic of an MVIDMR.


Although MVIDMRs can be modified by the insertion of advertisements, the modification of MVIDMRs can be extended to many different uses. If an advertisement or branding information is not used, 2D backgrounds or images and/or 3D objects can also be provided as tools for users to modify or edit their MVIDMRs. For instance, users may want to augment existing MVIDMRs with additional elements or features. The provider of the program or application for viewing MVIDMRs can provide various 2D and 3D elements or features that can be used in the MVIDMRs as part of the software or application. In some implementations, these modification features can be provided for a fee. For instance, users may purchase virtual items a la carte to place in a particular MVIDMR, or users can pay for the use of the modification features. In some examples, the provider can provide periodic updates to the 2D and 3D content available to the users.


With reference to FIG. 1, shown is an example of an MVIDMR acquisition system that can be used to generate an MVIDMR. As described in various examples herein, an MVIDMR can be augmented with an advertisement, which may take the form of a 2D or 3D advertisement that is inserted into the MVIDMR. Specifically, in some examples, a 2D advertisement can be projected onto a planar or dimensional surface of an object or background scenery within an MVIDMR. In other examples, a 3D advertisement that includes at least one 3D object can be inserted into an MVIDMR, such that the 3D object is navigable with the rest of the MVIDMR.


In the present example embodiment, the MVIDMR acquisition system 100 is depicted in a flow sequence that can be used to generate an MVIDMR. According to various embodiments, the data used to generate an MVIDMR can come from a variety of sources. In particular, data such as, but not limited to two-dimensional (2D) images 104 can be used to generate an MVIDMR. These 2D images can include color image data streams such as multiple image sequences, video data, etc., or multiple images in any of various formats for images, depending on the application. Another source of data that can be used to generate an MVIDMR includes location information 106. This location information 106 can be obtained from sources such as accelerometers, gyroscopes, magnetometers, GPS, WiFi, IMU-like systems (Inertial Measurement Unit systems), and the like. Yet another source of data that can be used to generate an MVIDMR can include depth images 108. These depth images can include depth, 3D, or disparity image data streams, and the like, and can be captured by devices such as, but not limited to, stereo cameras, time-of-flight cameras, three-dimensional cameras, and the like.


In the present example embodiment, the data can then be fused together at sensor fusion block 110. In some embodiments, an MVIDMR can be generated from a combination of data that includes both 2D images 104 and location information 106, without any depth images 108 provided. In other embodiments, depth images 108 and location information 106 can be used together at sensor fusion block 110. Various combinations of image data can be used with location information at 106, depending on the application and available data.


In the present example embodiment, the data that has been fused together at sensor fusion block 110 is then used for content modeling 112 and context modeling 114. During this process, the subject matter featured in the images is separated into content and context. The content is delineated as the object(s) of interest and the context is delineated as the scenery surrounding the object(s) of interest. According to various embodiments, the content can be a three-dimensional model, depicting an object of interest, although the content can be a two-dimensional image in some embodiments. Furthermore, in some embodiments, the context can be a two-dimensional model depicting the scenery surrounding the object of interest. Although in many examples the context can provide two-dimensional views of the scenery surrounding the object of interest, the context can also include three-dimensional aspects in some embodiments. For instance, the context can be depicted as a “flat” image along a cylindrical “canvas,” such that the “flat” image appears on the surface of a cylinder. In addition, some examples may include three-dimensional context models, such as when some objects are identified in the surrounding scenery as three-dimensional objects. According to various embodiments, the models provided by content modeling 112 and context modeling 114 are generated by combining the image and location information data.


According to various embodiments, context and content of an MVIDMR are determined based on a specified object of interest. In some examples, an object of interest is automatically chosen based on processing of the image and location information data. For instance, if a dominant object is detected in a series of images, this object can be selected as the content. In other examples, a user specified target 102 can be chosen. It should be noted, however, that an MVIDMR can be generated without a user specified target in some applications.


In the present example embodiment, one or more enhancement algorithms is applied at enhancement algorithm(s) block 116. In particular example embodiments, various algorithms can be employed during capture of MVIDMR data, regardless of the type of capture mode employed. These algorithms can be used to enhance the user experience. For instance, automatic frame selection, stabilization, view interpolation, filters, and/or compression can be used during capture of MVIDMR data. In some examples, these enhancement algorithms can be applied to image data after acquisition of the data. In other examples, these enhancement algorithms can be applied to image data during capture of MVIDMR data.


According to particular example embodiments, automatic frame selection is used to create a more enjoyable MVIDMR. Specifically, frames are automatically selected so that the transition between them will be smoother or more even. This automatic frame selection can incorporate blur- and overexposure-detection in some applications, as well as more uniformly sampling poses so that they are more evenly distributed.


In some example embodiments, stabilization is used for an MVIDMR in a manner similar to that used for video. In particular, key frames in an MVIDMR can be stabilized to produce improvements such as smoother transitions, improved/enhanced focus on the content, etc. However, unlike video, there are many additional sources of stabilization for an MVIDMR, such as by using IMU information, depth information, computer vision techniques, direct selection of an area to be stabilized, face detection, and the like.


For instance, IMU information can be very helpful for stabilization. In particular, IMU information provides an estimate, although sometimes a rough or noisy estimate, of the camera tremor that may occur during image capture. This estimate can be used to remove, cancel, and/or reduce the effects of such camera tremor.


In some examples, depth information, if available, can be used to provide stabilization for an MVIDMR. Because points of interest in an MVIDMR are three-dimensional, rather than two-dimensional, these points of interest are more constrained and tracking/matching of these points is simplified as the search space reduces. Furthermore, descriptors for points of interest can use both color and depth information and therefore, become more discriminative. In addition, automatic or semi-automatic content selection can be easier to provide with depth information. For instance, when a user selects a particular pixel of an image, this selection can be expanded to fill the entire surface that touches it. Furthermore, content can also be selected automatically by using a foreground/background differentiation based on depth. In various examples, the content can stay relatively stable/visible even when the context changes.


According to various examples, computer vision techniques are also used to provide stabilization for MVIDMRs. For instance, key points are detected and tracked. However, in certain scenes, such as a dynamic scene or static scene with parallax, no simple warp exists that can stabilize everything. Consequently, there is a trade-off in which certain aspects of the scene receive more attention to stabilization and other aspects of the scene receive less attention. Because an MVIDMR is often focused on a particular object of interest, an MVIDMR can be content-weighted so that the object of interest is maximally stabilized in some examples.


Another way to improve stabilization in an MVIDMR includes direct selection of a region of a screen. For instance, if a user taps to focus on a region of a screen, then records a convex MVIDMR, the area that was tapped can be maximally stabilized. This allows stabilization algorithms to be focused on a particular area or object of interest.


In some examples, face detection is used to provide stabilization. For instance, when recording with a front-facing camera, it is often likely that the user is the object of interest in the scene. Thus, face detection can be used to weight stabilization about that region. When face detection is precise enough, facial features themselves (such as eyes, nose, mouth) can be used as areas to stabilize, rather than using generic key points.


According to various examples, view interpolation is used to improve the viewing experience. In particular, to avoid sudden “jumps” between stabilized frames, synthetic, intermediate views can be rendered on the fly. This can be informed by content-weighted key point tracks and IMU information as described above, as well as by denser pixel-to-pixel matches. If depth information is available, fewer artifacts resulting from mismatched pixels may occur, thereby simplifying the process. As described above, view interpolation can be applied during capture of an MVIDMR in some embodiments. In other embodiments, view interpolation can be applied during MVIDMR generation.


In some examples, filters are also used during capture or generation of an MVIDMR to enhance the viewing experience. Just as many popular photo sharing services provide aesthetic filters that can be applied to static, two-dimensional images, aesthetic filters can similarly be applied to surround images. However, because an MVIDMR representation is more expressive than a two-dimensional image, and three-dimensional information is available in an MVIDMR, these filters can be extended to include effects that are ill-defined in two-dimensional photos. For instance, in an MVIDMR, motion blur can be added to the background (i.e. context) while the content remains crisp. In another example, a drop-shadow can be added to the object of interest in an MVIDMR.


In various examples, compression is also used as an enhancement algorithm 116. In particular, compression can be used to enhance user-experience by reducing data upload and download costs. Because MVIDMRs use spatial information, far less data can be sent for an MVIDMR than a typical video, while maintaining desired qualities of the MVIDMR. Specifically, the IMU, key point tracks, and user input, combined with the view interpolation described above, can all reduce the amount of data that must be transferred to and from a device during upload or download of an MVIDMR. For instance, if an object of interest can be properly identified, a variable compression style can be chosen for the content and context. This variable compression style can include lower quality resolution for background information (i.e. context) and higher quality resolution for foreground information (i.e. content) in some examples. In such examples, the amount of data transmitted can be reduced by sacrificing some of the context quality, while maintaining a desired level of quality for the content.


In the present embodiment, an MVIDMR 118 is generated after any enhancement algorithms are applied. The MVIDMR provides a multi-view interactive digital media representation. In various examples, the MVIDMR includes a three-dimensional model of the content and a two-dimensional model of the context. However, in some examples, the context can represent a “flat” view of the scenery or background as projected along a surface, such as a cylindrical or other-shaped surface, such that the context is not purely two-dimensional. In yet other examples, the context can include three-dimensional aspects.


According to various embodiments, MVIDMRs provide numerous advantages over traditional two-dimensional images or videos. Some of these advantages include: the ability to cope with moving scenery, a moving acquisition device, or both; the ability to model parts of the scene in three-dimensions; the ability to remove unnecessary, redundant information and reduce the memory footprint of the output dataset; the ability to distinguish between content and context; the ability to use the distinction between content and context for improvements in the user-experience; the ability to use the distinction between content and context for improvements in memory footprint (an example would be high quality compression of content and low quality compression of context); the ability to associate special feature descriptors with MVIDMRs that allow the MVIDMRs to be indexed with a high degree of efficiency and accuracy; and the ability of the user to interact and change the viewpoint of the MVIDMR. In particular example embodiments, the characteristics described above can be incorporated natively in the MVIDMR representation, and provide the capability for use in various applications. For instance, MVIDMRs can be used as sites for advertisements, such as 2D and 3D advertisements, because such advertisements can be inserted into or relative to the content and/or context of the MVIDMRs.


According to various example embodiments, once an MVIDMR 118 is generated, user feedback for acquisition 120 of additional image data can be provided. In particular, if an MVIDMR is determined to need additional views to provide a more accurate model of the content or context, a user may be prompted to provide additional views. Once these additional views are received by the MVIDMR acquisition system 100, these additional views can be processed by the system 100 and incorporated into the MVIDMR.


With reference to FIG. 2, shown is an example of a device capturing multiple views of an object of interest from different locations for an MVIDMR. The capture device is indicated as camera 212, and moves from location 222 to location 224 and from location 224 to location 226. The multiple camera views 202, 204, and 206 captured by camera 212 are fused together into a three-dimensional (3D) model. According to various embodiments, multiple images are captured from various viewpoints and fused together to provide a multi-view digital media representation, such as an MVIDMR.


In the present example embodiment, camera 212 moves to locations 222, 224, and 226, respectively, along paths 228 and 230, in proximity to an object of interest 208. Scenery can surround the object of interest 208 such as object 210. Views 202, 204, and 206 are captured by camera 212 from locations 222, 224, and 226 and include overlapping subject matter. Specifically, each view 202, 204, and 206 includes the object of interest 208 and varying degrees of visibility of the scenery surrounding the object 210. For instance, view 202 includes a view of the object of interest 208 in front of the cylinder that is part of the scenery surrounding the object 208. View 204 shows the object of interest 208 to one side of the cylinder, and view 206 shows the object of interest without any view of the cylinder.


In the present example embodiment, the various views 202, 204, and 206 along with their associated locations 222, 224, and 226, respectively, provide a rich source of information about object of interest 208 and the surrounding context that can be used to produce an MVIDMR. For instance, when analyzed together, the various views 202, 204, and 206 provide information about different sides of the object of interest and the relationship between the object of interest and the scenery. These views also provide information about the relative size and scale of the object of interest in relation to the scenery. Furthermore, views from different sides of the object provide information about the shape and texture of the object. According to various embodiments, this information can be used to parse out the object of interest 208 into content and the scenery 210 as the context. In particular examples, distinctions between the content and context can be used to insert advertisements as 2D or 3D advertisements into the MVIDMR.


With reference to FIG. 3, shown is an example of a device capturing views of an object of interest for an MVIDMR. During a capture session, multiple views of the object 208 are captured by the device 212 from different locations. In the present example, data is acquired when a user taps a record button 302 on capture device 212 to begin recording images of the object 208. The user moves 300 the capture device 212 from location 222 to location 224 along path 228 and from location 224 to location 226 along path 230. In some examples, prompts for the user to capture particular views can be provided during the session in order to improve the accuracy of the MVIDMR. In particular, the system can prompt the user to move the device 212 in a particular direction or may prompt the user to provide additional information. Once the user has finished capturing images of the object for the MVIDMR, the user may choose to stop recording by tapping the record button 302 again. In other examples, the user can tap and hold the record button during the session, and release to stop recording. In the present example, the recording captures a series of images that can be used to generate an MVIDMR.


Similarly, an MVIDMR can be viewed through an application on a device 212. Instead of tapping a record button and capturing images, the user moves the device 212 around or provides inputs to the screen, such as by tapping or swiping, to navigate through an MVIDMR. In particular, by navigating through the MVIDMR, the user can view object 208 from various view points and locations around the object 208.



FIGS. 4A-4D illustrate examples of MVIDMRs before and after the insertion of visual elements such as advertisements. In particular, FIGS. 4A and 4B illustrate a view from a particular location in an MVIDMR, and FIGS. 4C and 4D illustrate the same view after the insertion of 3D and 2D advertisements, respectively. It should be noted that although an MVIDMR can include real-life images and views, an MVIDMR and the insertion of advertisements into an MVIDMR can also be used with virtual reality or augmented reality MVIDMRs as well. Accordingly, MVIDMRs that include virtual reality or augmented reality can be navigated like other MVIDMRs and content and context can be separated in these MVIDMRs as well. As such, the examples and processes described with regard to inserting advertisements into an MVIDMR apply to virtual reality and augmented reality implementations, as well as real-life or other MVIDMR implementations.


With reference to FIG. 4A, shown is one example of a top view of an MVIDMR that includes 3D content and 2D context. Specifically, MVIDMR 400 includes 3D Content 404, which is depicted as a three-dimensional table, and 2D Context 402, which is depicted as a cylindrical background with 2D scenery projected onto it. In the present example, the MVIDMR 400 is being viewed from viewpoint location 406. As indicated by the arrow originating from viewpoint location 406, the view from this location includes one end of the table that forms 3D content 404, with 2D Context 402 visible in the background. This view 408, from viewpoint location 406, is depicted in FIG. 4B.


With reference to FIG. 4B, shown is one example of a view from a particular viewpoint location of an MVIDMR. In this view 408, a side view of the table described with regard to FIG. 4A is shown. Specifically, the table is depicted as 3D content 404, and the background is shown as 2D context 402. From this view 408, numerous locations are visible that would be appropriate for advertisements. In particular, these locations would be appropriate places to insert a 2D or 3D advertisement in the MVIDMR. For instance, items, such as 3D advertisements can be placed on the table 404. Additionally, 2D advertisements can be projected onto the background 2D context 402. In some examples, 2D advertisements can also be projected onto the surfaces of the table. Furthermore, 3D advertisements can also be placed next to, behind, under, or near the table. These 2D and 3D advertisements can serve to promote products and/or brands, but they can also add aesthetic and functional elements to an MVIDMR. In particular, the 2D and 3D advertisements can add to the overall decor, colors, and style of a particular MVIDMR. For instance, a plain room could have decorative wallpaper projected onto the wall, where the wallpaper also includes branding logos, but improves the overall look of the room. In another example, 2D and 3D advertisements in the form of furniture, stuffed animals, vases, cups, etc. can be placed in a room to complement the already existing features of the room. These advertisements can both provide promotional value to the advertisers and functional value to a user that is experiencing an MVIDMR.


With reference to FIG. 4C, shown is one example of a view from an MVIDMR that has been augmented with a 3D advertisement. In particular, view 410 includes the 3D content 404 and 2D context 402 shown in view 408 of FIG. 4B, but also includes the insertion of 3D advertisement 412. Specifically, 3D advertisement 412 is a soda can placed on a surface of table 404. In some examples, the 3D advertisement 412 is the product that the advertiser wishes to promote, such as the soda itself, which may include associated branding information on the object. In other examples, the 3D advertisement includes branding information on the object, even though the object itself may not be the product the advertiser is trying to promote. For instance, an insurance ad can be featured on the soda can to promote the insurance company. In this augmented MVIDMR, the 3D advertisement 412 is integrated into the MVIDMR such that the soda can is navigable in three dimensions along with the table.


With reference to FIG. 4D, shown is one example of a view from an MVIDMR augmented with a 2D advertisement. In particular, view 422 includes the 3D content 404 of FIG. 4B, but also includes the insertion of 2D advertisement 424 as background scenery. Specifically, 2D advertisement 424 is shown as a wallpaper-type background with logo and text information that has been inserted in place of the 2D context 402 shown in FIG. 4B.


Although the 2D advertisement 424 has replaced the 2D context 402 in this example, it is possible in some examples to integrate the 2D advertisement 424 into the 2D context 402. For instance, if the 2D advertisement 424 is semi-transparent, it may be included as an overlay on top of 2D context 402. In other examples, 2D advertisement 424 may cover a portion of 2D context 402, such as an area in a picture frame, window, etc. For instance, if 2D advertisement 424 is a poster, the poster can be inserted onto the wall of the scene. In yet other examples, the 2D advertisement may be projected onto a plane or surface within the MVIDMR, such as in a picture frame that is already included in the MVIDMR, or on a surface, such as a surface of the table shown as 3D content 404.


Although 2D advertisement 424 is shown as a wallpaper-type background in the present example, 2D advertisement 424 can also be depicted as scenery or background that includes images or objects. For instance, the 2D advertisement can include a picture of a beach resort with a poolside bar that has branding and product information displayed on decorative flags hanging from the bar, along with drinking glasses and signage placed on the counter of the bar that also includes the branding and product information. This poolside bar advertisement would provide context for the table featured as 3D content 404. Accordingly, the 3D content 404 could be viewed in any number of surroundings with branding and product information integrated.


With reference to FIG. 5, shown is one example of a surface projected visual element added to an MVIDMR object. As shown, a particular view 500 from an MVIDMR depicts a car as 3D content 502. The 3D content 502 is shown in front of background scenery in view 500. In this example, the visual element is an advertisement. Although numerous locations for an advertisement may exist within this view 500, one location that is detected for an advertisement is found at 504. In particular, location 504 is a door of the car, which has been chosen as an appropriate location for an advertisement in this MVIDMR.


Once the location 504 is chosen, an appropriate advertisement is then inserted 510 at this location. An MVIDMR 520 is then generated with the advertisement integrated into the MVIDMR. In particular, the surface projected advertisement 512 is shown in numerous views 522, 524, and 526. In the present example, a 2D advertisement has been projected onto the surface of the car's door. This advertisement is integrated into the MVIDMR and 3D content 502 such that the advertisement appears to be part of the car and is navigable in three dimensions by a viewer.


In the present example, the surface projected advertisement 512 covers the door of the car 504 and follows the contours of the door's surface. In some examples, the surface projected advertisement can be semi-transparent, such that it is superimposed over the existing door and shows the color of the car through the advertisement. In other examples, the surface projected advertisement may cover only a portion of the door. In yet other examples, a surface projected advertisement may cover more of the car or may include three-dimensional aspects. In addition, multiple advertisements may be featured in the same MVIDMR as 2D and/or 3D advertisements. Any number or combination of 2D and/or 3D advertisements can be inserted into an MVIDMR, depending on the desires of the advertisers, users, or application/program providers.


With reference to FIG. 6, shown is an example of a process for inserting a visual element into an MVIDMR. The process 600 begins by analyzing an MVIDMR to determine if there is an appropriate location for a visual element such as an advertisement at 602. As described previously, the MVIDMR is a multi-view interactive digital media representation that includes multiple views of a scene from different locations that can be navigated in three dimensions on a mobile or other device by a user. Examples of mobile devices include smart phones, tablets, notebooks, etc. Other devices may include computing devices, cameras, etc.


In the present example, the MVIDMR is analyzed to determine if there are one or more locations or regions that would be appropriate for the placement of an advertisement at 602. In particular, appropriate locations or regions on or relative to the content and/or context are identified. The advertisements under consideration may include two-dimensional images and/or three-dimensional objects. The two-dimensional images may include a logo, text, scenery, or other graphics representing a product or sponsoring entity. The three-dimensional objects may include a product to be advertised or branding information displayed on a product or other object. The branding information can include a logo, text, or other graphic associated with a product and/or sponsoring entity. Products to be advertised can include goods, services, media, etc. For instance, products may include movies, food, drinks, music, memorabilia, a media personality, a service provider, etc. In some embodiments, the locations or regions appropriate for placement of an advertisement can be automatically detected when an MVIDMR is generated.


According to particular example embodiments, the content in the MVIDMR is analyzed to determine if 2D and/or 3D advertisements can be placed on or near the content and/or projected onto the content's surface. Specifically, a determination is made whether a 3D advertisement can be placed relative to the content, such as on, in, under, adjacent to, etc. the content. For instance, as described with regard to FIGS. 4A-D, a determination can be made that a 3D advertisement, such as a soda can, can be placed on a table. Furthermore, a determination could also be made that a 3D advertisement, such as a chair, can be placed adjacent to the table (e.g. in front of, to the side of, or behind the table). A determination is also made whether a 2D advertisement can be projected onto the content, an example of which is described with respect to FIG. 5.


In the present embodiment, the context in the MVIDMR is also analyzed to determine if 2D and/or 3D advertisements can be inserted. For instance, a 2D advertisement can be inserted in place of the context or can be added to some aspect of the context. Specifically, the 2D advertisement may cover a portion of the context or may be added as a semi-transparent overlay in some cases. As described previously, a 2D advertisement can sometimes be projected onto a flat or cylindrical context surface, depending on the attributes of the MVIDMR. Additionally, a 3D advertisement can be inserted as context in an MVIDMR in some examples.


In the present example embodiment, once an appropriate location for an advertisement has been identified, a determination is then made about the type of advertisement that would be appropriate for the location at 604. Specifically, a determination is made about whether the appropriate advertisement is a three-dimensional object to be inserted in the MVIDMR or a two-dimensional image to be inserted as or projected onto a background or object in the MVIDMR. The type of advertisement also includes various aspects in addition to whether it is a 2D or 3D advertisement. Specifically, aspects include the size, shape, and subject matter of the advertisement. Additional aspects may include the color, style, and target audience of the advertisement. Accordingly, based on the location of the advertisement selected, a determination is made whether the appropriate advertisement is a 2D or 3D advertisement.


Next, a particular advertisement is selected based on characteristics of the location for the advertisement. For instance, the advertisement may be selected based on aspects such as the size and shape of the location such that an advertisement selected for placement on a table may be different than an advertisement selected for placement on a sofa. Specifically, a soda can may be selected for placement on a table, and a pillow may be selected for placement on a sofa. Similarly, a repetitive wallpaper-type advertisement may be placed on a wall of the MVIDMR, whereas an image-based brand advertisement may be inserted on a smaller plane located in the MVIDMR, such as a picture frame or a computer screen.


According to specific embodiments, an advertisement may be selected based on the content of the advertisement and/or characteristics of the MVIDMR itself. For instance, the content of the advertisement includes aspects such as the kind of product or brand advertised, colors, the intended audience, etc. Consequently, advertisements for beer, diapers, and nail polish would fall under very different types of products/brands advertised and intended audiences. In addition, the colors and style of these advertisements are also likely to differ. When taking into account aspects of the MVIDMR, various characteristics can be inferred from the content and context detected. For instance, if an MVIDMR includes an expensive sports car, an advertisement for wine or beer may be more appropriate than an advertisement for diapers. Similarly, an MVIDMR that includes a children's playground may be a more appropriate place for an applesauce advertisement than a cigarette advertisement. In some embodiments, characteristics associated with the viewer of an MVIDMR may also be considered.


In particular embodiments, an advertisement may be selected based on the visual style of the MVIDMR. For example, advertisements typically placed on professional racecars often have a particular visual style. If the system determines that an MVIDMR includes a sportscar, the system may place a virtual advertisement on the side of the sportscar in a fashion similar to the advertisements placed on professional racecars. Further, the virtual advertisement placed on the sportscar may be presented in a visual style similar to the advertisements typically placed on professional racecars.


Once the type of advertisement is chosen, an appropriate advertisement is retrieved at 606. In particular, an appropriate advertisement with the desired characteristics for the location in the MVIDMR is retrieved from a source such as an advertisement storage device, as shown in FIG. 8. Numerous advertisements can be stored at this location, such that the advertisements can be easily accessed by the system and integrated into MVIDMRs. In addition, some of the advertisements may be customizable, such that colors, sizes, etc. can be modified to fit a particular MVIDMR. According to various examples, each advertisement includes branding information for a product and/or sponsoring entity.


In the present embodiment, the advertisement chosen is then inserted into the MVIDMR at 608. More specifically, the advertisement is integrated into the MVIDMR such that it is navigable by the user. For a 2D advertisement, the text, logos, images, and the like, can be rendered onto a wall, planar surface, or an object's surface within the MVIDMR. For instance, a logo for a soda brand can be rendered onto a wall. For 3D advertisements, the objects can be rendered and/or placed within the MVIDMR relative to the content and/or the context. In one example, a soda can is placed on a table in the MVIDMR.


In particular embodiments, the MVIDMR may be updated to match the style of the selected advertisement. For example, if the advertisement advertises a refreshing drink, then the MVIDMR may be updated to appear icy. As another example, if the advertisement advertises a cleaning product, then the MVIDMR may be updated so that one or more objects appears to be sparkling clean. Such modifications may be made by changing the color values, saturation, or hue, by adding visual effects such as icicles, by removing visual elements such as flames or dirt, or performing other such modifications.


According to various embodiments, the MVIDMR can include various attributes related to its content and context. In some examples, the MVIDMR is based on real-world images captured as photos and/or videos by a user. In other examples, the MVIDMR is constructed in virtual reality, such that the content and context are constructed with the use of software, a computer program, or the like. In yet other examples, the MVIDMR may include augmented reality, with aspects taken from images captured from the real-world and digital images generated with the use of software, a computer program, or the like. As described herein, an advertisement can be inserted into any of these types of MVIDMRs. For instance, the same advertisement can be inserted into a real-world, virtual reality, or augmented reality MVIDMR. In some examples, the advertisement may turn a real-world MVIDMR into an augmented reality MVIDMR, such as when a digitally rendered advertisement, such as a 3D cartoon character with branding information, is inserted into a real-world MVIDMR as if the cartoon character was really there. In that example, the cartoon character would be navigable in three dimensions along with the rest of the MVIDMR.


Although the present example describes adding one advertisement, any number of advertisements can be inserted into an MVIDMR. For instance, when a determination is made about whether there is an appropriate location for an advertisement, multiple locations may be found. In some examples, one of the locations may be chosen, and in other examples, multiple locations may be chosen. The advertisements then selected for these locations can be chosen independently in some cases, such that the advertisements are unrelated in brand and/or product. In other cases, the advertisements may be chosen to promote the same or related brands and/or products.


With reference to FIG. 7, shown is an example of process for generating an augmented MVIDMR that includes an added visual element. In particular, the process includes inserting an advertisement into an MVIDMR when the MVIDMR is generated. The process is similar to the process described above with regard to FIG. 6, but also includes receiving the initial images used to generate the MVIDMR and providing the augmented MVIDMR to a device, such as a smart phone, tablet, notebook, or other computing device.


In the present embodiment, the process 700 for generating an augmented MVIDMR that includes an advertisement begins when the system receives images and information associated with the information from the mobile device at 702. As described previously, the information associated with the images may include location information, depth information, or the like. Next, an MVIDMR is generated from the images and information received from the capture device at 704. Specifically, the MVIDMR is generated by a process such as the one described above with regard to FIG. 1.


According to various embodiments, the MVIDMR is then analyzed and an advertisement is inserted into the MVIDMR, as described above with regard to FIG. 6. In particular, the MVIDMR is analyzed to determine if there is an appropriate location for an advertisement at 706. Once an appropriate location is found, then a determination is made about a type of advertisement that is appropriate for the location at 708. For instance, the type of advertisement chosen can include a 2D advertisement that includes an image or a 3D advertisement that includes an object that can be integrated into the MVIDMR. Once the type of advertisement is determined, an appropriate advertisement is then retrieved at 710. This advertisement can be retrieved from a storage device, as described in more detail below with regard to FIG. 8. The advertisement is then inserted into the MVIDMR to generate an augmented MVIDMR at 712. In some examples, the advertisement can be added to the MVIDMR as if additional images or information had been received from a user 120 in FIG. 1. The MVIDMR then goes through a process as described above with regard to FIG. 1 to generate an augmented MVIDMR that includes the advertisement in the MVIDMR.


Once the augmented MVIDMR is generated, the augmented MVIDMR is transmitted at 714. In some instances, this may mean transmitting the augmented MVIDMR to a device associated with a user. In other examples, this may mean transmitting the augmented MVIDMR to a storage location from which the device can access the MVIDMR for viewing or downloading.


According to various embodiments, an augmented MVIDMR that includes one or more advertisements may be generated automatically or at the request of a user. For example, advertisements may automatically be added to MVIDMRs unless a user specifies otherwise or if the user pays a fee to not see any advertisements in the MVIDMR. Alternatively, user can be provided with an option to have advertisements integrated into MVIDMRs automatically or have MVIDMRs generated without advertisements if the user pays for the use of the MVIDMR program or application. Additionally, in some implementations, the advertisements can be inserted at the user's request to reduce costs of using the program or application.


In particular examples, a user may actively choose to include advertisements in an MVIDMR. In one scenario, a user may select settings that indicate the type of advertisements that may be added automatically by the system. In another scenario, the user may manually select advertisements to include in an MVIDMR, especially if these advertisements enhance the user's experience of the MVIDMR. Specifically, the user may want to add decorative wallpaper, scenery or products into an MVIDMR for aesthetic reasons that would enhance the MVIDMR. For instance, if a user creates a “selfie” MVIDMR in a plain room (or a messy room), the user may want to instead add surroundings that are more pleasant, such as scenery, wallpaper, objects, etc. Additionally, the advertisements may also be added as filters, frames, or other effects that enhance the user's experience.


In some implementations, a user may be incentivized to provide space for advertisements in an MVIDMR. For example, users may be provided with revenue sharing opportunities for the MVIDMR. The advertiser and the user may then mutually benefit if the MVIDMR is shared with others.


In some examples, a user may have an option to choose the locations and types of advertisements. Specifically, in some implementations, the user can choose from a selection of ads to enhance or decorate the MVIDMR. For instance, the user may choose decorative wallpaper, drinks, pillows, etc. that has branding or product information. Besides promoting a brand or product, the items can be designed to add flair to the MVIDMR. Special effects can also be added, such as 3D bubbles, rain, water, etc. that add different effects to the MVIDMR.


With reference to FIG. 8, shown is a particular example of a system that can be used with various embodiments of the present invention. In particular, system 800 can be used to either generate an MVIDMR that includes one or more visual elements or insert a visual element into an existing MVIDMR. According to particular example embodiments, a system 800 suitable for implementing particular embodiments of the present invention includes an MVIDMR server 820, MVIDMR storage device 830, and advertisement storage device 832.


In the present example, the MVIDMR server 820 communicates with a device 808, such as a smart phone, tablet, notebook, camera, or other computing device. In one example, device 808 is used to capture images of an object or scenery that will be transmitted to system 820 and used to generate an MVIDMR. In another example, device 808 is used to store or transmit an MVIDMR that will be modified by system 800 to include an advertisement.


When device 808 is used to capture images of an object 402 for an MVIDMR, device 808 is moved along a path such as the one depicted as movement of capture device 804 while recording or otherwise capturing images from views 806a to 806g. The views 806a to 806g are captured as images or frames, along with additional information such as location information, spatial information, and scale information corresponding to each of these images or frames. The images and associated information are then transmitted from device 808 to system 800 to be processed into an MVIDMR.


In the present example, system 800 includes an MVIDMR server 820. The MVIDMR server 820 is designed to analyze an MVIDMR to determine if there is an appropriate location to insert an advertisement, determine the type of advertisement that is appropriate for the location, retrieve an advertisement that is appropriate for the location within the MVIDMR, and insert the advertisement into the MVIDMR, such that the advertisement is integrated into the MVIDMR and navigable by the user. As depicted, the MVIDMR server 820 includes processor 822, a memory 824, interface 828, and a bus 826 (e.g., a PCI bus). The interface 828 may include separate input and output interfaces, or may be a unified interface supporting both operations. When acting under the control of appropriate software or firmware, the processor 822 is responsible for such tasks such as optimization. Various specially configured devices can also be used in place of a processor 822 or in addition to processor 822. The complete implementation can also be done in custom hardware. The interface 828 is typically configured to send and receive data packets or data segments over a network. Particular examples of interfaces the device supports include Ethernet interfaces, frame relay interfaces, cable interfaces, DSL interfaces, token ring interfaces, and the like.


In addition, various very high-speed interfaces may be provided such as fast Ethernet interfaces, Gigabit Ethernet interfaces, ATM interfaces, HSSI interfaces, POS interfaces, FDDI interfaces and the like. Generally, these interfaces may include ports appropriate for communication with the appropriate media. In some cases, they may also include an independent processor and, in some instances, volatile RAM. The independent processors may control such communications intensive tasks as packet switching, media control and management.


According to particular example embodiments, the server 820 uses memory 824 to store data and program instructions and maintain a local side cache. The program instructions may control the operation of an operating system and/or one or more applications, for example. The memory or memories may also be configured to store received metadata and batch requested metadata.


Because such information and program instructions may be employed to implement the systems/methods described herein, the present invention relates to tangible, machine readable media that include program instructions, state information, etc. for performing various operations described herein. Examples of machine-readable media include hard disks, floppy disks, magnetic tape, optical media such as CD-ROM disks and DVDs; magneto-optical media such as optical disks, and hardware devices that are specially configured to store and perform program instructions, such as read-only memory devices (ROM) and programmable read-only memory devices (PROMs). Examples of program instructions include both machine code, such as produced by a compiler, and files containing higher level code that may be executed by the computer using an interpreter.


According to various embodiments, system 800 includes an MVIDMR storage device 830 designed to store multiple MVIDMRs that are retrievable and viewable from one or more devices, such as mobile devices, smartphones, computers, or other computing devices. These MVIDMRs can be associated by individual users who have access to their own MVIDMRs or the MVIDMRs can be a repository for MVIDMRs that can be accessed by various users in communication with the system. As described previously, each MVIDMR is a multi-view interactive digital media representation that includes multiple views of a scene from different locations that can be navigated in three dimensions on a mobile device by a user. These MVIDMRs may be generated by MVIDMR server 820 and stored at the MVIDMR storage device 830. In some instances, MVIDMRs generated elsewhere may also be stored at MVIDMR storage device 830, such as when a device 808 transmits a previously generated MVIDMR to system 800.


In the present example embodiment, system 800 also includes a visual element storage device 832, which may include 2D and/or 3D visual elements that are either already rendered and ready to be integrated into an MVIDMR or are ready to be processed into MVIDMRs from raw data that includes images and associated location information, etc. The visual elements may include 2D and 3D advertisements. The 2D advertisements include two-dimensional images and the 3D advertisements include three-dimensional objects that include product and/or branding information. In some examples, different versions of the 2D and/or 3D advertisements can be stored at the advertisement storage device to be used in MVIDMR locations with different characteristics.


Although particular examples have been described with regard to inserting an advertisement into an MVIDMR, the processes and mechanisms described can also be applied to inserting 2D and/or 3D content that does not include advertising or branding information. For instance, a user may wish to augment a particular MVIDMR with additional scenery or elements. Accordingly, the present disclosure is not intended to be limited to providing advertisements as a modification to an MVIDMR. Other modifications, such as insertion of content, is also intended to be included in this disclosure.


Although particular features have been described as part of each example in the present disclosure, any combination of these features or additions of other features are intended to be included within the scope of this disclosure. Accordingly, the embodiments described herein are to be considered as illustrative and not restrictive. Furthermore, although many of the components and processes are described above in the singular for convenience, it will be appreciated by one of skill in the art that multiple components and repeated processes can also be used to practice the techniques of the present disclosure.


While the present disclosure has been particularly shown and described with reference to specific embodiments thereof, it will be understood by those skilled in the art that changes in the form and details of the disclosed embodiments may be made without departing from the spirit or scope of the invention. Specifically, there are many alternative ways of implementing the processes, systems, and apparatuses described. It is therefore intended that the invention be interpreted to include all variations and equivalents that fall within the true spirit and scope of the present invention.

Claims
  • 1. A method comprising: receiving at a server from a mobile device a first multi-view interactive digital media representation (MVIDMR) including inertial measurement unit (IMU) data and a plurality of two-dimensional images of an object and background scenery captured from different viewpoints along a path of the mobile device through space along an arc that is concave with respect to the object, the plurality of two-dimensional images linked using IMU data and being navigable in one or more dimensions, the IMU data and content-weighted keypoint tracks used to apply view interpolation to the MVIDMR;determining via a processor at the server a designated location within the first MVIDMR at which to insert a visual element;generating via the processor a second MVIDMR navigable in one or more dimensions by inserting the visual element into one or more of the plurality of two-dimensional images; andtransmitting the second MVIDMR to the mobile device.
  • 2. The method recited in claim 1, wherein the inertial measurement unit includes an accelerometer, and wherein the inertial data includes accelerometer data.
  • 3. The method recited in claim 1, wherein the inertial measurement unit includes a gyroscope, and wherein the inertial data includes gyroscopic data.
  • 4. The method recited in claim 1, wherein the plurality of two-dimensional images are linked at least in part based on the inertial data.
  • 5. The method recited in claim 1, wherein the plurality of two-dimensional images are linked at least in part based on their content.
  • 6. The method recited in claim 5, wherein linking the plurality of two-dimensional images based on their content comprises modeling the object in three dimensions.
  • 7. The method recited in claim 5, wherein linking the plurality of two-dimensional images based on their content comprises modeling the background scenery in two dimensions.
  • 8. The method recited in claim 1, wherein determining the designated location comprises constructing a three-dimensional representation of the object at the server based on the first MVIDMR.
  • 9. The method recited in claim 8, the method further comprising: identifying the visual element based on the three-dimensional representation of the object.
  • 10. The method recited in claim 9, wherein analyzing the MVIDMR to identify the visual element comprises: determining a type of visual element that is appropriate for the designated location.
  • 11. The method recited in claim 9, wherein analyzing the MVIDMR to identify the visual element comprises: determining a type of visual element that is appropriate for the object.
  • 12. The method recited in claim 8, wherein inserting the visual element comprises: projecting the visual element onto the three-dimensional representation.
  • 13. The method recited in claim 1, wherein the visual element is selected from the group consisting of: a three-dimensional representation, a video, and a two-dimensional image.
  • 14. The method recited in claim 1, wherein inserting the visual element comprises: projecting the visual element onto a surface.
  • 15. The method recited in claim 1, wherein the arc is a closed loop around the object.
  • 16. One or more non-transitory computer readable media having instructions stored thereon for performing a method, the method comprising: receiving at a server from a mobile device a first multi-view interactive digital media representation (MVIDMR) including inertial measurement unit (IMU) data and a plurality of two-dimensional images of an object and background scenery captured from different viewpoints along a path of the mobile device through space along an arc that is concave with respect to the object, the plurality of two-dimensional images linked using IMU data and being navigable in one or more dimensions, the IMU data and content-weighted keypoint tracks used to apply view interpolation to the MVIDMR;determining via a processor at the server a designated location within the first MVIDMR at which to insert a visual element;generating via the processor a second MVIDMR navigable in one or more dimensions by inserting the visual element into one or more of the plurality of two-dimensional images; andtransmitting the second MVIDMR to the mobile device.
  • 17. The one or more non-transitory computer readable media recited in claim 16, wherein the first MVIDMR includes inertial data captured from an inertial measurement unit at the mobile device, wherein the inertial measurement unit includes an accelerometer and a gyroscope, and wherein the inertial data includes accelerometer data and gyroscopic data, wherein the plurality of two-dimensional images are linked at least in part based on the inertial data and their content on their content, wherein linking the plurality of two-dimensional images based on their content comprises modeling the object in three dimensions and modeling the background scenery in two dimensions, wherein determining the designated location comprises constructing a three-dimensional representation of the object at the server based on the first MVIDMR, the method further comprising identifying the visual element based on the three-dimensional representation of the object at least in part by determining a type of visual element that is appropriate for the designated location and for the object.
  • 18. A system comprising: a communication interface configured to receive at a server from a mobile device a first multi-view interactive digital media representation (MVIDMR) including a plurality of two-dimensional images of an object and background scenery captured from different viewpoints along a path of the mobile device through space along an arc that is concave with respect to the object, the plurality of two-dimensional images being navigable in one or more dimensions, wherein IMU data and content-weighted keypoint tracks are used to apply view interpolation to the MVIDMR;a processor configured to determine via a processor at the server a designated location within the first MVIDMR at which to insert a visual element and to generate a second MVIDMR navigable in one or more dimensions by inserting the visual element into one or more of the plurality of two-dimensional images; anda storage device configured to store the second MVIDMR.
  • 19. The system recited in claim 18, wherein the first MVIDMR includes inertial data captured from an inertial measurement unit at the mobile device, wherein the inertial measurement unit includes an accelerometer and a gyroscope, and wherein the inertial data includes accelerometer data and gyroscopic data, wherein the plurality of two-dimensional images are linked at least in part based on the inertial data on their content, wherein linking the plurality of two-dimensional images based on their content comprises modeling the object in three dimensions and modeling the background scenery in two dimensions, wherein determining the designated location comprises constructing a three-dimensional representation of the object at the server based on the first MVIDMR, and wherein the processor is further configured to identify the visual element based on the three-dimensional representation of the object at least in part by determining a type of visual element that is appropriate for the designated location and for the object.
CROSS-REFERENCE TO RELATED APPLICATION

This application claims priority to and is a continuation of co-pending U.S. patent application Ser. No. 15/632,709 by Holzer et al., filed Jun. 26, 2017, which is hereby incorporated by reference in its entirety and for all purposes.

US Referenced Citations (520)
Number Name Date Kind
2534821 Ifield Dec 1950 A
5495576 Ritchey Feb 1996 A
5557684 Wang Sep 1996 A
5613048 Chen Mar 1997 A
5613056 Gasper Mar 1997 A
5694533 Richards Dec 1997 A
5706417 Adelson Jan 1998 A
5847714 Naqvi Dec 1998 A
5850352 Moezzi Dec 1998 A
5926190 Turkowski Jul 1999 A
6031564 Ma Feb 2000 A
6080063 Khosla Jun 2000 A
6185343 Ikeda Feb 2001 B1
6252974 Martens Jun 2001 B1
6266068 Kang Jul 2001 B1
6281903 Martin Aug 2001 B1
6327381 Rogina Dec 2001 B1
6385245 De Haan May 2002 B1
6504569 Jasinschi Jan 2003 B1
6522787 Kumar Feb 2003 B1
6778207 Lee Aug 2004 B1
6814889 O'Grady Nov 2004 B1
6975756 Slabaugh Dec 2005 B1
7167180 Shibolet Jan 2007 B1
7593000 Chin Sep 2009 B1
7631261 Williams Dec 2009 B2
7631277 Nie Dec 2009 B1
8078004 Kang Dec 2011 B2
8094928 Graepel Jan 2012 B2
8160391 Zhu Apr 2012 B1
8244069 Bourdev Aug 2012 B1
8401276 Choe Mar 2013 B1
8503826 Klimenko Aug 2013 B2
8504842 Meacham Aug 2013 B1
8515982 Hickman Aug 2013 B1
8589069 Lehman Nov 2013 B1
8682097 Steinberg Mar 2014 B2
8803912 Fouts Aug 2014 B1
8817071 Wang Aug 2014 B2
8819525 Holmer Aug 2014 B1
8866841 Distler Oct 2014 B1
8942917 Chrysanthakopoulos Jan 2015 B2
8947452 Ballagh Feb 2015 B1
8947455 Friesen Feb 2015 B2
8963855 Chen Feb 2015 B2
8966356 Hickman Feb 2015 B1
9024970 Lynch May 2015 B2
9027117 Wilairat May 2015 B2
9043222 Kerr May 2015 B1
9070402 Burtnyk et al. Jun 2015 B2
9094670 Furio Jul 2015 B1
9129179 Wong Sep 2015 B1
9317881 Ledterman Apr 2016 B1
9325899 Chou Apr 2016 B1
9367951 Gray Jun 2016 B1
9390250 Kim Jul 2016 B2
9400595 Li Jul 2016 B2
9407816 Sehn Aug 2016 B1
9412203 Garcia, III Aug 2016 B1
9472161 Ho et al. Oct 2016 B1
9621768 Lyon Apr 2017 B1
9704257 Tuzel Jul 2017 B1
9734586 Luo Aug 2017 B2
9865033 Jafarzadeh Jan 2018 B1
9865058 Mullins Jan 2018 B2
9865069 Saporta Jan 2018 B1
9886771 Chen Feb 2018 B1
9898742 Higgins Feb 2018 B2
9904056 Raghoebardajal Feb 2018 B2
9910505 Park Mar 2018 B2
9928544 Hasan Mar 2018 B1
9940541 Holzer Apr 2018 B2
9968257 Burt May 2018 B1
9998663 François Jun 2018 B1
10055882 Marin Aug 2018 B2
10147211 Holzer Dec 2018 B2
10157333 Wang Dec 2018 B1
10176592 Holzer Jan 2019 B2
10176636 Neustein et al. Jan 2019 B1
10204448 Hazeghi Feb 2019 B2
10222932 Holzer Mar 2019 B2
10242474 Holzer Mar 2019 B2
10262426 Holzer Apr 2019 B2
10275935 Holzer Apr 2019 B2
10284794 Francois May 2019 B1
10306203 Goyal May 2019 B1
10360601 Adegan Jul 2019 B1
10373260 Haller, Jr. Aug 2019 B1
10382739 Rusu Aug 2019 B1
10430995 Holzer Oct 2019 B2
10574974 Arora et al. Feb 2020 B2
10657647 Chen May 2020 B1
10668965 Czinger Jun 2020 B2
10719939 Holzer Jul 2020 B2
10725609 Holzer Jul 2020 B2
10726560 Holzer Jul 2020 B2
10748313 Holzer et al. Aug 2020 B2
10750161 Holzer Aug 2020 B2
10818029 Holzer Oct 2020 B2
10846913 Holzer Nov 2020 B2
10852902 Holzer Dec 2020 B2
11006095 Holzer May 2021 B2
11055534 Beall Jul 2021 B2
20010014172 Baba Aug 2001 A1
20020024517 Yamaguchi Feb 2002 A1
20020094125 Guo Jul 2002 A1
20020190991 Efran Dec 2002 A1
20030086002 Cahill May 2003 A1
20030185456 Sato Oct 2003 A1
20030231179 Suzuki Dec 2003 A1
20040085335 Burlnyk et al. May 2004 A1
20040104935 Williamson Jun 2004 A1
20040141014 Kamiwada Jul 2004 A1
20040184013 Raskar Sep 2004 A1
20040222987 Chang Nov 2004 A1
20040239699 Uyttendaele Dec 2004 A1
20050018045 Thomas Jan 2005 A1
20050041842 Frakes Feb 2005 A1
20050046645 Breton et al. Mar 2005 A1
20050119550 Serra Jun 2005 A1
20050151759 Gonzalez-Banos Jul 2005 A1
20050186548 Tomlinson Aug 2005 A1
20050219264 Shum Oct 2005 A1
20050226502 Cohen Oct 2005 A1
20050232467 Mohri Oct 2005 A1
20050232510 Blake Oct 2005 A1
20050253877 Thompson Nov 2005 A1
20050283075 Ma Dec 2005 A1
20050285874 Zitnick, III Dec 2005 A1
20060028552 Aggarwal Feb 2006 A1
20060188147 Rai Aug 2006 A1
20060193535 Mishima Aug 2006 A1
20060250505 Gennetten Nov 2006 A1
20060256109 Acker Nov 2006 A1
20070008312 Zhou Jan 2007 A1
20070058880 Lienard Mar 2007 A1
20070064802 Paniconi Mar 2007 A1
20070070069 Samarasekera Mar 2007 A1
20070110338 Snavely May 2007 A1
20070118801 Harshbarger May 2007 A1
20070126928 Klompnhouwer Jun 2007 A1
20070159487 Felt Jul 2007 A1
20070237420 Steedly Oct 2007 A1
20070237422 Zhou Oct 2007 A1
20070252804 Engel Nov 2007 A1
20070269054 Takagi Nov 2007 A1
20080025588 Zhang Jan 2008 A1
20080033641 Medalia Feb 2008 A1
20080106593 Arfvidsson May 2008 A1
20080151106 Verburgh Jun 2008 A1
20080152258 Tulkki Jun 2008 A1
20080198159 Liu Aug 2008 A1
20080201734 Lyon Aug 2008 A1
20080225132 Inaguma Sep 2008 A1
20080246759 Summers Oct 2008 A1
20080266142 Sula Oct 2008 A1
20080278569 Rotem Nov 2008 A1
20080313014 Fell Dec 2008 A1
20090003725 Merkel Jan 2009 A1
20090046160 Hayashi Feb 2009 A1
20090077161 Hamilton, II Mar 2009 A1
20090087029 Coleman Apr 2009 A1
20090116732 Zhou May 2009 A1
20090141130 Ortiz Jun 2009 A1
20090144173 Mo Jun 2009 A1
20090153549 Lynch Jun 2009 A1
20090160934 Hendrickson Jun 2009 A1
20090163185 Lim Jun 2009 A1
20090174709 Kozlak Jul 2009 A1
20090208062 Sorek Aug 2009 A1
20090262074 Nasiri Oct 2009 A1
20090263045 Szeliski Oct 2009 A1
20090274391 Arcas Nov 2009 A1
20090276805 Andrews, II Nov 2009 A1
20090303343 Drimbarean Dec 2009 A1
20100007715 Lai Jan 2010 A1
20100017181 Mouton Jan 2010 A1
20100026788 Ishikawa Feb 2010 A1
20100033553 Levy Feb 2010 A1
20100060793 Oz Mar 2010 A1
20100079667 Tueretken Apr 2010 A1
20100098258 Thorn Apr 2010 A1
20100100492 Law Apr 2010 A1
20100110069 Yuan May 2010 A1
20100111444 Coffman May 2010 A1
20100164990 Doorn Jul 2010 A1
20100171691 Cook Jul 2010 A1
20100188584 Liu Jul 2010 A1
20100215251 Klein Gunnewiek Aug 2010 A1
20100225743 Florencio Sep 2010 A1
20100231593 Zhou Sep 2010 A1
20100259595 Trimeche Oct 2010 A1
20100266172 Shlomi Oct 2010 A1
20100305857 Byrne Dec 2010 A1
20100315412 Sinha Dec 2010 A1
20100329542 Ramalingam Dec 2010 A1
20110007072 Khan Jan 2011 A1
20110033170 Ikeda Feb 2011 A1
20110034103 Fong Feb 2011 A1
20110040539 Szymczyk Feb 2011 A1
20110043604 Peleg Feb 2011 A1
20110064388 Brown Mar 2011 A1
20110074926 Khan Mar 2011 A1
20110090344 Gefen Apr 2011 A1
20110105192 Jung May 2011 A1
20110109618 Nowak May 2011 A1
20110109726 Hwang May 2011 A1
20110115886 Nguyen May 2011 A1
20110141227 Bigioi Jun 2011 A1
20110142289 Barenbrug Jun 2011 A1
20110142343 Kim Jun 2011 A1
20110170789 Amon Jul 2011 A1
20110173565 Ofek Jul 2011 A1
20110179373 Moore Jul 2011 A1
20110193941 Inaba Aug 2011 A1
20110141141 Kankainen Sep 2011 A1
20110214072 Lindemann Sep 2011 A1
20110234750 Lai Sep 2011 A1
20110248987 Mitchell Oct 2011 A1
20110254835 Segal Oct 2011 A1
20110261050 Smolic Oct 2011 A1
20110288858 Gay Nov 2011 A1
20110313653 Lindner Dec 2011 A1
20110316963 Li Dec 2011 A1
20120007713 Nasiri Jan 2012 A1
20120013711 Tamir Jan 2012 A1
20120017147 Mark Jan 2012 A1
20120019557 Aronsson Jan 2012 A1
20120028706 Raitt Feb 2012 A1
20120041722 Quan Feb 2012 A1
20120057006 Joseph Mar 2012 A1
20120062756 Tian Mar 2012 A1
20120075411 Matsumoto Mar 2012 A1
20120092348 McCutchen Apr 2012 A1
20120095323 Eskandari Apr 2012 A1
20120099804 Aguilera Apr 2012 A1
20120127172 Wu May 2012 A1
20120127270 Zhang May 2012 A1
20120139918 Michail Jun 2012 A1
20120147224 Takayama Jun 2012 A1
20120148162 Zhang Jun 2012 A1
20120162223 Hirai Jun 2012 A1
20120162253 Collins Jun 2012 A1
20120167146 Incorvia Jun 2012 A1
20120198317 Eppolito Aug 2012 A1
20120207308 Sung Aug 2012 A1
20120212579 Frojdh Aug 2012 A1
20120236201 Larsen Sep 2012 A1
20120240035 Gaucas Sep 2012 A1
20120242798 McArdle Sep 2012 A1
20120257025 Kim Oct 2012 A1
20120257065 Velarde Oct 2012 A1
20120258436 Lee Oct 2012 A1
20120262580 Huebner Oct 2012 A1
20120287123 Starner Nov 2012 A1
20120293632 Yukich Nov 2012 A1
20120294549 Doepke Nov 2012 A1
20120300019 Yang et al. Nov 2012 A1
20120301044 Nakada Nov 2012 A1
20120314027 Tian Dec 2012 A1
20120314040 Kopf Dec 2012 A1
20120314899 Cohen Dec 2012 A1
20130002649 Wu Jan 2013 A1
20130016102 Look Jan 2013 A1
20130016897 Cho Jan 2013 A1
20130018881 Bhatt Jan 2013 A1
20130044191 Matsumoto Feb 2013 A1
20130050573 Syed Feb 2013 A1
20130057644 Stefanoski Mar 2013 A1
20130063549 Schnyder Mar 2013 A1
20130071012 Leichsenring Mar 2013 A1
20130076619 Carr Mar 2013 A1
20130113830 Suzuki May 2013 A1
20130120581 Daniels May 2013 A1
20130127844 Koeppel May 2013 A1
20130127847 Jin May 2013 A1
20130129304 Feinson May 2013 A1
20130141530 Zavesky Jun 2013 A1
20130147795 Kim Jun 2013 A1
20130147905 Vivekanandan Jun 2013 A1
20130154926 Kim Jun 2013 A1
20130155180 Wantland Jun 2013 A1
20130162634 Baik Jun 2013 A1
20130162787 Cho Jun 2013 A1
20130176392 Carr Jul 2013 A1
20130195350 Tanaka Aug 2013 A1
20130204411 Clark Aug 2013 A1
20130208900 Vincent Aug 2013 A1
20130212538 Lemire Aug 2013 A1
20130219357 Reitan Aug 2013 A1
20130240628 Van Der Merwe Sep 2013 A1
20130250045 Ki Sep 2013 A1
20130271566 Chen Oct 2013 A1
20130278596 Wu Oct 2013 A1
20130314442 Langlotz Nov 2013 A1
20140002440 Lynch Jan 2014 A1
20140002472 Sobeski et al. Jan 2014 A1
20140009462 McNamer Jan 2014 A1
20140013414 Bruck Jan 2014 A1
20140023341 Wang Jan 2014 A1
20140037198 Larlus-Larrondo Feb 2014 A1
20140040742 Park Feb 2014 A1
20140049607 Amon Feb 2014 A1
20140059674 Sun Feb 2014 A1
20140063005 Ahn Mar 2014 A1
20140078136 Sohn Mar 2014 A1
20140087877 Krishnan Mar 2014 A1
20140092259 Tsang Apr 2014 A1
20140100995 Koshy et al. Apr 2014 A1
20140107888 Quast Apr 2014 A1
20140118479 Rapoport May 2014 A1
20140118483 Rapoport May 2014 A1
20140118494 Wu May 2014 A1
20140125659 Yoshida May 2014 A1
20140132594 Gharpure May 2014 A1
20140152834 Kosseifi Jun 2014 A1
20140153832 Kwatra Jun 2014 A1
20140177927 Shieh Jun 2014 A1
20140192155 Choi Jul 2014 A1
20140198184 Stein Jul 2014 A1
20140199050 Khalsa Jul 2014 A1
20140211989 Ding Jul 2014 A1
20140225930 Durmek Aug 2014 A1
20140232634 Piemonte Aug 2014 A1
20140253436 Petersen Sep 2014 A1
20140253746 Voss Sep 2014 A1
20140267616 Krig Sep 2014 A1
20140275704 Zhang Sep 2014 A1
20140286566 Rhoads Sep 2014 A1
20140293004 Tsubaki Oct 2014 A1
20140293028 Nguyen Oct 2014 A1
20140297798 Bakalash Oct 2014 A1
20140307045 Richardt Oct 2014 A1
20140340404 Wang Nov 2014 A1
20140362198 Nakayama Dec 2014 A1
20140365888 Curzon Dec 2014 A1
20140375684 Algreatly Dec 2014 A1
20150009130 Motta Jan 2015 A1
20150010218 Bayer Jan 2015 A1
20150016714 Chui Jan 2015 A1
20150042812 Tang Feb 2015 A1
20150046875 Xu Feb 2015 A1
20150073570 Gonzalez-Mendoza Mar 2015 A1
20150078449 Diggins Mar 2015 A1
20150097961 Ure Apr 2015 A1
20150103170 Nelson Apr 2015 A1
20150103197 Djordjevic et al. Apr 2015 A1
20150130799 Holzer May 2015 A1
20150130800 Holzer May 2015 A1
20150130894 Holzer May 2015 A1
20150134651 Holzer May 2015 A1
20150138190 Holzer May 2015 A1
20150143239 Birkbeck May 2015 A1
20150154442 Takahashi Jun 2015 A1
20150188967 Paulauskas Jul 2015 A1
20150193963 Chen Jul 2015 A1
20150198443 Yi Jul 2015 A1
20150201176 Graziosi Jul 2015 A1
20150206341 Loper Jul 2015 A1
20150222880 Choi Aug 2015 A1
20150227285 Lee Aug 2015 A1
20150227816 Du Aug 2015 A1
20150235408 Gross Aug 2015 A1
20150242686 Lenka Aug 2015 A1
20150254224 Kim Sep 2015 A1
20150269772 Ha Sep 2015 A1
20150271356 Terada Sep 2015 A1
20150281323 Gold Oct 2015 A1
20150294492 Koch Oct 2015 A1
20150309695 Sannandeji Oct 2015 A1
20150318020 Pribula Nov 2015 A1
20150319424 Haimovitch-Yogev Nov 2015 A1
20150324649 Grewe Nov 2015 A1
20150339846 Holzer Nov 2015 A1
20150371440 Pirchheim Dec 2015 A1
20150379763 Liktor Dec 2015 A1
20160001137 Phillips Jan 2016 A1
20160026253 Bradski Jan 2016 A1
20160027209 Demirli Jan 2016 A1
20160034459 Larsen Feb 2016 A1
20160042251 Cordova-Diba Feb 2016 A1
20160044240 Beers Feb 2016 A1
20160050368 Seo Feb 2016 A1
20160055330 Morishita Feb 2016 A1
20160061582 Lucey Mar 2016 A1
20160063740 Sakimoto Mar 2016 A1
20160077422 Wang Mar 2016 A1
20160078287 Auge Mar 2016 A1
20160080684 Farrell Mar 2016 A1
20160080830 Kim Mar 2016 A1
20160086381 Jung Mar 2016 A1
20160088287 Sadi Mar 2016 A1
20160110913 Kosoy Apr 2016 A1
20160139794 Hammendorp May 2016 A1
20160140125 Goyal May 2016 A1
20160171330 Mentese Jun 2016 A1
20160189334 Mason Jun 2016 A1
20160191895 Yun Jun 2016 A1
20160203586 Chang Jul 2016 A1
20160205341 Hollander Jul 2016 A1
20160210602 Siddique et al. Jul 2016 A1
20160261855 Park Sep 2016 A1
20160267676 Setomoto Sep 2016 A1
20160275283 De Leon Sep 2016 A1
20160295127 Yu Oct 2016 A1
20160350930 Lin Dec 2016 A1
20160350975 Nakagawa Dec 2016 A1
20160353089 Gallup Dec 2016 A1
20160358337 Dai Dec 2016 A1
20160379415 Espeset Dec 2016 A1
20170018054 Holzer Jan 2017 A1
20170018055 Holzer Jan 2017 A1
20170018056 Holzer Jan 2017 A1
20170024094 Gresham Jan 2017 A1
20170026574 Kwon Jan 2017 A1
20170053169 Cuban Feb 2017 A1
20170067739 Siercks Mar 2017 A1
20170084001 Holzer Mar 2017 A1
20170084293 Holzer et al. Mar 2017 A1
20170087415 Nandimandalam Mar 2017 A1
20170103510 Wang Apr 2017 A1
20170103584 Vats Apr 2017 A1
20170109930 Holzer et al. Apr 2017 A1
20170124769 Saito May 2017 A1
20170124770 Vats May 2017 A1
20170126988 Holzer May 2017 A1
20170140236 Price May 2017 A1
20170148179 Holzer May 2017 A1
20170148186 Holzer May 2017 A1
20170148199 Holzer May 2017 A1
20170148222 Holzer May 2017 A1
20170148223 Holzer May 2017 A1
20170158131 Friebe Jun 2017 A1
20170206648 Marra Jul 2017 A1
20170213385 Yu Jul 2017 A1
20170231550 Do Aug 2017 A1
20170236287 Shen Aug 2017 A1
20170249339 Lester Aug 2017 A1
20170255648 Dube Sep 2017 A1
20170256066 Richard Sep 2017 A1
20170277363 Holzer Sep 2017 A1
20170277952 Thommes Sep 2017 A1
20170278544 Choi Sep 2017 A1
20170287137 Lin Oct 2017 A1
20170293894 Taliwal Oct 2017 A1
20170308771 Shimauchi Oct 2017 A1
20170316092 Fichter Nov 2017 A1
20170330319 Xu Nov 2017 A1
20170337693 Baruch Nov 2017 A1
20170344223 Holzer et al. Nov 2017 A1
20170344808 El-Khamy Nov 2017 A1
20170357910 Sommer Dec 2017 A1
20170359570 Holzer Dec 2017 A1
20170364766 Das Dec 2017 A1
20180012330 Holzer Jan 2018 A1
20180012529 Chiba Jan 2018 A1
20180035105 Choi Feb 2018 A1
20180035500 Song Feb 2018 A1
20180045592 Okita Feb 2018 A1
20180046356 Holzer Feb 2018 A1
20180046357 Holzer et al. Feb 2018 A1
20180046649 Dal Mutto Feb 2018 A1
20180052665 Kaur Feb 2018 A1
20180063504 Haines Mar 2018 A1
20180082715 Rymkowski Mar 2018 A1
20180143023 Bjorke et al. May 2018 A1
20180143756 Mildrew et al. May 2018 A1
20180144547 Shakib May 2018 A1
20180155057 Irish Jun 2018 A1
20180158197 Dasgupta Jun 2018 A1
20180165875 Yu Jun 2018 A1
20180199025 Holzer Jul 2018 A1
20180203877 Holzer Jul 2018 A1
20180205941 Kopf Jul 2018 A1
20180211131 Holzer Jul 2018 A1
20180211404 Zhu et al. Jul 2018 A1
20180218235 Holzer Aug 2018 A1
20180218236 Holzer Aug 2018 A1
20180234671 Yang Aug 2018 A1
20180240243 Kim Aug 2018 A1
20180255290 Holzer Sep 2018 A1
20180268220 Lee Sep 2018 A1
20180286098 Lorenzo Oct 2018 A1
20180293774 Yu Oct 2018 A1
20180315200 Davydov Nov 2018 A1
20180336724 Spring Nov 2018 A1
20180336737 Varady Nov 2018 A1
20180338126 Trevor Nov 2018 A1
20180338128 Trevor Nov 2018 A1
20180357518 Sekii Dec 2018 A1
20180374273 Holzer et al. Dec 2018 A1
20190019056 Pierce Jan 2019 A1
20190025544 Watanabe Jan 2019 A1
20190026956 Gausebeck et al. Jan 2019 A1
20190026958 Gausebeck Jan 2019 A1
20190035149 Chen Jan 2019 A1
20190050664 Yang Feb 2019 A1
20190080499 Holzer Mar 2019 A1
20190094981 Bradski et al. Mar 2019 A1
20190147221 Grabner May 2019 A1
20190209886 Harlow Jul 2019 A1
20190213392 Pan Jul 2019 A1
20190213406 Porikli Jul 2019 A1
20190220991 Holzer Jul 2019 A1
20190221021 Holzer Jul 2019 A1
20190222776 Carter Jul 2019 A1
20190235729 Day Aug 2019 A1
20190244372 Holzer Aug 2019 A1
20190251738 Holzer Aug 2019 A1
20190278434 Holzer Sep 2019 A1
20190304064 Zhang Oct 2019 A1
20190364265 Matsunobu et al. Nov 2019 A1
20200027263 Holzer Jan 2020 A1
20200045249 Francois Feb 2020 A1
20200125877 Phan Apr 2020 A1
20200128060 Han Apr 2020 A1
20200137380 Supikov Apr 2020 A1
20200167570 Beall May 2020 A1
20200234397 Holzer et al. Jul 2020 A1
20200234451 Holzer et al. Jul 2020 A1
Foreign Referenced Citations (15)
Number Date Country
105849781 Aug 2016 CN
105849781 Aug 2016 CN
107466474 Dec 2017 CN
112014005165 Jul 2016 DE
112017004150 Jun 2019 DE
2534821 Aug 2016 GB
20120110861 Oct 2012 KR
101590256 Feb 2016 KR
2015073570 May 2015 WO
2017053197 Mar 2017 WO
2018035500 Feb 2018 WO
2018052665 Mar 2018 WO
2018154331 Aug 2018 WO
2019209886 Oct 2019 WO
2020092177 May 2020 WO
Non-Patent Literature Citations (247)
Entry
U.S. Appl. No. 14/800,640, Advisory Action dated Feb. 8, 2018, 2 pgs.
U.S. Appl. No. 14/800,640, Examiner Interview Summary dated Feb. 8, 2018, 1 pg.
U.S. Appl. No. 14/800,640, Examiner Interview Summary dated Oct. 23, 2018, 3 pgs.
U.S. Appl. No. 14/800,640, Final Office Action dated Oct. 16, 2017, 15 pgs.
U.S. Appl. No. 14/800,640, Non Final Office Action dated Jun. 8, 2017, 14 pgs.
U.S. Appl. No. 14/800,640, Non Final Office Action dated Jul. 17, 2018, 16 pgs.
U.S. Appl. No. 14/800,640, Notice of Allowance dated Nov. 21, 2018, 7 pgs.
U.S. Appl. No. 14/800,640, Restriction Requirement dated Mar. 3, 2017, 5 pgs.
U.S. Appl. No. 14/800,642, Advisory Action dated Jan. 5, 2018, 3 pgs.
U.S. Appl. No. 14/800,642, Advisory Action dated Feb. 8, 2018, 3 pgs.
U.S. Appl. No. 14/800,642, Examiner Interview Summary dated Aug. 6, 2018, 1 pg.
U.S. Appl. No. 14/800,642, Final Office Action dated Oct. 17, 2017, 18 pgs.
U.S. Appl. No. 14/800,642, Non Final Office Action dated May 18, 2017, 17 pgs.
U.S. Appl. No. 14/800,642, Non-Final Office Action dated May 18, 2017, 17 pages.
U.S. Appl. No. 14/800,642, Notice of Allowance dated Aug. 6, 2018, 12 pgs.
U.S. Appl. No. 14/819,473, Examiner Interview Summary dated Jul. 11, 2016, 3 pgs.
U.S. Appl. No. 14/819,473, Examiner Interview Summary dated Aug. 17, 2016, 3 pgs.
U.S. Appl. No. 14/819,473, Examiner Interview Summary dated Oct. 14, 2016, 3 pages.
U.S. Appl. No. 14/819,473, Final Office Action dated Apr. 28, 2016, 45 pgs.
U.S. Appl. No. 14/819,473, Non Final Office Action dated Sep. 1, 2016, 36 pgs.
U.S. Appl. No. 14/819,473, Non Final Office Action dated Oct. 8, 2015, 44 pgs.
U.S. Appl. No. 14/860,983, Advisory Action dated Jan. 23, 2018, 3 pgs.
U.S. Appl. No. 14/860,983, Advisory Action dated Mar. 26, 2019, 2 pgs.
U.S. Appl. No. 14/860,983, Examiner Interview Summary dated Mar. 26, 2019, 2 pgs.
U.S. Appl. No. 14/860,983, Examiner Interview Summary dated Apr. 8, 2019, 3 pgs.
U.S. Appl. No. 14/860,983, Examiner Interview Summary dated Nov. 15, 2018, 3 pgs.
U.S. Appl. No. 14/860,983, Final Office Action dated Jan. 18, 2019, 19 pgs.
U.S. Appl. No. 14/860,983, Final Office Action dated Oct. 18, 2017, 21 pgs.
U.S. Appl. No. 14/860,983, Non Final Office Action dated Jun. 8, 2017, 26 pgs.
U.S. Appl. No. 14/860,983, Non Final Office Action dated Aug. 7, 2018, 22 pgs.
U.S. Appl. No. 15/408,211, Advisory Action dated Mar. 18, 2019, 4 pgs.
U.S. Appl. No. 15/408,211, Examiner Interview Summary dated Mar. 4, 2019, 3 pgs.
U.S. Appl. No. 15/408,211, Examiner Interview Summary dated Mar. 18, 2019, 2 pgs.
U.S. Appl. No. 15/408,211, Examiner Interview Summary dated Apr. 3, 2019, 3 pgs.
U.S. Appl. No. 15/408,211, Examiner Interview Summary dated Aug. 5, 2019, 3 pgs.
U.S. Appl. No. 15/408,211, Examiner Interview Summary dated Oct. 16, 2019,2 pgs.
U.S. Appl. No. 15/408,211, Examiner Interview Summary dated Dec. 5, 2018, 3 pgs.
U.S. Appl. No. 15/408,211, Final Office Action dated Jan. 11, 2019, 23 pgs.
U.S. Appl. No. 15/408,211, Non Final Office Action dated Aug. 6, 2018, 22 pgs.
U.S. Appl. No. 15/408,211, Non Final Office Action dated May 2, 2019, 20 pgs.
U.S. Appl. No. 15/425,983, Advisory Action dated Oct. 12, 2018, 5 pgs.
U.S. Appl. No. 15/425,983, Examiner Interview Summary dated May 3, 2018, 3 pgs.
U.S. Appl. No. 15/425,983, Examiner Interview Summary dated May 17, 2018, 3 pgs.
U.S. Appl. No. 15/425,983, Examiner Interview Summary dated Sep. 28, 2018, 3 pgs.
U.S. Appl. No. 15/425,983, Examiner Interview Summary dated Oct. 12, 2018, 2 pgs.
U.S. Appl. No. 15/425,983, Examiner Interview Summary dated Dec. 12, 2018, 2 pgs.
U.S. Appl. No. 15/425,983, Final Office Action dated Jun. 26, 2018, 29 pgs.
U.S. Appl. No. 15/425,983, Non Final Office Action dated Jan. 11, 2018, 29 pgs.
U.S. Appl. No. 15/425,983, Notice of Allowance dated Dec. 12, 2018, 14 pgs.
U.S. Appl. No. 15/425,988, Examiner Interview Summary dated Nov. 30, 2018, 3 pages.
“U.S. Appl. No. 15/409,500, Examiner Interview Summary dated Mar. 5, 2019”, 3 pages.
“U.S. Appl. No. 15/409,500, Non Final Office Action dated Dec. 11, 2018”, 11 pgs.
“U.S. Appl. No. 15/409,500, Notice of Allowance dated Jun. 3, 2019”, 8 pages.
“U.S. Appl. No. 15/601,863, Examiner Interview Summary dated Nov. 21, 2018”, 4 pgs.
“U.S. Appl. No. 15/601,863, Non Final Office Action dated Sep. 20, 2018”, 23 pages.
“U.S. Appl. No. 15/601,863, Notice of Allowance dated Jan. 24, 2019”, 8 pages.
“International Application Serial No. PCT/US16/52192, Intl Search Report and Written Opinion dated Dec. 12, 2016”, 8 pages.
“Intl Application Serial No. PCT/US16/52192, Intl Preliminary Report on Patentability dated Apr. 5, 2018”, 7 pgs.
U.S. Appl. No. 14/860,983, Final Rejection, dated Feb. 12, 2020, 18 pgs.
U.S. Appl. No. 15/620,506, Notice of Allowance and Fees Due (Ptol-85), dated Mar. 2, 2020, 10 pgs.
U.S. Appl. No. 15/673,125, Final Rejection, dated Feb. 19, 2020, 17 pgs.
U.S. Appl. No. 15/713,406, Final Rejection, dated Feb. 19, 2020, 22 pgs.
U.S. Appl. No. 15/717,889, Non-Final Rejection, dated Oct. 27, 2020, 40 pgs.
U.S. Appl. No. 15/911,993, Non-Final Rejection, dated Aug. 5, 2020, 6 pgs.
U.S. Appl. No. 15/969,749, Final Rejection, dated Feb. 26, 2020, 15 pgs.
U.S. Appl. No. 15/969,749, Non-Final Rejection, dated Sep. 17, 2020, 15 pgs.
U.S. Appl. No. 16/179,746, Advisory Action (Ptol-303), dated Sep. 15, 2020, 2 pgs.
U.S. Appl. No. 16/179,746, Examiner Interview Summary Record (Ptol-413), Nov. 5, 2020, 2 pgs.
U.S. Appl. No. 16/362,547, Advisory Action (Ptol-303), dated Nov. 18, 2020, 2 pgs.
U.S. Appl. No. 16/362,547, Examiner Interview Summary Record (Ptol-413), dated Nov. 18, 2020, 1 pg.
U.S. Appl. No. 16/362,547, Final Rejection, dated Sep. 24, 2020,14 pgs.
U.S. Appl. No. 16/362,547,Examiner Interview Summary Record (Ptol-413), dated Nov. 5, 2020, 2 pgs.
U.S. Appl. No. 16/426,323, Notice of Allowance and Fees Due (Pto1-85), dated Aug. 5, 2020, 11 pgs.
U.S. Appl. No. 16/451,371, NOA—Notice of Allowance and Fees Due (Ptol-85), dated Sep. 17, 2020, 5 pgs.
U.S. Appl. No. 16/451,371, Non-Final Rejection, dated Jun. 11, 2020,—9 pgs.
U.S. Appl. No. 16/586,868, Notice of Allowance and Fees Due (Ptol-85), dated Oct. 7, 2020, 2 pgs.
U.S. Appl. No. 16/586,868, Notice of Allowance and Fees Due (Ptol-85), dated Jul. 31, 2020,13 pgs.
U.S. Appl. No. 16/586,868, USPTO e-Office Action: CTNF—Non-Final Rejection, dated Dec. 20, 2019, 19 pgs.
U.S. Appl. No. 16/726,090, Non-Final Rejection, dated Nov. 19, 2020, 12 pgs.
U.S. Appl. No. 16/778,981, Non-Final Rejection, dated Oct. 13, 2020,7 pgs.
U.S. Appl. No. 14/800,638, Non Final Office Action dated Jul. 29, 2016, 11 pgs.
U.S. Appl. No. 12/101,883, Examiner Interview Summary dated Sep. 6, 2016, 3 pgs.
U.S. Appl. No. 12/101,883, Examiner Interview Summary dated Oct. 18, 2017, 2 pgs.
U.S. Appl. No. 13/464,588, Non Final Office Action dated Aug. 2, 2019, 14 pgs.
U.S. Appl. No. 14/530,669, Advisory Action dated Aug. 8, 2017, 5 pgs.
U.S. Appl. No. 14/530,669, Examiner Interview Summary dated Apr. 14, 2017, 3 pgs.
U.S. Appl. No. 14/530,669, Examiner Interview Summary dated Aug. 8, 2017, 2 pgs.
U.S. Appl. No. 14/530,669, Final Office Action dated Apr. 20, 2017, 25 pgs.
U.S. Appl. No. 14/530,669, Non Final Office Action dated Jan. 3, 2017, 26 pgs.
U.S. Appl. No. 14/530,671, Non Final Office Action dated Jan. 3, 2017, 32 pgs.
U.S. Appl. No. 14/539,814, Non Final Office Action dated Dec. 30, 2016, 37 pgs.
U.S. Appl. No. 14/539,889, Non-Final Office Action dated Oct. 6, 2016, 14 pages.
U.S. Appl. No. 14/800,638, Advisory Action dated May 9, 2017, 5 pgs.
U.S. Appl. No. 14/800,638, Examiner Interview Summary dated May 9, 2017, 2 pgs.
U.S. Appl. No. 14/800,638, Examiner Interview Summary dated Nov. 7, 2016, 3 pgs.
U.S. Appl. No. 14/800,638, Examiner Interview Summary dated Dec. 13, 2017, 1 pg.
U.S. Appl. No. 14/800,638, Final Office Action dated Jan. 20, 2017, 12 pgs.
U.S. Appl. No. 14/800,638, Non Final Office Action dated Jun. 15, 2017, 12 pgs.
U.S. Appl. No. 14/800,638, Notice of Allowance dated Dec. 13, 2017, 9 pgs.
U.S. Appl. No. 14/800,640, Advisory Action dated Jan. 5, 2018, 3 pgs.
U.S. Appl. No. 15/425,988, Non Final Office Action dated Aug. 10, 2018, 18 pgs.
U.S. Appl. No. 15/425,988, Notice of Allowance dated Dec. 28, 2018, 8 pgs.
U.S. Appl. No. 15/426,994, Advisory Action dated Dec. 13, 2018, 3 pgs.
U.S. Appl. No. 15/426,994, Examiner Interview Summary dated Jan. 15, 2019, 3 pgs.
U.S. Appl. No. 15/426,994, Final Office Action dated Oct. 10, 2018, 21 pgs.
U.S. Appl. No. 15/426,994, Non Final Office Action dated Apr. 19, 2018, 22 pgs.
U.S. Appl. No. 15/426,994, Non Final Office Action dated Aug. 6, 2019, 22 pgs.
U.S. Appl. No. 15/427,009, Notice of Allowance dated Sep. 6, 2018, 9 pgs.
U.S. Appl. No. 15/428,104, Advisory Action dated Dec. 13, 2018, 3 pgs.
U.S. Appl. No. 15/428, 104, Examiner Interview Summary dated Jan. 15, 2019, 3 pgs.
U.S. Appl. No. 15/428,104, Examiner Interview Summary dated Dec. 7, 2018, 3 pgs.
U.S. Appl. No. 15/428,104, Final Office Action dated Oct. 10, 2018, 23 pgs.
U.S. Appl. No. 15/428,104, Non Final Office Action dated Apr. 19, 2018, 21 pgs.
U.S. Appl. No. 15/428,104, Non Final Office Action dated Aug. 6, 2019, 24 pgs.
U.S. Appl. No. 15/620,506, Advisory Action dated Aug. 26, 2019, 2 pgs.
U.S. Appl. No. 15/620,506, Examiner Inteview Summary dated Aug. 26, 2019, 1 pg.
U.S. Appl. No. 15/620,506, Final Office Action dated Jun. 10, 2019, 17 pgs.
U.S. Appl. No. 15/620,506, Non-Final Office Action dated Jan. 23, 2019, 13 pages.
U.S. Appl. No. 15/673,125, Examiner Interview Summary dated Aug. 1, 2019, 3 pgs.
U.S. Appl. No. 15/673,125, Final Office Action dated Jun. 3, 2019, 17 pgs.
U.S. Appl. No. 15/673,125, Non Final Office Action dated Feb. 6, 2019, 17 pgs.
U.S. Appl. No. 15/682,362, Notice of Allowance dated Oct. 22, 2018, 9 pgs.
U.S. Appl. No. 15/713,406, Examiner Interview Summary dated Aug. 2, 2019, 3 pgs.
U.S. Appl. No. 15/713,406, Final Office Action dated Jun. 3, 2019, 21 pgs.
U.S. Appl. No. 15/713,406, Non Final Office Action dated Jan. 30, 2019, 21 pgs.
U.S. Appl. No. 15/717,889, Advisory Action dated Jul. 6, 2021, 3 pgs.
U.S. Appl. No. 15/717,889, Examiner Interview Summary dated Jun. 4, 2021, 2 pgs.
U.S. Appl. No. 15/717,889, Examiner Interview Summary dated Jul. 6, 2021, 2 pgs.
U.S. Appl. No. 15/717,889, Final Office Action dated Mar. 4, 2021, 37 pgs.
U.S. Appl. No. 15/724,081, Examiner Interview Summary dated Mar. 4, 2019, 3 pgs.
U.S. Appl. No. 15/724,081, Examiner Interview Summary dated Jul. 30, 2019, 3 pgs.
U.S. Appl. No. 15/724,081, Examiner Interview Summary dated Aug. 20, 2019, 2 pgs.
U.S. Appl. No. 15/724,081, Final Office Action dated May 14, 2019, 14 pgs.
U.S. Appl. No. 15/724,081, Non Final Office Action dated Dec. 11, 2018, 12 pgs.
U.S. Appl. No. 15/724,081, Notice of Allowance dated Aug. 20, 2019, 12 pgs.
U.S. Appl. No. 15/724,087, Final Office Action dated Jul. 1, 2019, 16 pgs.
U.S. Appl. No. 15/724,087, Non Final Office Action dated Jan. 31, 2019, 15 pgs.
U.S. Appl. No. 15/911,993, Notice of Allowance dated Jan. 12, 2021, 8 pgs.
U.S. Appl. No. 15/963,896, Non Final Office Action dated Apr. 18, 2019, 7 pgs.
U.S. Appl. No. 15/963,896, Notice of Allowance dated May 22, 2019, 8 pgs.
U.S. Appl. No. 15/969,749, Examiner Interview Summary dated Apr. 20, 2021, 1 pg.
U.S. Appl. No. 16/179,746, Examiner Interview Summary dated Jun. 3, 2021, 1 pg.
U.S. Appl. No. 16/179,746, Final Office Action dated Jun. 3, 2021, 25 pgs.
U.S. Appl. No. 16/179,746, Non-Final Office Action dated Feb. 11, 2021, 25 pgs.
U.S. Appl. No. 16/362,547, Examiner Interview Summary dated Jul. 12, 2021, 2 pgs.
U.S. Appl. No. 16/362,547, Non-Final Office Action dated Mar. 23, 2021, 14 pgs.
U.S. Appl. No. 16/384,578, Corrected Notice of Allowance dated Nov. 26, 2019, 2 pgs.
U.S. Appl. No. 16/384,578, Non Final Office Action dated May 9, 2019, 9 pgs.
U.S. Appl. No. 16/726,090, Advisory Action dated Jun. 21, 2021, 3 pgs.
U.S. Appl. No. 16/726,090, Examiner Interview Summary dated Feb. 25, 2021, 3 pgs.
U.S. Appl. No. 15/632,709, Non-Final Rejection, dated May 22, 2020, 10 pgs.
U.S. Appl. No. 15/632,709, Examiner Interview Summary dated Apr. 30, 2018, 1 pg.
U.S. Appl. No. 15/632,709, Final Office Action dated Jul. 17, 2018, 12 pgs.
U.S. Appl. No. 15/632,709, Non Final Office Action dated Apr. 3, 2019, 13 pgs.
U.S. Appl. No. 15/632,709, Non Final Office Action dated Apr. 30, 2018, 14 pgs.
U.S. Appl. No. 15/632,709, Notice of Allowance dated May 3, 2021, 9 pgs.
Haines, Russell, U.S. Appl. No. 62/380,914, Specification and Drawings, p. 1-24 (Year: 2016).
Matsun08u, Toru etal., U.S. Appl. No. 62/457,276, Specification, p. 1-19 (Year: 2017).
Office Action (Non-Final Rejection) dated Apr. 14, 2022 for U.S. Appl. No. 17/338,217 (pp. 1-10).
Office Action (Non-Final Rejection) dated Sep. 22, 2021 for U.S. Appl. No. 16/726,090 (pp. 1-15).
Office Action (Non-Final Rejection) dated Oct. 14, 2021 for U.S. Appl. No. 15/427,030 (pp. 1-17).
Office Action (Non-Final Rejection) dated Oct. 28, 2021 for U.S. Appl. No. 16/813,506 (pp. 1-19).
Office Action (Non-Final Rejection) dated Nov. 10, 2021 for U.S. Appl. No. 16/389,544 (pp. 1-28).
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Sep. 16, 2021 for U.S. Appl. No. 16/179,746 (pp. 1-5).
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Sep. 29, 2021 for U.S. Appl. No. 15/717,889 (pp. 1-12).
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Sep. 30, 2021 for U.S. Appl. No. 16/179,746 (pp. 1-2).
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Oct. 15, 2021 for U.S. Appl. No. 16/179,746 (pp. 1-2).
Office Action dated Apr. 1, 2021 for U.S. Appl. No. 15/427,030 (pp. 1-18).
Office Action dated Apr. 1, 2021 for U.S. Appl. No. 16/389,544 (pp. 1-29).
Office Action dated Apr. 9, 2021 for U.S. Appl. No. 16/554,996 (pp. 1-29).
Office Action dated Jun. 3, 2021 for U.S. Appl. No. 16/179,746 (pp. 1-26).
Office Action dated Mar. 12, 2021 for U.S. Appl. No. 16/726,090 (pp. 1-14).
Office Action dated Mar. 23, 2021 for U.S. Appl. No. 16/362,547 (pp. 1-15).
Pollard, Stephen et al., “Automatically Synthesising Virtual Viewpoints by Trinocular Image Interpolation—Detailed Report”, HP, Technical Report, HP Laboratories Bristol HPL-97-166, Dec. 1997, 40 pgs.
Prisacariu, Victor A. et al., “Simultaneous 3D Tracking and Reconstruction on a Mobile Phone”, IEEE International Symposium on Mixed and Augmented Reality, 2013, pp. 89-98.
Qi Pan et al., “Rapid Scene Reconstruction on Mobile Phones from Panoramic Images”, Oct. 2011, pp. 55-64 (Year: 2011).
Russell, Bryan C, etal. “LabelMe: a database and web-based tool forimage annotation.” International Journal of Computer vision 77.1-3 (2008): 157-173. (Year: 2008).
Schiller, Ingo, et al., Datastructure for Capturing Dynamic Scenes with a Time-of-Flight Camera, Springer-Verlad, Dyna3D 2009, LNCS 5742, 42-57 pgs.
Seitz, Steven M., “Image-Based Transformation of Viewpoint and Scene Appearance”, A Dissertation submitted in partial fulfillment of the requirements for the Degree of Doctor of Philosophy at the University of Wisconsin; retrieved from the Internet <http://homes.cs.washington.edu/˜seitz/papers/thesis.pdf>, 1997, 111.
Shade, Jonathan et al., “Layered Depth Images”, Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, ACM, SIGGRAPH, Jul. 24, 1998, pp. 231-242.
Shin, Hong-Chang et al., “Fast View Synthesis using GPU for 3D Display”, IEEE Transactions on Consumer Electronics, vol. 54, No. 4, Dec. 2008, pp. 2068-2076.
Snavely, Noah et al., “Photo Tourism: Exploring Phot Collections in 3D”, ACM, ACM Transactions on Graphics (TOG)—Proceeding of ACM SIGGRAPH 2006, vol. 25, Issue 3, Jul. 2006, 835-846.
Steder, Bastian et al., “Robust On-line Model-based Object Detection from Range Images”, International Conference on Intelligent Robots and Systems, pp. 4739-4744, Oct. 15, 2009, 6 pages.
Supplemental Notice of Allowability dated May 5, 2021 for U.S. Appl. No. 15/969,749 (pp. 1-2).
Thyssen, Anthony , “ImageMagick v6 Examples—Color Basics and Channels”, Website http://www.imagemagick.org/Usage/color basics/, Retrieved Dec. 23, 2016, Mar. 9, 2011, 31 pgs.
Torr, P.H.S et al., “Robust Parameterization and Computation of the Trifocal Tensor”, Elsevier, Image and Vision Computing, vol. 15, Issue 8, Aug. 1997, pp. 591-605.
United Kingdom Application Serial No. 1609577.0, Office Action dated Jun. 15, 2016, 1 pg.
Utasi, Äkos, and Csaba Benedek. “A multi-view annotation tool for people detection evaluation.” Proceedings of the Ist international Workshop on Visual interfaces forground truth collection in Computer vision applications. ACM, 2012. (Year: 2012) 7 pages.
Weigel, Christian, et al., Advanced 3D Video Object Synthesis Based on Trilinear Tensors, IEEE Tenth International Symposium on Consumer Electronics, 2006, 5 pages.
Xiao, Jiangjian et al., “Tri-view Morphing”, Elsevier, Computer Vision and Image Understanding, vol. 96, Issue 3, Dec. 2004, pp. 345-366.
Z. Cao et al., ‘Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields’, In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Apr. 14, 2017, pp. 1-9 sections 2-3; and ffigure 2.
Zhang, Guofeng, et al., Video stabilization based on a 3D perspective camera model, Springer, The Visual Computer (2009) 25, 997 pg.
Zhang, Zhengyou, et al., A robust technique for matching two uncalibrated images through the recovery of the unknown epipolar geometry, Elsevier, Artificial Intelligence 78, 1995, 87-119 pgs.
U.S. Appl. No. 16/726,090, Examiner Interview Summary dated Jun. 21, 2021, 1 pg.
U.S. Appl. No. 16/778,981, Corrected Notice of Allowance dated Mar. 31, 2021, 11 pgs.
U.S. Appl. No. 16/778,981, Examiner Interview Summary dated Mar. 31, 2021, 1 pg.
U.S. Appl. No. 16/778,981, Notice of Allowance dated Mar. 9, 2021, 9 pgs.
Ballan, Luca etal., “Unstructured Video-Based Rendering: Interactive Exploration of Casually Captured Videos”, ACM, ACM Transactions on Graphics (TOG)—Proceedings of ACM SIGGRAPH 2010, vol. 29, Issue 4, Article No. 87, Jul. 30, 2010, 11 pages.
Belongie, Serge, Jitendra Malik, and Jan Puzicha. “Shape matching and object recognition using shape contexts.” IEEE Transactions on Pattern Analysis & Machine Intelligence 4 (2002): 509-522. (Year: 2002).
Buehler, Chris et al., “Unstructured Lumigraph Rendering”, ACM, ACM SIGGRAPH, 2001, pp. 425-432.
Cao, Xun et al., “Semi-Automatic 2D-to-3D Conversion Using Disparity Propagation”, IEEE, IEEE Transactions on Broadcasting, vol. 57, Issue 2, Apr. 19, 2011, pp. 491-499.
Chan, Shing-Chow et al., “An Object-Based Approach to Image/Video-Based Synthesis and Processing for 3-D and Multiview Televisions”, IEEE, IEEE Transactions on Circuits and Systems for Video Technology, vol. 19, Issue 6, Mar. 16, 2009, pp. 821-831.
Chen, Shenchang E. , “QuickTime VR—An Image-Based Approach to Virtual Environment Navigation”, ACM, SIGGRAPH '95 Proceedings of the 22nd annual Conference on Computer graphics and interactive techniques, 1995, 29-38.
Cläre, Adam , “Reality is a Game; What is Skybox?”, retrieved from the Internet <http://www.realityisagame.com/archives/1776/what-is-a-skybox/>, Mar. 28, 2013, 5 pgs.
Davis, Abe et al., “Unstructured Light Fields”, Blackwell Publishing, Computer Graphics Forum, vol. 31, Issue 2, Pt. 1, May 2012, pp. 305-314.
Extract all frames from video files, Video Help Forum, Oct. 2010, 3 pages.
Figueroa, Nadia, et al., “From Sense to Print: Towards Automatic 3D Printing from 3D Sensing Devices”, IEEE, IEEE International Conference on Systems, Man, and Cybernetics (SMC, Oct. 13, 2013.).
Fischler, Martin A.., et al., Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography, ACM, Communications of the ACM, vol. 24, No. 6, Jun. 1981, 381-395 pgs.
Fitzgibbon, Andrew , “Automatic 3D Model Acquisition and Generation of New Images from Video Sequences”, IEEE, 9th European Signal Processing Conference, Sep. 1998, 8 pgs.
Fusiello, Andrea et al., “View Synthesis from Uncalibrated Images Using Parallax”, Proceedings of the 12th International Conference on Image Analysis and Processing, 2003, pp. 146-151.
Fusiello, Andrea, Specifying Virtual Cameras In Uncalibrated View Synthesis, IEEE Transactions on Circuits and Systems for Video Technology, vol. 17, No. 5, May 2007, 8 pages.
Gatys et al., “A Neural Algorithm of Artistic Style”, Comell University, arXiv:1508.06576v2 pp. 1-16. (Year: 2015).
Gibson, Simon, et al., Accurate Camera Calibration for Off-line, Video-Based Augmented Reality, IEEE, Proceedings of the International Symposium on Mixed and Augmented Reality (ISMAR'02) 10 pages.
Golovinskly, Aleksey et al., “Shape-based Recognition of 3D Point Clouds in Urban Environment”, IEEE, IEEE 12th International Conference on Computer Vision (ICCV), 2009, 2154-2161.
Gurdan, Tobias et al., “Spatial and Temporal Interpolation of MultiView Image Sequences”, Department of Computer Science, Technische Universität München Ascending Technologies GmbH, Krailing, Germany, Section 2.3, Image Warping and Blending; Retrieved from the Internet <https://vision in.tum.de/ media/spezial/bib/gurdan-et-al-gcpr-2014.pdf>, 12.
International Application Serial No. PCT/US19/28807 Preliminary Report on Patentability dated Nov. 5, 209 pgs.
International Application Serial No. PCT/US19/28807 Search Report and Written Opinion dated Oct. 8, 2019, 12 pgs.
International Application Serial No. PCT/US19/30395, Preliminary Report on Patentability dated Nov. 12, 2020, 7 pgs.
International Application Serial No. PCT/US19/58204, Preliminary Report on Patentability dated May 14, 2021, 7 pgs.
International Application Serial No. PCT/US2016/042355, Search Report and Written Opinion dated Oct. 19, 2016, 9 pgs.
International Application Serial No. PCT/US2019/058204, Search Report and Written Opinion dated Apr. 21, 2010 pages.
Intl Application Serial No. PCT/US17/47684, Intl Preliminary Report on Patentability dated Feb. 28, 2019, 7 pgs.
Intl Application Serial No. PCT/US17/47684, Intl Search Report and Written Opinion dated Oct. 27, 2017, 8 pgs.
Intl Application Serial No. PCT/US17/47859, Intl Preliminary Report on Patentability dated Feb. 28, 2019, 7 pgs.
Intl Application Serial No. PCT/US17/47859, Intl Search Report and Written Opinion dated Nov. 2, 2017, 8 pgs.
Intl Application Serial No. PCT/US19/030395, Intl Search Report and Written Opinion dated Sep. 2, 2019, 9 pgs.
Intl Application Serial No. PCT/US2014/065282, Search Report & Written Opinion dated Feb. 23, 2015, 9 pgs.
Keller, Maik et al., “Real-Time 3D Reconstruction in Dynamic Scenes Using Point-Based Fusion”, IEEE, 2013 International Conference on 3DTV, Jul. 1, 2013, 8 pages.
Klappstein, Jens, et al., Moving Object Segmentation Using Optical Flow and Depth Information, Springer, In: Wada T., Huang F., Lin S. (eds) Advances in Image and Video Technology. PSIVT 2009. LectureNotes in Computer Science, vol. 5414, 611-623 pgs.
Kottamasu, V. L. P., “User Interaction of One-Dimensional Panoramic Images for iPod Touch”, Thesis, Linkoping University Electronic Press, LIU-IDA-LITH-EX-A-12/071-SE, Dec. 4, 2012, 70 pages.
Li, Mingyang, Byung Hyung Kim, and Anastasius 1. Mourikis. “Real-time motion tracking on a cellphone using inertial sensing and a rolling-shutter camera.” 2013 IEEE International Conference on Robotics and Automation. IEEE, 2013. (Year: 2013) 8 pages.
Mian, Ajmal S. et al., “Three-Dimensional Model-Based Object Recognition and Segmentation in Cluttered Scenes”, IEEE Transactions on Pattern Analysis and Machine Intelligence, col. 28, No. 10, Oct. 2006, 1584-1601.
Mikolajczyk, Krystian, et al., A Performance Evaluation of Local Descriptors, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, No. 10, Oct. 2005, 1615-1630.
Notice of Allowance dated Apr. 20, 2021 for U.S. Appl. No. 15/969,749 (pp. 1-5).
Notice of Allowance dated Jun. 17, 2021 for U.S. Appl. No. 15/604,938 (pp. 1-12).
Notice of Allowance dated May 3, 2021 for U.S. Appl. No. 15/632,709 (pp. 1-9).
Nützi, Gabriel, et al. “Fusion of IMU and vision for absolute scale estimation in monocular SLAM.” Journal of intelligent & robotic Systems 61.1-4 (2011): 287-299. (Year: 2011).
Office Action (Final Rejection) dated Jan. 19, 2022 for U.S. Appl. No. 16/726,090 (pp. 1-16).
Office Action (Final Rejection) dated Apr. 25, 2022 for U.S. Appl. No. 16/813,506 (pp. 1-17).
Office Action (Final Rejection) dated Aug. 20, 2021 for U.S. Appl. No. 16/362,547 (pp. 1-15).
Office Action (Non-Final Rejection) dated Mar. 21, 2022 for U.S. Appl. No. 14/861,019 (pp. 1-32).
Office Action (Non-Final Rejection) dated Mar. 24, 2022 for U.S. Appl. No. 16/362,547 (pp. 1-14).
Office Action (Final Rejection) dated Jul. 6, 2022 for U.S. Appl. No. 14/861,019 (pp. 1-36).
Office Action (Final Rejection) dated Jul. 22, 2022 for U.S. Appl. No. 15/427,030 (pp. 1-18).
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated May 18, 2022 for U.S. Appl. No. 16/389,544 (pp. 1-8).
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Jun. 2, 2022 for U.S. Appl. No. 16/726,090 (pp. 1-7).
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Jun. 29, 2022 for U.S. Appl. No. 17/338,217 (pp. 1-9).
Related Publications (1)
Number Date Country
20210312719 A1 Oct 2021 US
Continuations (1)
Number Date Country
Parent 15632709 Jun 2017 US
Child 17352654 US