In the past, charge collectors, also called current collectors, in batteries are mostly smooth sheets of aluminum, copper, nickel or other metallic materials. Meshes and foams with smooth openings or pores/cells are occasionally used to reduce weight and materials cost. Many previous thermal runaway mitigation mechanisms work only when the temperature rises to an already dangerously high level.
In one aspect, a battery includes a cathode comprising at least one charge collector; an anode comprising at least one charge collector; a separator; a cell case; and an electrolyte. The cathode and anode are formed of active material positioned on charge collectors.
Examples of the aspect can include some, all, or none of the following features. The charge collector contains at least one weakening feature selected from the group consisting of bumps, notches, grooves, cracks, voids, sharp openings, folds, ridges, valleys, and hollow cross-section profiles. The charge collector is configured to be broken apart as the battery is subjected to mechanical abuse or thermal abuse or both mechanical and thermal abuse, thereby separating internal shorting sites. Configurations of the weakening features include at least one selected from the group consisting of straight lines, parallel lines, perpendicular lines, curved lines, dots, openings with wavy edges, sharp openings, hollow cross-sectional profiles, bridges, islands, and joints. Configurations of the weakening features include at least two selected from the group consisting straight lines, parallel lines, perpendicular lines, curved lines, dots, openings with wavy edges, sharp openings, hollow cross-sectional profiles, bridges, islands, and joints. The charge collector contains at least one locally heterogeneous material selected from the group consisting of weakening metals, temperature sensitive metals, alloys, ceramics, polymers, glass, carbon materials, elastomers, and composites. The charge collector is configured to increase impedance as the battery is subjected to mechanical abuse or thermal abuse or both mechanical and thermal abuse. The charge collector contains at least two locally heterogeneous materials selected from the group consisting of weakening metals, temperature sensitive metals, alloys, ceramics, polymers, glass, carbon materials, elastomers, and composites. The charge collectors of the cathode and anode are arranged in a mismatched placement with no overlapping area.
In one aspect, a system includes a cathode comprising a current collector; an anode comprising a current collector; a separator; a cell case; and an electrolyte. At least one of the group consisting of the cathode, the anode, the cell case, and the separator includes a failure feature configured to fail in response to at least one of the group consisting of thermal abuse and mechanical abuse.
Examples of the aspect can include some, all, or none of the following features. The failure feature is at least one of the group consisting of cracks, vacancies, wave shapes, protrusions, trenches, and indentations. The failure feature is at least one of the group consisting of locally anisotropic and heterogeneous. The failure feature is mechanically triggered upon mechanical abuse; and configured to increase impedance. The failure feature includes two or more different materials. One of the group consisting of the cathode, the anode, the cell case, and the separator includes a second failure feature configured to fail in response to at least one of the group consisting of thermal abuse and mechanical abuse. The failure feature and the second failure feature differ in at least one of the group consisting of pattern, shape, size, orientation, and material. The failure feature is created by surface treatment. The current collector includes alternating current collecting components and non-current-collecting components. The alternating current collecting components and non-current collecting components are at least one of the group consisting of locally anisotropic and heterogeneous. The failure feature includes a container containing mitigation material, wherein the container is configured to fail in response to at least one of the group consisting of thermal abuse and mechanical abuse by releasing the mitigation material. The mitigation material is at least one of the group consisting of thermal runaway mitigating material and fire mitigating material. The container is positioned in a location that is fixed relative to an electrode stack. The container is positioned in a location that is fixed relative. The container is positioned in a location external to the cell case and releases mitigation material into the battery cell in response to at least one of the group consisting of mechanical abuse and thermal abuse. The container is positioned in a location that is fixed relative a thermal management component. The thermal management component is coupled to a thermal management computer operating system. The container includes at least one of the group consisting of pouches, containers, pipes, ducts, channels. The container is an element of at least one of the group consisting of a thermal management system, battery cell support system, battery module, and pack wall. The container is an element of at least one of the group consisting of cleaning component, fuel-containing component, lubricant-containing component, and liquid-containing structure or component external to the battery cell.
Other features, aspects and potential advantages will be apparent from the accompanying description and figures.
Damage to a battery can cause the temperature of the battery to rise due to interactions of the damaged components of the battery. This temperature rise can give way to a process sometimes called “thermal runaway” in which temperature of the battery rises exponentially, often until the battery catches fire or otherwise fails in a dangerous way (e.g. by spilling dangerous chemicals, deforming, supplying anomalous electrical current).
Described here are design features that can be used to mitigate or eliminate the risk of thermal runaway. Some of these features involve designing components of the battery so that specific components fail in a controlled way, thereby preventing the battery from failing catastrophically (e.g., by catching fire) and damaging nearby people and property. The techniques described here may be used independently or together with each other and/or other known and new techniques for preventing thermal runaway. In doing so, batteries with increased safety may be designed and fabricated. In general, it is desirable that as a battery is impacted or is subjected other forms of mechanical or thermal abuse, temperature rise can be suppressed as early as possible.
Here we show components of battery cells or battery modules/packs that can be mechanically or thermally triggered to mitigate thermal runaway at the battery cell level, before reaching dangerous levels. In some examples, the battery components so designed include but are not limited to current collectors, battery cell cases, additional pouches, and cooling pipes. For example, by creating weakening notches, cracks, sharp openings, ridges, folds, etc. in the charge collector, the internal shorting site in the electrode can be broken apart from the rest of the battery system, thus the internal impedance may be largely increased and thermal runaway suppressed. In some examples, modified battery cell cases or charge collector may contain mitigating material (e.g., thermal runaway mitigating material, fire mitigating material); the liquid containing components may also be placed inside the battery cell as pouches. When the battery is subject to mechanical or thermal abuse, the container may fail, releasing the contained mitigating material.
In one embodiment, we tested current collectors modified by locally anisotropic (e.g., having a shape that depends on direction)/heterogeneous (e.g., repeating same or similar properties) surface features.
A circular piece was harvested from the modified aluminum sheet, with the diameter of about 9/16 inch. The circular piece was used as the current collector for the cathode in a battery coin cell. The mass ratio of active material (NCM; provided by TODA AMERICA, with the product number of NCM-04ST), carbon black (TIMCAL C-NERGY SUPER C65), and polyvinylidene fluoride (PVDF; provided by SIGMA-ALDRICH, with the product number of 182702-250G) was 93:3:4. The mass ratio of PVDF to NMP (provided by SIGMA-ALDRICH, with the product number of 328634) was 1:9. Slurry was mixed thoroughly by using a Qsonica Sonicator at a 100% power for 15 minute. The slurry was dried in a vacuum oven at 80 oC for 24 hours. The dried slurry thickness was around 100 μm and the active material mass on the current collector was about 35 mg. The slurry was compressed to the thickness of 80 μm by a Rolling Mill roller.
Type 2016 half-cell was assembled with a lithium disc as the anode. The lithium disc (provided by Tob New Energy Technology) thickness was 15.4 mm, and the diameter was 1.1 mm. Celgard-2320 trilayer Polypropylene-Polyethylene (PP/PE/PP) membrane was used as the separator between the cathode and the anode. The membrane thickness was 25 μm . About 30 μl BASF electrolyte (1M LiPF6 in 1:1 EC-EMC) was added into the battery cell. Altogether 3 nominally same half-cells were produced. They were charged to 4.6V by a MTI BST8-3 Battery Analyzer, with the charging rate of 0.1 C. To eliminate the influence of cell case, after being fully charged, the cell was reassembled by adding another layer of polyethylene film between the current collector and the cell case. The cover of cell case was modified, with a hollow opening in the middle.
Reference cells were prepared through a similar procedure, except that the reference current collectors were smooth 18 μm thick aluminum sheets without any modification.
Impact tests were performed by dropping a 7 kg cylindrical steel hammer onto the battery cell. The drop distance was 6 cm. A 4.8 mm diameter ceramic ball (the indenter) was placed at the center on the top of the cell case. The temperature-time history was measured by an Omega TT-K-40-25 type-K gage 40 thermal couple equipped with an Omega OM-EL-USB-TC temperature logger data acquisition system, with the record interval of 1 sec. The thermal couple tip was fixed by a duct tape on the top surface of the cell, about 4 mm away from the center. The cell and the thermocouple were thermally insulated by a ½ inch thick circular durometer 75 D polyurethane layer from the bottom and a 1 inch thick circular durometer 90 A polyurethane layer on the top. The bottom insulation layer had a ⅜ inch diameter circular hole in the middle. The cell was fixed in the bottom insulation layer by three layers of duct tapes.
The testing results are shown in
It should be noted that the geometry and pattern of the surface features of modified current collector are not limited to the ones shown this embodiment. The surface features on the current collector may contain a number of similar or identical or dissimilar elements 100 shown in
The locally anisotropic/heterogeneous element may be viewed as an assembly of nodes 101 and paths 102, as shown in
For all the modified current collectors in this document, the cross-sectional shapes of the locally anisotropic/heterogeneous surface features include but are not limited to slits, straight lines, curves, nodes or dots, triangles, circles, ovals, polygons, ellipses, squares, rectangles, trapezoids, polygons, crescents, stars, concave shapes, convex shapes, irregular shapes, convex-shaped, concave-shaped, crescents, or any combinations of them. The cross-sectional geometry and size may vary in space and the width and depth of the surface features may vary in space. The edges of the cross section can be straight or curved. Some examples of embodiment are shown in
In one embodiment, we tested current collectors modified by locally anisotropic/heterogeneous V-shaped features.
A circular piece was harvested from the modified aluminum sheet, with the diameter of 9/16 inch. The circular piece was used as the current collector for the cathode in a battery coin cell. The mass ratio of active material (NCM; provided by TODA AMERICA, with the product number of NCM-04ST), carbon black (TIMCAL C-NERGY SUPER C65), and PVDF (provided by SIGMA-ALDRICH, with the product number of 182702-250G) was 93:3:4. The mass ratio of PVDF to NMP (provided by SIGMA-ALDRICH, with the product number of 328634) was 1:9. Slurry was mixed thoroughly by using a Qsonica Sonicator at a 100% power for 15 minute. The slurry was dried in a vacuum oven at 80 oC for 24 hours. The dried slurry thickness was around 100 μm and the active material mass on the current collector was about 35 mg. The slurry was compressed to about 80 μm by a Rolling Mill roller.
Type 2016 half-cell was assembled by using the cathode, together with a lithium disc as the anode, a PP/PE/PP membrane separator, 30 μl BASF electrolyte, and modified cell case, similar to that in Example 1. Altogether 3 nominally same half-cells were produced. They were charged to 4.6V by a MTI BST8-3 battery analyzer, with the charging rate of 0.1C. Reference cells were prepared through a similar procedure, except that the cathode current collectors were smooth 18 μm thick aluminum sheets without any modifications. Impact tests were conducted on the battery cells, similar to that in Example 1.
The testing results are shown in
In another test, we tested current collectors modified by locally anisotropic/heterogeneous U-shaped surface features.
The testing results are shown in
It should be noted that the design of the surface features of the current collector is not limited to what are shown in this embodiment. The pattern of the surface features may comprise a number of elements 300, as shown in
Each element may comprise nodes 301 and paths 302, as shown in
The cross-sectional shapes of the locally anisotropic/heterogeneous features include but are not limited to slits, straight lines, curves, nodes or dots, triangles, circles, ovals, polygons, ellipses, squares, rectangles, trapezoids, polygons, crescents, crescents, stars, concave shapes, convex shapes, irregular shapes, or any combination of them. The cross-sectional geometry, size, and orientation may vary in space; the width and depth of the surface features may vary in space. The edges of the cross sections of the surface features can be straight or curved. Some examples are shown in
In one embodiment, we tested current collectors modified by precracks.
A circular piece was harvested from the precracked aluminum sheet, with the diameter of 9/16 in. The circular piece was used as the current collector for the cathode in a battery coin cell. The processing and testing procedures of the battery cell were similar to that in Example 1.
The results of the impact tests are shown in
It should be noted that the design is not limited to what are shown in this embodiment. The pattern of the precracks may comprise a number of elements; the sizes, shapes, and orientations of the elements can vary in space. The shapes of the elements, precracks, or cross sections of precracks include but are not limited to connected or disconnected straight lines, curves, nodes or dots, triangles, circles, ovals, polygons, ellipses, squares, rectangles, trapezoids, polygons, crescents, crescents, stars, concave shapes, convex shapes, irregular shapes, or any combination of them.
Each element may comprise nodes and paths. A path may comprise dots, nodes, or lines. The path may be straight or curved, intersected or separated; the spacing among the paths may be uniform or non-uniform. The cross-sectional geometry and size of precrack may vary in space; the width, depth, and orientation of precrack may vary in space. Some examples of embodiment are shown in
In one embodiment, we tested current collectors with stress-concentrating vacancies (SCV).
A circular piece was harvested from the aluminum sheet modified by SCV, with the diameter of 9/16 in. The circular piece was used as the current collector for the cathode in a battery coin cell. The processing and testing procedures of the coin cells were similar to that in Example 1.
The results of the impact tests are shown in
It should be noted that the design of SCV is not limited to what are shown in this embodiment. The sizes, shapes, and orientations of the element or the SCV can vary in space. The edges of SCV include connected or disconnected straight lines, curves, or nodes. The shapes of the elements or the SCV include but are not limited to slits, slots, straight lines, curves, nodes or dots, triangles, circles, ovals, polygons, ellipses, squares, rectangles, trapezoids, polygons, crescents, crescents, stars, concave shapes, convex shapes, irregular shapes, or any combination of them.
The SCV pattern may comprise nodes and paths. The path may comprise nodes or continuous or discontinuous lines. The path may be straight or curved, intersected or separated; the spacing among the paths may be uniform or non-uniform.
The cross-sectional shapes of stress concentration vacancies include but are not limited to slits, slots, straight lines, curves, nodes or dots, triangles, circles, ovals, polygons, ellipses, squares, rectangles, trapezoids, polygons, crescents, crescents, stars, concave shapes, convex shapes, irregular shapes, or any combination of them. The cross-sectional geometry and size may vary in space, and the width and depth of SCV may vary in space. The edges of SCV cross sections can be straight lines or curves. Some examples are shown in
The stress-concentrating surface features can be protruding.
The pattern of PSF may comprise elements. The sizes, shapes, and orientations of the elements can vary in space. The shapes of the elements or PSF include but are not limited to connected or disconnected straight lines, curves, nodes or dots, triangles, circles, ovals, polygons, ellipses, squares, rectangles, trapezoids, polygons, crescents, crescents, stars, concave shapes, convex shapes, irregular shapes, or any combination of them.
The element may comprise nodes and paths. The path may comprise nodes or discontinuous or continuous lines. The path may be straight or curved, intersected or separated; the spacing among the paths may be uniform or non-uniform.
The cross-sectional shapes of the locally anisotropic/heterogeneous PSF include but are not limited to straight lines, curves, nodes or dots, triangles, circles, ovals, polygons, ellipses, squares, rectangles, trapezoids, polygons, crescents, crescents, stars, concave shapes, convex shapes, irregular shapes, or any combination of them. The cross-sectional geometry, size, and orientation of PSF may vary in space; the width and depth of PSF may vary in space. The edges of the cross section of PSF can be straight or curved. Some examples are shown in
In one embodiment, we tested current collectors with mechanically-triggered components.
In one embodiment, we tested current collectors with mechanically-triggered polymer components.
It should be noted that the design of the mechanically-triggered components is not limited to what are shown in the above two embodiments. The materials of the mechanically-triggered component can be metals, alloys, ceramics, polymers, glasses, carbons, elastomers, or any combination of them. The thickness of the mechanically-triggered components can vary in space; they may be thicker or thinner than of the components current collector. The mechanically-triggered components can occupy a portion or the entire volume of the current collector. The distribution of the mechanically-triggered components can be continues or discontinues, heterogeneous or homogeneous, isotropic or anisotropic, uniform or non-uniform in space. The mechanically-triggered components can comprise multiple components with same or different triggering mechanisms. The mechanically-triggered components can be mixed with, next to, adjacent to, beneath, on top of, or between the components of current collector.
In one embodiment, we tested current collectors with thermally triggered components.
It should be noted that the design of thermally-triggered components is not limited to what are shown in this embodiment. The materials of the thermally-triggered components can be metals, alloys, ceramics, polymers, glasses, carbons, elastomers, or any combination of them. The size of a thermally-triggered component can vary, so that it may be thicker or thinner than the component of current collector. The thermally triggered components can occupy a portion or the entire volume of the current collector. The distribution of the thermally triggered components can be continues or discontinues, heterogeneous or homogeneous, isotropic or anisotropic, uniform or non-uniform in space. The thermally triggered components can compose of multiple parts, with same or different triggering mechanisms, as shown in
The current collector can comprise locally anisotropic/heterogeneous dissimilar components.
In one embodiment, the anode and cathode current collectors were modified and stacked in a mismatched manner.
The shape of the NCC components includes but is not limited to connected or disconnected straight lines, curves, nodes or dots, triangles, circles, ovals, polygons, ellipses, squares, rectangles, trapezoids, polygons, crescents, crescents, stars, concave shapes, convex shapes, irregular shapes, or any combination of them. The cross-sectional shapes of vacancies include but are not limited to straight lines, curves, nodes or dots, triangles, circles, ovals, polygons, ellipses, squares, rectangles, trapezoids, polygons, crescents, crescents, stars, concave shapes, convex shapes, irregular shapes, or any combination of them. The cross-sectional geometry and size may vary in space, and the width and depth may vary in space. The edges of the cross sections of the NCC components can be straight or curved. The materials of the NCC components include but are not limited to vacuum, gas, solid, or liquid materials, such as air, non-conductive liquids, high-resistance metals and alloys, ceramics, polymers, elastomers, glasses, carbons, etc., or any combination of them. The patterns of the cathode and anode current collectors can also be parallel fibers, strips, such as the example shown in
In one embodiment, we employed mechanically triggered, thermally triggered, or both mechanically and thermally triggered single-component or multi-component cell cases structured with one or multiple thermal runaway mitigating materials or components, fire mitigating materials, or both thermal runaway and fire mitigating materials. The setup shown in
The cell case was constructed by modifying a 304 stainless steel CR2450 cell case with seal O-ring (provided by AA Portable Power Corp, part #24500R304-1). The mechanically triggered aluminum pouch component was made using a standard direct scanning calorimetry 50 μL capacity sample pan and cover (provided by Perkin Elmer part #02190041). The pan was filled with 33 μL of 1,5-pentanediol (provided by Sigma Aldrich, SKU #76892) and sealed with the cover using a standard sample pan crimping press (provided by Perkin Elmer part #02190048). A 9/32″ diameter hole was removed from the center of the bottom shell component using a hand punch and the mechanically triggered additive containing pouch component was pressed into the hole forming a physical seal, completing construction of the additive modified cell case.
The battery cell was assembled using a LiCoO2/C multilayered electrode stack (including cathode, anode, charge collectors, separator, and electrolyte) harvested from a commercially available LIR2450 cell (3.6 V, 120 mAh, 0.43 Wh) (provided by AA Portable Power Corp, part #LIR2450) sealed in the modified battery cell case. The commercially available battery cells were charged by a constant current—constant voltage algorithm (C/12→C/150) to 4.2 V using a battery analyzer (provided by MTI, item #BST8-3). The fully charged cell was then disassembled and the multilayered electrode stack was removed using a crimping and disassembling press with a CR2450 disassembling die set (provided by MTI, item #MSK110D-DS2450). The harvested electrode stack was then placed in the additive-modified cell case and tightly sealed with polyimide tape, completing assembly of the modified battery cell.
Reference battery cells were prepared through a similar procedure, except that no thermal runaway mitigating material (e.g. 1,5-pentanediol additive) was included in the mechanically triggered aluminum pouch component; i.e. the pouch was empty.
Impact tests were performed on both reference cells and modified cells. A 7 kg cylindrical steel hammer was dropped from a distance of 30 cm onto a ¼″ diameter brass ball indenter that had been suspended 5 mm above the mechanically triggered aluminum pouch component. Temperature response was measured with a type-K gage 40 thermocouple (provided by Omega, part #TT-K-40-25) equipped with a temperature logging data acquisition system (provided by Omega, part #OM-EL-USB-TC), with a recording interval of 1 second. The thermocouple tip was affixed to the stainless steel bottom shell component with polyimide tape, 5 mm away from the outer diameter of the mechanically triggered aluminum pouch component of the structure. The battery cell was affixed to a ½″ thick circular polyurethane base using masking tape prior to the impact.
An image depicting the damage sustained upon impact is shown in
The cell case may be a single or multicomponent structure with one or multiple cavities or voids in one or multiple locations within the structure which may contain one or multiple thermal runaway mitigating materials, fire mitigating materials, or both thermal runaway and fire mitigating materials. The cell case structure may also or alternatively comprise one or multiple thermal runaway mitigating material containing components, fire mitigating material containing components, or both thermal runaway and fire mitigating material containing components, arranged in one or multiple locations attached to, affixed to, or incorporated into anywhere above, below, adjacent, outside, inside, or within the case structure. Additionally, the cell case structure may also comprise one or multiple components which do not contain thermal runaway mitigating nor fire mitigating materials arranged in one or multiple locations attached to, affixed to, or incorporated into anywhere above, below, adjacent, outside, inside, or within the case structure.
Mechanically triggered, thermally triggered, or both mechanically and thermally triggered cell cases and cell case components may be made up of one or multiple geometries, orientations, surface features, and materials.
The thermal runaway mitigating or fire mitigating material or additive contained in such a case structure or case structure component may include any and all functional solids, liquids, gases, solutions, suspensions, emulsions, foams, gels, plasmas, or combinations of, which serve to mitigate heat generation or accrued temperature or prevent, retard, or extinguish a fire in response to mechanically or thermally abusive event, or reduce the flammability of battery components such as electrolyte.
Mechanically triggered, thermally triggered, or both mechanically and thermally triggered cell cases and cell case components may exhibit one or multiple geometries, orientations, surface features, and materials. Schematics depicting several examples of those constructions and features are shown in
We tested the impact response of surface feature modified and locally anisotropic/heterogeneous material modified battery cell components, using groove modified and silica glass modified stainless steel bottom shell components, as shown in
Impact tests were performed on battery cells made of reference shell components, surface feature modified shell components, and dissimilar material modified shell components. A 7 kg cylindrical steel hammer was dropped from a distance of 15 cm onto a ¼″ diameter brass ball indenter which had been suspended 5 mm above the center of the component structures. The shell components were affixed to a ½″ thick circular polyurethane base using masking tape prior to impact.
An image of the shell components after impact is shown in
The mechanically triggered, thermally triggered, or both mechanically and thermally triggered cell case and cell case component structure geometries may be small, big, narrow, wide, shallow, or tall, with respect to the characteristic length of the cell. They may be formed with a variety of cross-sectional geometries including but not limited to straight lines, curves, nodes or dots, triangles, circles, ovals, polygons, ellipses, squares, rectangles, trapezoids, polygons, crescents, crescents, stars, concave shapes, convex shapes, irregular shapes, or any combination of them; and may be formed with a variety of three-dimensional geometries including but not limited to cylinders, cones, spheres, boxes, shells, convex-shapes, concave-shapes, multilayered structures, sectioned structures, telescoping structures, springs, coils, trusses, etc., or any combination of them. They may have hollow, depressed, or voided areas and may be filled with additives, additional materials, or additional components. Several examples are depicted in
The mechanically triggered, thermally triggered, or both mechanically and thermally triggered cell case and cell case component structures may be oriented in any direction across, through, around, within, parallel to, perpendicular to, diagonal to, next to, away from, above, or below one or multiple defining, discrete, or abstract features of the electrode stack or another cell case component. Several examples are depicted in
The mechanically triggered, thermally triggered, or both mechanically and thermally triggered cell case and cell case component structures may include one or multiple surface features including but not limited to bumps, notches, grooves, cracks, folds, ridges, valleys, kinks, folds, etc., or any combination of them. Such features may form patterns which may be straight, curved, short, long, narrow, wide, shallow, or tall (compared to the characteristic length of the component) and may be connected, intersected, or separate. The spacing among the features may be uniform or non-uniform and their distribution may be homogeneous or heterogeneous as well as isotropic or anisotropic. Several examples are depicted in
The mechanically triggered, thermally triggered, or both mechanically and thermally triggered cell case and cell case component structures may be constructed from a variety of materials including metals, ceramics, polymers, composites, alloys, elastomers, glasses, carbons, or a combination of them. The materials may be uniform or non-uniform and their distribution may be homogeneous or heterogeneous as well as isotropic or anisotropic. Several examples are depicted in
In one embodiment, we employ mechanically triggered, thermally triggered, or both mechanically and thermally triggered containers, components, and elements supporting thermal runaway mitigating materials, fire mitigating materials, or both thermal runaway and fire mitigating materials internal to the cell case. They may be in one or multiple locations above, below, next to, affixed to, adjacent to, incorporated into or within the electrode stack, including cathode, anode, charge collectors, separator, electrolyte, as well as other components in the battery cell. Schematics depicting several examples are shown in
The mechanically triggered additive supporting aluminum pouch component was made using a standard direct scanning calorimetry 50 μL capacity sample pan and cover (provided by Perkin Elmer part #02190041). The pan was filled with white dye (i.e. correction fluid) and sealed with the cover using a standard sample pan crimping press (provided by Perkin Elmer part #02190048). An image was shown in
An image of the modified battery cell after impact is shown in
The mechanically triggered, thermally triggered, or both mechanically and thermally triggered containers, components, and elements supporting thermal runaway mitigating materials, fire mitigating materials, or both thermal runaway and fire mitigating materials internal to the cell case may be incorporated into the design of electrode stack structures, components, and elements (including cathode, anode, charge collectors, and separators which may also be mechanically or thermally responsive) to deliver thermal runaway mitigating, fire mitigating, or both thermal runaway and fire mitigating materials retained within the battery cell. One or multiple additive supporting containers, components, and elements may be arranged in one or multiple locations above, below, next to, affixed to, adjacent to, incorporated into or within the electrode stack (including cathode, anode, charge collectors, separator, and electrolyte).
Mechanically triggered, thermally triggered, or both mechanically and thermally triggered containers, components, and elements supporting thermal runaway mitigating materials, fire mitigating materials, or both thermal runaway and fire mitigating materials internal to the cell may be made up of one or multiple of geometries, orientations, surface features, and materials.
The mechanically triggered, thermally triggered, or both mechanically and thermally triggered containers, components, and elements supporting thermal runaway mitigating materials, fire mitigating materials, or both thermal runaway and fire mitigating materials internal to the cell case may incorporate or be made up of one or multiple preexisting elements of the electrode stack structure (including cathode, anode, charge collectors, separator, and electrolyte). The containers, components, and elements internal to the cell may also be independent of the preexisting elements of the electrode stack structure and simply be included or located within its environment. Such a container, component, or element internal to the cell may be formed using none of, part of, or the entirety of one or multiple electrode stack elements. A single electrode stack element may also be used to form part of or the entirety of one or multiple mechanically triggered, thermally triggered, or both mechanically and thermally triggered containers, components, and elements internal to the cell. Several examples are depicted in
The thermal runaway mitigating or fire mitigating material or additive contained in such a container, component, or element may include any and all functional solids, liquids, gases, solutions, suspensions, emulsions, foams, gels, plasmas, or any combinations of them, which serve to mitigate heat generation or accrued temperature or prevent, retard, reduce, or extinguish a fire in response to mechanically or thermally abusive event, or reduce the flammability of electrolyte or other battery components.
In one embodiment, mechanically triggered, thermally triggered, or both mechanically and thermally triggered containers, components, and elements internal to the cell case may exhibit one or multiple geometries, orientations, surface features, and materials. Schematics depicting several examples are shown in
The mechanically triggered, thermally triggered, or both mechanically and thermally triggered containers, components, and elements internal to the cell case geometries may be small, big, narrow, wide, shallow, or tall, with respect to the characteristic length of the cell. They may be formed with a variety of cross-sectional geometries including but not limited to straight lines, curves, nodes or dots, triangles, circles, ovals, polygons, ellipses, squares, rectangles, trapezoids, polygons, crescents, crescents, stars, concave shapes, convex shapes, irregular shapes, or any combination of them, and may be formed with a variety of three-dimensional geometries including but not limited to cylinders, cones, spheres, boxes, shells, convex-shapes, concave-shapes, multilayered structures, sectioned structures, telescoping structures, springs, coils, trusses, etc., or any combination of them. They may have hollow, depressed, or voided areas and may be filled with additives, additional materials, or additional components. Several examples are depicted in
The mechanically triggered, thermally triggered, or both mechanically and thermally triggered containers, components, and elements internal to the cell case may be oriented in any direction across, through, around, within, parallel to, perpendicular to, diagonal to, adjacent to, next to, away from, above, or below one or multiple defining, discrete, or abstract features of the electrode stack or another cell case component. Several examples are depicted in
The mechanically triggered, thermally triggered, or both mechanically and thermally triggered containers, components, and elements internal to the cell case may include one or multiple surface features including but not limited to bumps, notches, grooves, cracks, folds, ridges, valleys, etc., or any combination of them. Such features may form patterns which may be straight, curved, short, long, narrow, wide, shallow, or tall, compared to the characteristic length of the component, and may be connected, intersected, or separate. The spacing among the features may be uniform or non-uniform and their distribution may be homogeneous or heterogeneous as well as isotropic or anisotropic. Several examples are depicted in
The mechanically triggered, thermally triggered, or both mechanically and thermally triggered containers, components, and elements internal to the cell case may be constructed from a variety of materials including metals, ceramics, polymers, composites, elastomers, alloys, glasses, carbons, or any combination of them. The materials may be uniform or non-uniform and their distribution may be homogeneous or heterogeneous as well as isotropic or anisotropic. Several examples are depicted in
In one embodiment, we employ mechanically triggered, signal triggered, or both mechanically and signal triggered devices and components to deliver thermal runaway mitigating materials, fire mitigating materials, or both thermal runaway and fire mitigating materials or additives into the battery cell from the cell case or from outside the cell case. The setup shown in
Nail tests were performed on both reference devices and additive delivering devices. The cell component of the device was affixed to a ½″ thick circular polyurethane base using masking tape and set against one jaw of a standard drill-press vise (provided by McMaster-Carr, product #52855A21). The ⅛″ diameter steel nail was loaded into the vise with the tip pressed against the center of the cell component and the head pressed against the opposite jaw of vise. Simultaneously, the nail was drilled into the cell using the vise and the additive was triggered to be injected into the cell, as shown in
The temperature response testing results are shown in
The triggering signals could be from sensors, detectors, or relays, etc., which respond to temperature, motion, deformation, stress, strain, displacement, acceleration, deflection, distance, wave, force, pressure, loadings, voltage, current, sound, or magnetic fields, etc.; or from the loadings or heat associated with the mechanical or thermal abuse without any sensor or detector; or from any combination of them. The additive motion could be promoted by pumps, pre-stressed containers, syringes, springs, pistons, deformable membranes or containers, levers, gears or gear systems, weights, energy absorption materials and devices, blocks, plates, sliding materials and devices, thermally activated materials or devices, mechanically activated materials or devices, etc., or any combination of them.
The additives and additive delivering materials or devices may be incorporated into or external to the cell case. The additives and additive delivering materials or devices may comprise any mechanically responsive entity which serves to deliver thermal runaway mitigating or fire mitigating material into the battery cell (including electrode stack, cell case or cell case components). Such a mechanically responsive entity may include but not be limited to a spring, syringe, piston, plunger, auger, pump, valve, actuator, vacuum, compressor, etc. The mechanically responsive entity may be triggered to deliver the material into the cell upon response to a physical event or may be triggered by a signaling element. The signaling element may be sensor, a controller, a microprocessor, a computer, or any combination or none of them. Examples of such sensors and computers may include but not be limited to temperature sensors, pressure sensors, motion sensors, fluid level sensors, light sensors, electrical current sensors, voltage sensors, battery management computers, thermal management computers, process control computers, etc. The sensors and computers may be coupled to the material delivering device, battery cells, or an outside system. Several examples are given in
The thermal runaway mitigating or fire mitigating material or additive delivered into the cell by the mechanically or signal triggered device may include any and all functional solids, liquids, gases, solutions, suspensions, emulsions, foams, gels, plasmas, or combinations of, which serve to mitigate heat generation or accrued temperature or prevent, retard, reduce or extinguish a fire in response to mechanically or thermally abusive event, or reduce the flammability of electrolyte or other battery components.
In one embodiment, we employ mechanically triggered pipes, ducts, tubes, containers, reservoirs, and channels hosting thermal runaway mitigating materials, fire mitigating materials, or both thermal runaway and fire mitigating materials. They may be inside, outside, incorporated into, or connected to one or multiple cell case or cell case component structures and involve one or more battery cells. They may also incorporate one or multiple outside piping, duct, tube, or channel systems with or without an additional additive source, reservoir, container, bottle, or vessel. The outside systems may be coupled to signaling elements, controllers, or both signaling elements and controllers. Schematics depicting several examples are shown in
We tested the impact response of a surface feature modified, additive containing, mechanically triggered pipe inside a modified battery cell, as shown in
The modified battery cell was made by placing the surface feature modified, additive containing pipe in the center of a 304 stainless steel CR2032 cell case with seal O-ring (provided by AA Portable Power Corp, part #2032OR1). An electrode stack was harvested from a commercially available LIR2450 cell (3.6 V, 120 mAh, 0.43 Wh) (provided by AA Portable Power Corp, part #LIR2450) and the individual electrodes were separated. Pieces of both electrodes were cut into crescent shapes sized to fill the area in the CR2032 cell case on either side of the pipe using a razor. A trilayer polypropylene-polyethylene membrane (PP/PE/PP) (provided by Celgard) was also cut into crescent shapes of the same size. Five layers of cathode, anode, and separator were placed on both sides of the pipe and 100 μL of electrolyte (1M LiPF6 in 1:1 EC-EMC) (provided by BASF) was added. The battery cell was then sealed with polyimide tape, completing construction of the modified battery cell. Impact test was performed on the modified battery cell; the procedure was similar with that of Example 11.
An image of the modified battery cell after impact is shown in
Mechanically triggered pipes, ducts, tubes, and channels may be incorporated into the design of cell structures (which may also be mechanically triggered, thermally triggered, or mechanically and thermally triggered), cell component structures (which may also be mechanically triggered, thermally triggered, or mechanically and thermally triggered), and electrode stack structures (including cathode, anode, charge collectors, and separators) to deliver thermal runaway mitigating, fire mitigating, or both thermal runaway and fire mitigating materials from outside the battery cell. They can be a part of, incorporated in, next to, or embedded in battery cooling systems, battery cell cases, battery module or pack walls, battery support systems, or any combination of them. One or multiple additive hosting pipes, ducts, tubes, or channels may be arranged in one or multiple locations attached to, affixed to, or incorporated into anywhere above, below, adjacent, outside, or within the case structure, cell component structures, electrode stack structures, or combination thereof. Mechanically triggered pipes, ducts, tubes, and channels may be made up of one or multiple geometries, orientations, surface features, and materials. The mechanically triggered pipes, ducts, tubes, and channels may incorporate more than one cell and may incorporate one or more additive containing sources, reservoirs, or vessels. They may be pressurized or depressurized and may be connected to one or more pumps, valves, actuators, vacuums, or combinations thereof. Such elements may be a part of or make up a piping, duct, tube, or channel system. Such a system may be inside, outside, or incorporated into the cell design. Such systems may include but are not limited to thermal management systems (e.g. antifreeze lines), hydraulic systems (e.g. steering fluid lines, brake fluid lines), lubrication systems (e.g. motor oil lines, transmission lines), cleaning systems (e.g. window washer fluid lines), fire safety systems (e.g. sprinkler lines), exhaust systems, fuel systems, propellant systems, cryogenic systems, plumbing systems, process systems, pressure vessel systems, etc. These systems may be coupled to sensors or computers which may include but not be limited to temperature sensors, pressure sensors, motion sensors, fluid level sensors, light sensors, electrical current sensors, voltage sensors, battery management computers, thermal management computers, process control computers, etc. The sensors and computers may be further coupled to the pipes, ducts, tubes, channels, battery cells, or another outside system. Such a system may or may not be or have been specifically designed or intended to be mechanically responsive or deliver thermal runaway mitigating, fire mitigating, or both thermal runaway and fire mitigating materials into battery cells as its original or primary function. Several examples are depicted in
Segments of mechanically triggered pipes, ducts, tubes, or channels may be thermally responsive if that segment is incorporated into a thermally triggered or mechanically and thermally triggered cell case, cell case component, or internal element of the battery design if it helps to facilitate delivery of thermal runaway mitigating materials, fire mitigating materials, or both thermal runaway and fire mitigating materials by the mechanically triggered pipes, ducts, tubes, or channels into the battery cell.
The thermal runaway mitigating or fire mitigating material or additive hosted by such pipes, ducts, tubes, and channels may include any and all functional solids, liquids, gases, solutions, suspensions, emulsions, foams, gels, plasmas, or combinations of, which serve to mitigate heat generation or accrued temperature or prevent, retard, or extinguish a fire in response to mechanically or thermally abusive event.
Mechanically triggered pipes, ducts, tubes, and channels may exhibit one or multiple geometries, orientations, surface features, and materials. Schematics depicting several examples are shown in
The images in
The mechanically triggered pipe, duct, tube, or channel geometries may be small, big, narrow, wide, shallow, or tall (with respect to one or more characteristic cross sections). They may be formed with a variety cross-sectional geometries including but not limited to straight lines, curves, nodes or dots, triangles, circles, ovals, polygons, ellipses, squares, rectangles, trapezoids, polygons, crescents, crescents, stars, concave shapes, convex shapes, irregular shapes, or any combination of them. They may have more than one or changing geometry across their length which may be periodic, multifaceted, bulged, constricted, sectioned, telescoping, etc. They may be straight, bent, curved, coiled, self-connected, interconnected, unconnected, etc. They may be filled with additives but may also contain hollow or voided sections or be devoid of additives. Several examples are depicted in
The mechanically responsive pipes, ducts, tubes, or channels may be oriented in any direction across, through, around, within, parallel to, perpendicular to, diagonal to, next to, away from, above, or below one or multiple defining, discrete, or abstract features of the electrode stack, a cell case component, or another pipe, duct, tube, or channel. Several examples are depicted in
The mechanically responsive pipes, ducts, tubes, or channels may include one or multiple surface features including but not limited to bumps, notches, grooves, cracks, folds, ridges, valleys, etc. Such features may form patterns which can be straight, curved, short, long, narrow, wide, shallow, or tall (compared to one or more characteristic cross sections or lengths) and may be connected, intersected, or separate. The spacing among the features may be uniform or non-uniform and their distribution may be homogeneous or heterogeneous as well as isotropic or anisotropic. Several examples are depicted in
The mechanically responsive pipes, ducts, tubes, or channels may be constructed from a variety of materials including metals, ceramics, polymers, composites, or a combination them. The materials may be uniform or non-uniform and their distribution may be homogeneous or heterogeneous as well as isotropic or anisotropic. Several examples are depicted in
The examples of functional solids, liquids, gases, solutions, suspensions, emulsions, foams, gels, plasmas, or combinations of, which serve to mitigate heat generation or accrued temperature, or to prevent, reduce, retard, or extinguish a fire in response to mechanically or thermally abusive event may include but not be limited to: ionic salt compounds (i.e. simple, complex, anhydrous, monohydrate, polyhydrate, acidic, basic, dielectric, magnetic, electrically conducting, electrically insulating, thermally conducting, thermally insulating, hydrophilic, hydrophobic, monovalent, multivalent, neutral, electroplating, electrophoretic, etc.) including but not limited to any and all metal, ammonium, and hydrogen fluorides (e.g. LiF), chlorides (e.g. MgCl2), bromides (e.g. CuBr2), iodides (e.g. VnI3), hydrides (e.g. AlH3), oxides (e.g. FeO), sulfides (e.g. BaS), nitrides (e.g. ZrN), arsenates (e.g. Co3(AsO4)2), arsenites, phosphates (e.g. K3PO4), phosphites, sulfates (e.g. MnSO4), sulfites, thiosulfates, carbonates (e.g. Na2CO3), nitrates (e.g. Zn(NO3)2), nitrites, perchlorates (e.g. KClO4), chlorates, chlorites, hypochlorites, perbromates, bromates (e.g. Ni(BrO3)2), bromites, hypobromites, periodates, iodates (e.g. Ca(IO3)2), iodites, hypoiodites, manganates (e.g. BaMnO4), permanganates, chromates (e.g. PbCrO4), dichromates, acetates (e.g. Ce(CH3CO2)3), formates (e.g. NH4CO2H), cyanides (e.g. AgCN), cyanates, thiocyanates, amides (e.g. NaNH2), oxalates (e.g. CaC2O4), peroxides (e.g. SrO2), hydroxides (e.g. Au(OH)3), alkoxides, etc.; vinylene carbonate, vinyl ethylene carbonate, allyl ethyl carbonate, vinyl acetate, divinyl adipate, acrylic acid nitrile, 2-vinyl pyridine, maleic anhydride, succinimide, methyl cinnamate, phosphonates, vinyl containing silane-based compounds, halogenated ethylene carbonates, halogenated lactones, etc.; dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, ethylene carbonate, propylene carbonate, any and all other dialkyl, cyclic, and substituted carbonates, etc.; 6-thiolnicotinamide, ethylenediaminetriacetic acid acetamide, N,N,N′-trimethylethylenediamine, ethylenediaminetetraacetic acid, etc.; sodium lauryl sulfate, sodium dodecylbenzenesulfonate, oleic acid, Span™ series, Atlas™ G series, Tween™ series, Solulan™ series, Splulan™ series, Brij™ series, Arlacel™ series, Emcol™ series, Aldo™ series, Atmul™ series surfactants, non-ionic surfactants, anionic surfactants, cationic surfactants, amphoteric surfactants, etc.; sodium bicarbonate, potassium bicarbonate, aluminum hydroxide, magnesium hydroxide, huntite, hydromagnesite, red phosphorous, borates, organofluorines, organochlorines, organobromines, organoiodides, fluorinated paraffins, chlorinated paraffins, brominated paraffins, iodated paraffins, polymeric fluorinated compounds, polymeric chlorinated compounds, polymeric brominated compounds, polymeric iodated compounds, Freon™ series compounds, Novec™ series compounds, antimony trioxide, organophosphorus componds, triphenyl phosphate, diphenyl phosphate, tricresyl phosphate, trimethyl phosphate, trimethyl phosphite, tris(2,3-dibromopropyl) phosphates, any and all other organic and/or halogenated phosphorus containing compounds (i.e. phosphates, phosphites, phosphinates, etc.), non-flammable gases, nitrogen, carbon dioxide, noble gases, helium, argon, krypton, xenon, chloroform, carbon tetrachloride, water, Aqueous Film Forming Foams, Alcohol-Resistant Aqueous Film Forming Foams, Film Forming Fluoroproteins, Compressed Air Form Systems, class A, class B, class C, class, D, class E, and class F fire extinguisher components, etc.; trimethylamine, triethylamine, N,N-diethylmethylamine, N,N-dimethylethylamine, N,N-diethylaniline, N,N-diethyl-p- phenylenediamine, 2-(2-methylaminoethyl)pyridine, 5-amino-1,3,3-trimethylcyclohexanemethylamine, (1R,2R,)-(+)-1,2-diphenylethylenediamine, N,N′- diphenylethylenediamine, tryptamine, 2-benzylimidazoline, 1,2,3,4-tetrahydro-9H-pyrido[3,4-b]indole, 4,4′diaminodiphenylmethane, 1-(N-box-aminomethyl)-3-(aminemethyl)benzene, pyridine, any and all other tertiary amines; lightly cross-linked polymers such as epoxy, polyester, poly(vinyl ester), polyurethane, bakelite, polyimide, urea methanal, melamine, such co-polymers, etc.; mineral oils, silicones, 1,1-methanediol, 1,2-ethanediol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,2-propanediol, 1,2-butanediol, 1,2-pentanediol, 1,2-hexanediol, 1,2-heptanediol, 1,2-octanediol, any and all other glycols, diols, triols, and other polyols, dissolved sugar and salt solutions (e.g. molasses or cane syrup), 2,4,7,9-tetramethyl-5-decyne-4,7-diol, polyethylene glycol hexadecyl ether, polyoxyethylene nonylphynyl ether, sorbitan laurate, polyethylene glycol sorbitan monolaurate, etc.; poly(sodium acrylate), poly acrylic acid-sodium styrene sulfonate, poly(acrylic acid), 2-acrylamido-2methylpropane sulfonic acid, 2-acrylamido-2-methylpropane sulfonic acid poly(ethylene glycol) copolymer, poly(potassium,3sulfopropyl acrylate-acrylic acid) gels, poly(AMPS-TEA-co-AAm), poly(ethylene glycol methyl ether methacrylate-acrylic acid) copolymers, methacrylamidopropyltrimethyl ammonium chloride, bovine serum albumin, casein, lactoferrin, polycations containing aromatics or having a charged backbone such as poly(-vinylpyridine), x,y-ionene, poly(N,N-diallyl-N,N-dimethyl-ammonium chloride); polycations with quaternary ammonium side chains such as poly(trimethylammonio ethylmethacrylate) and its copolymers; polycations without steric stabilizer such as modified polyaspartamide, poly(amidoamine)s with different side groups, poly(N-isopropylacryl amide) and derivatives, poly(dimethylaminoethyl-L-glutamine) and copolymers, poly(methyl methacrylate) and methacrylamide derivatives, poly[2 (dimethylamino)ethyl methacrylamide] and derivatives, polycations with steric stabilizer such as poly(L-lysine) and derivatives, amino acid-based polymers; amphiphilic polycations such as poly(N-ethyl-4-vinylpyridinium bromide) and copolymers, poly(4-vinylpyridine) copolymers; polyamphoters such as modified poly(1,2-propylene H-phosphonate), silica gels, aerogels, etc.; hydroxyl peroxide with potassium iodine or manganese dioxide as catalysts, etc.; polyurethane foaming agents; extinguishing agents in fire extinguishing processes such as ammonium sulfate with sodium bicarbonate solution; solvents having boiling points ranging from 60-250° C. such as acetone, methanol, ethanol, acetonitrile, benzene, carbon tetrachloride, cyclohexane, ethyl acetate, isopropyl alcohol, tert-butyl alcohol and triethylamine etc.; ionic solids such as sodium bicarbonate and potassium bicarbonate; permanganate salts such as silver permanganate, ammonium permanganate, nickel permanganate and copper permangantes; ammonium salts such as ammonium nitrate, ammonium chromates, ammonium citrate, ammonium carbonate and ammonium bicarbonate; coordination compounds such as diaquaamminecobalt chloride, diaquaamminecobalt bromide, cobalt ammines chloride, cobalt ammines nitrate, chromium ammines thiocyanate and nickel ammines chloride; perchlorates such as nitroniumlnitrosonium perchlorates; oxalates such as silver oxalate; azides such as sodium azide, potassium azide, lithium azide and ammonium azide; organic compounds such as azodicarbonamide, azobisisobutyronitrile, n,n′-dinitrosopentamethylenetetramine, 4,4′-oxydibenzenesulfonyl hydrazide, p-toluenesulfonyl hydrazide; hydrated salts such as ammonium copper sulfate hexahydate, nickel sulfate hexahydrate, calcium sulfate hemihydrate, lithium sulfate monohydrate, sodium carbonate monohydrate, borax, nickel oxalate dehydrate, sodium carbonate perhydrate, alkali (Na, K, Rb, NH4) oxalate perhydrate, calcium sulfite, etc.; hydrogen halides, acetic acid, boric acid, carbonic acid, citric acid, nitric acid, oxalic acid, phosphoric acid, sulfuric acid, iron chloride, ferric chloride, stannic chloride, boron trifluoride, malonic acid, barbituric acid, malic acid, maleic acid, etc.; hydroxides (e.g. NaOH), methoxides (e.g. NaOCH3), ethoxides (e.g. NaOC2H5), any and all other alkoxides, carbonates (e.g. Na2CO3), ammonia, sodium amide, sodium bis(trimethylsilyl amide), pyridine, methyl amine, imidazole, benzimidazole, histidine, phophazene bases, triethylamine, N,N-diisopropylethylamine, 1,8-diazabicycloundec-7-ene, 2-tert-butyl-1,1,3,3-tetramethylguanidine, potassium tert-butoxide, lithium diisopropyl amide, etc.; polymerizable monomers, polymerizable oligomers, short chained polymers, long chained polymers, alternating copolymers, periodic copolymers, statistical copolymers, block copolymers, graft copolymers, etc.; protic polar liquids, solvents, solutions, suspensions, emulsions, gels, plasmas, and salts (i.e. any and all compounds containing one or more functional groups with labile hydrogen protons (—OH, —SH, —NHR, —NH2) such as alcohols, carboxylic acids, thiols, thio acids, amines, acid amides, diacid amides, etc.) including but not limited to water; methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methylpropan-2-ol, any and all other primary, secondary, and tertiary alcohols with and without additional substituents; methanoic acid, ethanoic acid, propanoic acid, butanoic acid, 2-methylpropanoic acid, any and all other linear and branched carboxylic acids with and without additional substituents; methanethiol, ethanethiol, 1-propanethiol, 2-propanethiol, 1-butanethiol, 2-butanethiol, 2-methylpropan-2-thiol, any and all other primary, secondary, and tertiary thiols with and without additional substituents; thioacetic acid, any and all other —S— and —O— thio acids with and without additional substituents; ammonia, methylamine, ethylamine, dimethylamine, diethylamine, N-ethylmethylamine, any and all other primary and secondary amines with and without additional substituents; any and all linear and branched acid amides with and without additional substituents; any and all linear and branched diacid amides with and without additional substituents; any and all diols, dicarboxylic acids, dithiols, diamines, thioalchols, aminoalcohols, aminothiols, hydroxycarboxylic acids, hydroxythio acids, hydroxyamides, and triols, of any size with and without any additional substituents, etc.; aprotic polar liquids, solvents, solutions, suspensions, emulsions, gels, plasmas, and salts (i.e. any and all compounds which have one or more net polarizing dipole moments but do not contain a functional group with a labile hydrogen proton) including but not limited to methyl methanoate, methyl ethanoate, methyl proponoate, ethyl methanoate, propyl methanoate, ethyl ethanote, any and all other dialkyl esters with and without additional substituents; methanol, ethanal, propanal, 2-propanone, butanal, 2-butanone, pentanal, 2-pentanone, 3-pentanone, any and all other aldehydes and ketones with and without additional substituents; dimethyl formamide, any and all other disubstituted amides with and without additional substituents; dimethyl sulfoxide, any and all other disubstituted sulfoxides with and without additional substituents; methyl bromide, methyl iodide, ethyl bromide, ethyl iodide, propyl bromide, propyl iodide, any and all other alkyl halides with and without additional substituents; methyl cyanide, ethyl cyanide, any and all other cyanides with and without additional substituents; tetrahydrofuan, 1,4-dioxane, N-methyl-2-pyrrolidone, any and all other furans, dioxanes, and pyrroles with and without additional substituents; trimethyl phosphate, trimethyl phosphite, etc.; nonpolar liquids, solvents, solutions, suspensions, emulsions, gels, plasmas, and salts (i.e. any and all compounds which do not have net polarizing dipole moments) including but not limited to pentane, hexane, heptane, octane, nonane, decane, undecane, dodecane, tridecance, tetradecane, pentadecane, hexadecane, heptadecane, octadecane, nonadecane, isocane, any and all other alkanes and paraffins, small, large, branched, linear, with or without additional substituents, etc.; symmetric ethers, silicones, hydrides, etc.; other solid electrolyte promoting and forming materials, electrolyte diluting materials, ion scavenging materials, surfactant materials, flame extinguishing and flame retardant materials, ion solvation disrupting materials (i.e. any material containing one or more functional groups with basic electron lone pairs (N:, :0:, :S:, vinyl groups, etc.) which may interact with the solvation structure of the working ions), viscous and thickening or thinning materials, electrolyte absorbent and superabsorbent materials, gas generating materials (i.e. one or multiple compounds which produce gas associated with thermal, catalytic, chemical, or electrochemical decomposition, reaction, phase change or a multiplicity said phenomena), acidic materials, basic materials, water, aqueous solutions or suspensions of inorganic or organic materials, and any combinations of the aforementioned examples that may be used alone or be combined with each other or other compounds not mentioned here. We reiterate and stress that the aforementioned examples of functional solids, liquids, gases, solutions, suspensions, emulsions, foams, gels, plasmas, or combinations of, should not be considered as limiting. It is expected that a wide variety of compounds, compound combinations, and materials may serve to mitigate heat generation or accrued temperature or prevent, reduce, retard, or extinguish a fire upon triggered response to a mechanically or thermally abusive event by a cell case or cell case component structured with thermal runaway mitigating or fire mitigating materials; container, component, or element internal to the cell case supporting thermal runaway mitigating or fire mitigating materials; devices or components delivering thermal runaway mitigating or fire mitigating materials into the battery cell from outside the cell case; or pipes, ducts, tubes, and channels hosting thermal runaway mitigating or fire mitigating materials.
This application claims priority to U.S. Application No. 62/109,695, filed Jan. 30, 2015, the disclosure of which is incorporated herein by reference. The present document relates to electrical batteries.
This invention was made in the course of research partially supported by grants from the U.S. Department of Energy (DOE) (Grant No. DE-AR0000396). The government has certain rights in this invention.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US16/15736 | 1/29/2016 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62109695 | Jan 2015 | US |