The invention relates to a thermally responsive device for activating a pressure relief device. More particularly, the invention is directed to a heat pipe capable of activating a pressure relief device by heat transfer through one of a capillary action and a fuse.
Presently there are a variety of pressure vessels developed for use in various applications, such as those designed to contain gases for use in fuel cells. Fuel cells have been proposed as a clean, efficient and environmentally responsible power source for electric vehicles and various other applications. One example of a fuel cell is a Proton Exchange Membrane (PEM) fuel cell. In PEM type fuel cells, hydrogen is supplied as a fuel to an anode of the fuel cell and oxygen is supplied as an oxidant to a cathode. Hydrogen is colorless, odorless, burns without producing a visible flame or radiant heat, and is difficult to contain. A common technique for storing hydrogen is in a lightweight, high pressure vessel resistant to punctures.
Traditionally such vessels are divided into four types. A Type I vessel is a metal vessel. A Type II vessel is also a metal vessel, the vessel having an outer composite shell disposed on a cylindrical section thereof. A Type III vessel consists of a liner produced from a metal such as steel and aluminum, for example, and an outer composite shell that encompasses the liner and militates against damage thereto. A Type IV vessel is substantially similar to the Type III vessel, wherein the liner is produced from a plastic. Furthermore, a conceptual Type V vessel may be developed, wherein the vessel is produced from a composite material. Each type of vessel may include a metal boss disposed therein to house a pressure relief device (PRD).
The PRD is in fluid communication with the interior of the vessel and, when actuated, vents the hydrogen in the vessel to decrease the internal pressure therein. A variety of PRD's are known, and can be actuated thermally, by pressure, or by a combination of both. In a fuel cell system, the internal pressure of the vessel rarely builds to beyond containable levels before the structural integrity of the lightweight vessel is compromised. Therefore, a fuel cell has traditionally been fitted with a thermal PRD such as the one disclosed in U.S. Pat. No. 6,006,774, hereby incorporated herein by reference in its entirety.
Typically, when the ambient air reaches a predetermined temperature, the PRD is actuated. However, where vessels are long, remote portions of the vessel insulated from the PRD can be exposed to localized heat sources without causing actuation of the PRD. Exposure to these localized heat sources can result in a rupture of the vessel. Therefore, to actuate the PRD regardless of exposure to the localized heat source, various pipes, conduits, venting lines, and fuses which actuate the PRD have been positioned along the vessel.
One such pipe is disclosed in U.S. Pat. No. 5,848,604. An elongate pressure vessel is disclosed having a single PRD located at one end. The PRD is thermally coupled to a heat pipe. The heat pipe, which extends generally parallel to an axis of the pressure vessel, conducts heat from the localized heat source at the remote location directly to the PRD. The outer casing of the pipe is made from a thermally conductive metal and is lined with a wicking material, which is capable of moving a fluid by capillary action. The inside of the pipe is filled with a vaporizable fluid. When heat is applied to the pipe, the fluid, which has permeated the wicking material, vaporizes and moves through the central core of the pipe, repeatedly condensing and vaporizing as it travels toward the PRD, until it transfers the heat to the PRD and causes the PRD to actuate.
A fuse is disclosed in U.S. Pat. No. 6,382,232. A heat responsive fuse cord is disclosed which is thermally coupled to a PRD. The PRD is in fluid communication with the pressurized contents of a vessel. When ignited, the fuse cord burns to a thermal coupler, transferring the heat to the thermal actuator of the PRD.
Alternatively, multiple PRDs may be positioned at a plurality of locations along a vessel. Each PRD communicates with the interior of the vessel via a common high pressure line extending from the boss.
Since such devices could be damaged or broken during an accident, and multiple PRDs are expensive, it would be desirable to produce a heat pipe wherein the cost thereof is minimized and the reliability thereof is maximized.
According to the present invention, a heat pipe wherein the cost thereof is minimized and the reliability thereof is maximized, has surprisingly been discovered.
In one embodiment, the heat pipe comprises a sealed casing having spaced apart ends; a porous wicking material disposed in the casing; a working fluid disposed in the casing permeating the wicking material, the working fluid adapted to transfer heat within the casing; and a fuse disposed in the casing for transporting heat within the casing upon damage to the casing causing leakage of the working fluid.
In another embodiment, the thermally responsive system comprises a pressure relief device; and a heat pipe thermally coupled to the pressure relief device, the heat pipe further comprising: a thermally conductive sealed casing having spaced apart ends; a porous wicking material disposed in the casing capable of moving a fluid by capillary action; a vaporizable working fluid disposed in the casing permeating the wicking material, the working fluid adapted to transfer heat within the casing; and a fuse disposed in the casing for transporting heat within the casing upon damage to the casing causing leakage of the working fluid, the fuse capable of being activated by at least one of oxygen and a localized heat source.
In another embodiment, the thermally responsive system for a fuel cell comprises a vessel for containing a pressurized fluid, the vessel having a first end and a second end; a pressure relief device disposed in the first end of the vessel for venting the vessel at a predetermined temperature; and a heat pipe thermally coupled to the pressure relief device extending generally parallel to the longitudinal axis of the vessel to a portion of the vessel spaced from the pressure relief device, the heat pipe adapted to transmit heat from the portion of the vessel to the pressure relief device, the heat pipe further comprising: a thermally conductive sealed casing having spaced apart ends; a porous wicking material disposed in the casing capable of moving a fluid by capillary action; a vaporizable working fluid disposed in the casing permeating the wicking material, the working fluid adapted to transfer heat within the casing; and a fuse disposed in the casing for transporting heat within the casing upon damage to the casing causing leakage of the working fluid, the fuse capable of being activated by at least one of oxygen and a localized heat source.
The above features of the invention will become readily apparent to those skilled in the art from reading the following detailed description of the invention when considered in the light of the accompanying drawings, in which:
The following detailed description and appended drawings describe and illustrate various exemplary embodiments of the invention. The description and drawings serve to enable one skilled in the art to make and use the invention, and are not intended to limit the scope of the invention in any manner.
The first end 12 of the vessel 10 is provided with a boss 20 for receiving a pressure relief device (PRD) 22. A single PRD 22 is disposed in the boss 20 such that the PRD 22 communicates with an interior of the vessel 10 to vent the vessel 10 when subjected to temperatures above a predetermined temperature. In the embodiment shown, the PRD 22 is a thermally responsive PRD. A heat pipe 24, thermally coupled to the PRD 22, extends from the PRD 22 and along an exterior of the vessel 10 in a direction generally parallel to a longitudinal axis of the vessel 10. The heat pipe 24 extends to a desired location along the vessel 10. It is understood that the heat pipe 24 can extend to the second end 14, if desired.
As illustrated in
However, if the heat pipe 24 is damaged, the working fluid 30 may leak from the heat pipe 24. Accordingly, the heat pipe 24 becomes inoperable. When the heat pipe 24 is damaged, the fuse 32 disposed in the heat pipe 24 can actuate the PRD 22. The fuse 32 may be activated by at least one of oxygen and a localized heat source. The heat generated is transferred by a progressive consumption of the fuse 32 through the interior of the heat pipe 24 to the end 38 of the heat pipe 24 thermally coupled to the PRD 22. When the heat generated reaches a predetermined temperature, the PRD 22 is caused to actuate, thereby venting the pressured contents of the vessel 10.
It is understood that the effectiveness of the heat pipe 24 is not limited to temperatures above the predetermined temperature being applied to the remote location 34 of the vessel 10. The heat pipe 24 operates to transfer heat from any location along the vessel 10 to the cooler location along the heat pipe 24. The PRD 22 and boss 20 are provided with substantial mass which will typically be the cooler location along the heat pipe 24 to which the heat will migrate.
From the foregoing description, one ordinarily skilled in the art can easily ascertain the essential characteristics of this invention and, without departing from the spirit and scope thereof, make various changes and modifications to the invention to adapt it to various usages and conditions.
Number | Name | Date | Kind |
---|---|---|---|
3576210 | Trent | Apr 1971 | A |
4003427 | Leinoff et al. | Jan 1977 | A |
4116266 | Sawata et al. | Sep 1978 | A |
4170262 | Marcus et al. | Oct 1979 | A |
5042520 | Reznik | Aug 1991 | A |
5076352 | Rosenfeld et al. | Dec 1991 | A |
5201336 | Taylor et al. | Apr 1993 | A |
5551470 | Duvall | Sep 1996 | A |
5848604 | Eihusen | Dec 1998 | A |
6006774 | Lhymn et al. | Dec 1999 | A |
6382232 | Portmann | May 2002 | B1 |
Number | Date | Country | |
---|---|---|---|
20090101314 A1 | Apr 2009 | US |