The invention relates to a modified buoy system including a grasping device for assisting a boating person with the grasping of a mast buoy. The grasping device can have at least one loop to aid the user in grasping the grasping device. Other grasping or locating devices are known such as from U.S. Pat. No. 7,156,712 to Mercer; U.S. Pat. No. 6,907,837 to Pufahl; U.S. Pat. No. 4,529,388 to Jones; U.S. Pat. No. 3,077,614 to Lloyd; U.S. Pat. No. 4,763,126 to Jawetz; U.S. Pat. No. 4,806,620 to Jones; U.S. Pat. No. 6,488,620 to Jones; U.S. Pat. No. 6,488,554 to Walker; U.S. Pat. No. 3,084,354 to Luenscholss. wherein the disclosures of these patents are hereby incorporated herein by reference in their entirety.
One embodiment of the invention relates to a modified buoy system for a mast buoy comprising a body, at least one loop coupled to the body, and at least one locking element for locking the body to a shaft of a mast buoy. The grasping device can also optionally be coupled to a light such as a remote controlled light which can be turned on remotely using a switch and wireless communication. The grasping device can also include a telescoping body, adjustable loops, an annunciator, and a locating system as well. There can also be an optional solar panel coupled to the grasping device which can be used to charge a battery to provide power to a light.
Other objects and features of the present invention will become apparent from the following detailed description considered in connection with the accompanying drawings. It is to be understood, however, that the drawings are designed as an illustration only and not as a definition of the limits of the invention.
In the drawings, wherein similar reference characters denote similar elements throughout the several views:
Referring to the drawings,
Grasping device 100 is coupled to shaft 12 adjacent to first end 12a. In this case, the position of grasping device 100 can be adjusted along shaft 12 so that grasping device 100 can be positioned at different positions along shaft 12. As shown in
Each collar 120 and 130 has an associated pin or set screw 122 and 132 respectively to set a position of collars 120 and 130 along shaft 12. Housing or body 102 can be in the form of a single shaft, or optionally include two telescoping shafts 103 and 105. Coupled to body 102 are loops 112, 114, 116, and 118 which are in the form of flexible loops which in at least one embodiment are formed integral with body 102. Alternatively, loops 112, 114, 116, and 118 are formed as attachable loops which are attachable to body 102. Flexible loops 112, 114, 116, and 118 are made from either the same material as body 102, or a different material. For example, body 102 and loops 112, 114, 116, and 118 can be formed from polyvinyl chloride material (PVC) or they can be formed from a different material such as rubber, or other plastic or metal type material. In at least one embodiment, this material is a flexible or elastic material such that loops 112, 114, 116, and 118 can be bent out in a lateral direction or compressed in laterally based upon movement of collars 120 and 130 inward towards each other or outward away from each other.
Once the position of each of these collars 120 and 130 are set, set screws 122 and 132 are screwed in so that tips of these screws intersect with shaft 12 so as to set the position of these collars via a frictional or structural intersection. Essentially, these set screws can contact or “bite” into shaft 12 to secure the position of these collars 120 and 130. Once grasping device 100 is set on shaft 12, it is positioned so that it can receive a boat hook such as boat hook 180 to hook through loops 112, 114, 116, or 118 to allow a user to haul in a mast buoy in a relatively easy manner.
An optional audio transmitter 250 is disposed inside of housing 210 and coupled to circuit board 220 and also in communication with battery 225. This audio transmitter 250 is also in communication with RFID transceiver 240 wherein if a user using a remote control pushes a button, that user can then send a signal to RFID transceiver 240 to start audio annunciator 250 as well.
Battery 225 can be charged separately or it can be powered by an optional solar powered panel. Thus, disposed inside of housing 210 is a solar panel transformer 260 which is coupled to a solar panel 270 on an exterior of body 210. Solar panel transformer 260 receives electrical input from solar panel 270 and stores this energy in battery 225. The presence of this solar panel 270 and solar panel transformer 260 allows the battery 225 to be consistently recharged while it only temporarily used to power light 230b audio transmitter 250 or transceiver 250.
Coupled to housing 210 are locking elements couplers, or collars 280 and 290. Collar 280 is positioned at a first end of housing 210 while collar 290 is positioned at a second end of housing 210. Collar 280 can be in the form of a clamping collar which clamps down on shaft 12 when set by a set screw, or it can be secured by set screw 282 which is screwed in laterally to collar 280 and which clamps directly to shaft 12. In addition, collar 290 can be in the form of a clamping collar 290 which clamps down on shaft 12 when set by a set screw or secured via set screw 292 which is screwed in laterally to collar 290 and which clamps directly to shaft 12. Thus, the position of housing 210 can be set by these set screws 282, and 292 and also by collars 280 and 290 which form locking elements so that the position of this electronic device 200 can be positioned either above, or below grasping device 100.
Thus, grasping device 100 has loops 112, 114, 116 and 118 or openings which allow this grasping device to be grasped. In addition, grasping device 100 is formed as an adjustable device which can be slid over a top section of a shaft 12 of a mast buoy as an after market part. This device 100 can then be positioned at any point along this shaft, and then simply fixed to this shaft via at least one set screw 122 or 132. This grasping device makes it easier for parties to grasp this device using a boat hook or his or her hands when a user on a boat approaches a mooring. The optional electronic device 200 can also be attached to shaft 12 as well. This optional electronic device can be used to aid the user in locating the mast buoy as well as the grasping device to create an easily findable and graspable device that can be attached to a mast buoy to aid a user in mooring his or her boat.
In another embodiment of the invention,
Accordingly, while only a few embodiments of the present invention have been shown and described, it is obvious that many changes and modifications may be made thereunto without departing from the spirit and scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
3077614 | Lloyd | Feb 1963 | A |
3084354 | Leunenschloss | Apr 1963 | A |
3486672 | Esopi | Dec 1969 | A |
3605359 | Bader et al. | Sep 1971 | A |
3618150 | Anselmi | Nov 1971 | A |
3817351 | Mikkelson | Jun 1974 | A |
4221314 | Baker, Jr. | Sep 1980 | A |
4529388 | Jones et al. | Jul 1985 | A |
4647929 | Jacobs | Mar 1987 | A |
4763126 | Jawetz | Aug 1988 | A |
4781138 | Hay | Nov 1988 | A |
4793646 | Michaud, Jr. | Dec 1988 | A |
4896620 | Jones | Jan 1990 | A |
5088948 | Scheurer | Feb 1992 | A |
5273468 | Nichols | Dec 1993 | A |
5335835 | Hogan | Aug 1994 | A |
5362267 | Forrest | Nov 1994 | A |
6488554 | Walker | Dec 2002 | B2 |
6907837 | Pufahl | Jun 2005 | B2 |
7156712 | Mercer | Jan 2007 | B1 |
Number | Date | Country | |
---|---|---|---|
20090298366 A1 | Dec 2009 | US |