The present invention relates generally to weft knit textile fabric and methods of making the same on computerized flatbed knitting machines, and, more particularly, to a modified weft knit textile fabric that has jersey stitch on the front and back made at least in part with strands of bare rubber, joined together by a ribbed tuck stitch structure. It is believed the incorporation of the strands of bare rubber provide the fabric with a number of advantageous performance enhancing properties.
The development of specialized performance fabrics has transformed the textile industry. The particular properties possessed by performance fabrics are often critical to the market success of the products in which the fabrics are incorporated. For example, in athletic wear, it is highly desirable for a single fabric to be light weight, breathable, and even water resistant. Alternatively, in an upholstered furniture application, durability, tactile comfort and aesthetics may be of primary importance. For textile applications such as incorporation into outdoor furniture, desirable fabrics are often resistant to UV light/radiation, water, and antimicrobial growth properties, such as bacterial growth and mold growth inhibition properties, and also provide some stretch for comfort and rigidity for durability.
Achieving any particular combination of desirable characteristics in a single performance fabric is the focus of much research and development in the textile industry. The development of synthetic and natural yarns have provided the industry with the ability to achieve many new fabrics with combinations of properties desirable for the apparel, athletic, and furnishings industries. Although the selection of yarns, both synthetic and natural, is seemingly infinite, each new yarn often presents its own limitations, which can add to the difficulty of making the desired fabric when it comes to using the new yarn in the commercial knitting or weaving processes. For that reason, selecting the proper yarn or yarns and developing the proper weaving process or knitting methods to achieve the desired complex combination of properties in a single fabric continues to be challenging.
The present inventor has endeavored to develop specialized performance fabrics such as cushioned athletic mats, in which the inventor desires to incorporate non-skid surfaces to provide enhanced traction on each side of the fabric, combined with cushioning, moisture wicking and non-retention and further antimicrobial properties, all of which are preferred. The recent growth of the yoga market has created opportunities for the development of new products that address these concerns. In responding to these market needs, the inventor has invented a knit fabric having a modified knit structure including a front side and a back side. The knit fabric includes a first tuck stitch component, a second jersey stitch component and a third jersey stitch component; wherein the second jersey stitch component is located on the front side and includes at least one continuous strand of bare rubber and a plurality of continuous strands selected from the group consisting of continuous strands of bare rubber and continuous strands of non-elastic yarn, knit together into a jersey stitch pattern residing on the front side; and the third jersey stitch component is located on the back side and includes a plurality of continuous strands selected from the group consisting of continuous strands of bare rubber and continuous strands of non-elastic yarn, knit together into a jersey stitch pattern residing on the back side; wherein the first tuck stitch component includes a plurality of continuous strands selected from the group consisting of continuous strands of bare rubber and continuous strands of non-elastic yarn, knit together into a tuck stitch pattern that engages a plurality of continuous strands of the second jersey stitch component and a plurality of continuous strands of the third jersey stitch component so as to hold the second and third jersey stitch components together. In preferred embodiments the non-elastic yarn is polypropylene yarn, preferably spun polypropylene yarn. The strands of bare rubber are preferably strands of bare rubber that are at least partially coated either with a moisture absorbing powder such as Talcum powder or a silicone containing lubricating agent, either of which will reduce the degree to which the strands of bare rubber will catch on parts of the knitting machine used to make the present knit fabrics or parts of feeding devices used to feed the bare rubber from spools of such at least partially coated strands of bare rubber to the knitting machine. The preferred fabric is developed by utilizing the combination of strands of bare rubber and polypropylene yarn, knit on computerized flatbed knitting machines, utilizing feeding devices arranged to separately feed the non-elastic yarn for the preferred tuck stitches and the at least partially coated strands of bare rubber to the knitting machine from a plurality of cones on which the at least partially coated strands of bare rubber are wound. The strands of bare rubber are separately wound onto cones from which strands will be fed through the feeding devices and then into the preferred flatbed knitting machine. In preferred embodiments, the strands of bare rubber are coated with and agent including either a moisture absorbing powder selected from a group consisting of Talcum powder and starch powder such as cornstarch, zea mays powder and the like or a silicone containing lubricating agent selected from those silicone lubricating agents that are well known in the art. The preferred knitting machine will have at least two knitting beds, a front and a back bed. In one aspect, the present invention provides a knit fabric having a modified knit structure, comprising a first layer of jersey knit fabric knit on the front bed and a second layer of jersey knit fabric knit on the back bed, wherein the first and second layers of jersey knit fabric are joined to each other by a third layer of tuck stitches in a rib structure that utilizes both beds, and wherein strands of bare rubber are preferably used to form the first and second layers of jersey knit fabric and non-elastic yarn, preferably polypropylene yarn, is used to form the third layer of tuck stitches. In a second aspect, the present invention provides a knit fabric having a modified knit structure, comprising a first layer of jersey knit fabric knit on the front bed and a second layer of jersey knit fabric knit on the back bed, wherein the first and second layers of jersey knit fabric are joined to each other by a third layer of tuck stitches in a rib structure that utilizes both beds, and wherein polypropylene yarn is used to form the first and second layers of jersey knit fabric and bare rubber yarn is used to form the third layer of tuck stitches. In a third aspect, the invention provides a method for forming a modified knit structure fabric on a double bed flatbed knitting machine comprising a front needle bed and a back needle bed, wherein the fabric comprises polypropylene yarn and bare rubber yarn, and the fabric further comprises five or more properties selected from the group consisting of superior stretch recovery, superior moisture passage, superior breathability, superior antimicrobial qualities, superior resistance to degradation due to extended exposure to heat and sun and UV radiation, superior cushioning, and superior non-skid surface qualities. In a preferred embodiment, a method is provided for making a knit fabric of the present invention containing strands of bare rubber will comprise the steps of a) forming one or more rows of jersey knit stitch on both the front and back beds of the knitting machine, wherein the number of rows of jersey knit stitch formed is the same on both the front and back beds, b) forming one or more rows of tuck stitches in a rib structure connecting the rows of jersey knit stitches formed on the front and back beds, and c) repeating steps a and b until the knit fabric is of the desired size. In a fourth aspect, the invention provides a method for forming a modified knit structure fabric on a double bed flatbed knitting machine comprising a front needle bed and a back needle bed, wherein the fabric preferably includes polypropylene yarn and strands of bare rubber, and the fabric further includes one or more properties selected from the group consisting of superior stretch recovery, superior moisture passage, superior breathability, superior antimicrobial qualities, superior resistance to degradation due to extended exposure to heat and sunlight and UV radiation, superior cushioning, and superior non-skid surface qualities. In preferred embodiments, the method comprises the steps of i) forming a single row of tuck stitches in a rib structure across both beds, ii) forming a single row of jersey knit stitch on the front bed and a single row of jersey knit stitch on the back bed, iii) forming a single row of tuck stitches in a rib structure formed across both beds, iv) forming a single row of jersey knit stitch formed on the front bed and a single row of jersey knit stitch on the back bed, and v) repeating steps i) through iv) until the knit fabric is of the desired size; wherein the jersey stitch is formed at least in part with uncovered strands of bare rubber, preferably strands of uncovered bare rubber that are at least partially coated with a water absorbing powder, and the tuck stitch is made with a non-elastic yarn, preferably spun polypropylene yarn.
The non-elastic (low resilience) yarn of the present invention can be made of either or both synthetic or natural polymeric materials. Preferred yarns are preferably anti-microbial and/or mildew resistant, non-absorbent with respect to moisture, will take a dye or other colorant that does not fade rapidly when exposed to sunlight or UV light, have very low elasticity or resilience. As used herein, “non-elastic yarn” means yarn that has a very low resilience and does not readily stretch, even though it does have some give and does in fact stretch to a very small degree. The non-elastic yarn of the present invention can be any known or as yet unknown yarn that will not break when placed under a significant tension, which will preferably have a tensile strength of at least about 10 megapascals (MPa), more preferably about 20 megapascals (MPa), and most preferably about 30 megapascals (MPa). In preferred embodiments, the non-elastic yarn will be made of a synthetic thermoplastic material, preferably polypropylene. In the most preferred embodiments the non-elastic material will be spun polypropylene, which does not absorb water and is therefore largely anti-microbial and mildew resistant, it is easily dyed, it is not easily stretched, and in adds “sponge” to any fabrics in which it is incorporated, so that the fabric will provide more cushion.
The bare rubber is preferably a single strand of continuous bare rubber, but it will be appreciated that it could be multiple strands of bare rubber that are passed through a single feeder so that as many as two or three or even more strands of bare rubber are fed together into the knitting machine by a single feeder. As used herein, the word “continuous” means a long strand that is suitably windable on a cone for use in the present knitting process, but it does not means that the strand is without a beginning or an end. In preferred embodiments, the bare rubber is natural rubber obtained from Piedmont Stretch, Inc. (Winston Salem, N.C. 27103). Synthetic rubber can also be used in alternate embodiments, however, only so long as it is non-absorbent and provides a non-skid surface that is generally associated with natural rubber. The most preferred strands of bare rubber are extruded, 38 gauge uncovered natural bare rubber. The preferred strands of bare rubber are strands or ribbons that come in a sheet of separately scored ribbons from Piedmont Stretch, Inc. that are scored so that they can be separated into individual ribbons or strands and then wound up onto cones for use during the knitting process. The scored sheets of bare rubber are preferably coated with industrial grade Talcum powder that is coated on the outer surfaces of the scored sheets of bare rubber in an amount the is equal to a weight of from about 0.5 to about 4.0, preferably from about 1.0 to about 3.0, more preferably from about 1.5 to about 2.5, most preferably about 2 percent or less than the weight of the rubber, In preferred embodiments, the scored strands or ribbons are separated and wound onto a plurality of cones for use in the knitting process and the bare rubber strands or ribbons can be further coated with such powder during the process of separating the strands or ribbons of bare rubber from an elongated multi-strand ribbon. The powder, such as talcum powder or talc and the like, is used to minimize or at least reduce the amount of catch on the surface of the bare rubber to minimize elongation of such strands that can otherwise occur when surfaces of the strands of bare rubber catch on various surfaces of the knitting machine and the respective feeding devices used to feed the coated bare rubber strands to the knitting machine from cones of such wound, coated bare rubber. Such further processing preferably includes running the coated strand of bare rubber through a container containing such powder, although other methods of adding further powder the respective strands of bare rubber may also be used, prior to winding the strands of bare rubber onto such cones to further coat the strands of bare rubber to minimize the elongation that can occur during the knitting process In alternate embodiments, the bare rubber can be sprayed with well known silicone containing lubricating agents or such silicone agents can be otherwise applied to the strands of bare rubber to reduce such catch and the resulting elongation of the bare rubber which otherwise occur during the knitting process, however, this is not preferred as it is believed that silicon lubricating agents can have negative effects on commonly used knitting machines of the type that are envisioned as being helpful in the present knitting process. The preferred non-elastic yarn used for the tuck stitch is spun polypropylene yarn, preferably 200 denier polypropylene yarn purchased from Hickory Throwing (Hickory, N.C.).
In the drawings, in which corresponding reference numerals and letters indicate corresponding parts of the various embodiments of the present invention throughout the several views, and in which the various embodiments generally differ only in the manner set forth herein or otherwise described and/or shown:
Referring now to the drawings and to
Referring now also to
Referring now also to
Referring now to
As described herein, the present invention provides a modified knit structure fabric produced on flat bed knitting machinery. Depending upon the intended use of the fabric, the combination of performance properties that are desired may vary. In preferred embodiments, desired performance properties will include superior stretch recovery, moisture passage and non-absorption, breathability, enhance microbial growth resistance, heat resistance, superior cushioning, resistance to degradation due to exposure to sunlight and UV radiation and enhanced skid resistance on the surfaces of the fabric. As used herein, the phrase “stretch recovery” means the ability of a fiber or fabric to elongate and return to its original length or shape. As used herein, the phrase “moisture passage” means the channeling of moisture into or through the fabric and away from an object in contact with the surface of the fabric, and further releasing the moisture from the outside or exposed surface of the fabric into the atmosphere. Moisture passage is sometimes also referred to as “wicking.” As used herein, the term “breathability” means the rate at which water vapor passes through the fabric, in units of grams of water vapor per square meter of fabric per 24 hour period (g/m2/day). Generally, breathability can be measured at room temperature (22° C.) at one atmosphere of pressure. As used herein, the term “microbial growth resistance” means inhibiting or reducing the growth of microorganisms such as bacteria, fungi, or protozoans. As used herein, the phrase “skid resistance” means minimizing skidding or sliding upon the when there is surface to surface contact. As used herein, the term “yarn” refers to a continuous strand of textile fibers, filaments or material in a form suitable for knitting, weaving or otherwise intertwining to form a textile fabric. Yarn can occur in a variety of forms including but not limited to a spun yarn consisting of staple fibers usually bound together by twist; a multi-filament yarn consisting of many continuous filaments or strands; or a monofilament yarn which consists of a single strand. As used herein, the phrase “bed” or “needle bed” refers to a flat metal plate with slots at regular intervals in which the knitting needles slide on a knitting machine. As used herein, the phrase “half gauge” refers to the number of needles per particular unit in the knitting machine. Half gauge is half the number of needles in a given unit, as a half gauge knit fabric is knit on every other needle. As used herein, the phrase “weft knitting” refers to a method of knitting wherein one continuous thread runs crosswise in the fabric, forming all of the loops in one pass.
As used herein, the phrase “jersey knit” or “jersey knit stitch” refers to a plain knit stitch that requires only one bed for knitting. A jersey knit fabric has a knit face and a pearl back. In a tuck stitch, the needles in the upper knitting position do not knit, but an extra loop of yarn is laid over the needles. The extra loop is not intermeshed through the old loop but is tucked in behind it on the reverse side of the stitch. When these needles are returned to a knitting position, all the loops on the needle are knit in a single stitch, resulting in a textured fabric. As used herein, the phrase “rib structure” refers to a knitted fabric that utilizes a plain stitch that is knit on the front and back beds alternately in one pass as in a 1×1 Rib, or any combination of formations such as a 2×2 or 2×1 Rib. As used herein, the phrase “tubular knit” or “tubular knit structure” refers to a fabric that is knit on two separate beds of a knitting machine but is formed as a single tube without seams.
The present invention provides a modified knit structure fabric formed on a conventional two bed knitting machine, such as a flatbed knitting machine. The fabric has a first and a second layer of knit fabric and the knit fabric is preferably jersey knit. The two layers of knit fabric are further joined to each other by rows of tuck stitches wherein the tuck stitches form a third layer in between the knit fabric layers. In one embodiment, the fabric of the present invention is formed by a method comprising a) forming one or more rows of jersey knit stitch on both the front and back beds of the knitting machine, wherein the same number of rows of jersey knit stitch are formed on the front and back bed, b) forming one or more rows of tuck stitches across the front and back beds to connect the rows of jersey knit stitches formed on the front and back beds in step a), and repeating steps a) and b) until the knit fabric is of the desired size. For example, two rows of jersey knit stitch can be formed on the front bed, two rows of jersey knit stitch can be formed on the back bed, and then one or two rows of tuck stitches can be formed across the front and back beds to connect the jersey knit stitches formed on the front and back beds. In another embodiment, the fabric is formed by a method comprising i) forming a single row of tuck stitches across both beds, ii) forming a row of jersey knit stitch on the front bed and a row of jersey knit stitch on the back bed, iii) forming a single row of tuck stitches across both beds, iv) forming a row of jersey knit stitch on the front bed and a row of jersey knit stitch on the back bed, and v) repeating steps i) through iv) until the knit fabric is of the desired size. In one embodiment, the tuck stitches are formed across both the front and back beds of the knitting machine and can, for example, be formed by using every needle, alternating needles, or every third or fourth needle on the knitting machine. In one embodiment, the first and second layers of jersey knit fabric are formed as a half gauge tubular knit structure and are joined together by a third layer of tuck stitches formed on alternating needles as a 1×1 rib structure. In a preferred embodiment, the first layer and the second layer are formed with jersey knit stitches and are further joined together by a third layer of tuck stitches wherein the pearl backs of the first and second jersey knit layers are facing each other.
In one embodiment, the jersey knit can be made from a strand of elastomeric material, preferably a strand of bare rubber. In preferred embodiments, the tuck stitch is made from non-elastic yarn. In another embodiment, the tuck stitches can be made from an elastomeric yarn. In a further embodiment, the elastomeric yarn is a strand or a plurality of strands of bare rubber, and preferably bare natural rubber. Preferably, the rubber is extruded rubber. Bare natural rubber is typically derived from natural rubber latex. However, synthetic rubber is also suitable, especially in applications where latex allergy is of concern. In one embodiment, a strand of rubber is any gauge rubber of from about 10 to about 80 gauge, preferably from about 22 to about 66 gauge; more preferably from about 30 to about 50 gauge and most preferably about 38 gauge.
In further embodiments, the tuck stitches will be made from natural or synthetic non-elastic polymeric yarn, preferably synthetic yarn made from thermoplastic resins, preferably polypropylene, more preferably from spun polypropylene. In another embodiment, the jersey knit stitches can be made at least in part from polypropylene. Preferably, the polypropylene yarn is a continuous filament yarn. In one embodiment, the polypropylene yarn is any denier polypropylene yarn from about 100 to about 300 denier, more preferably from about 150 to about 250 denier, most preferably about 200 denier.
In a preferred embodiment, two different materials are used to form the modified knit structure fabric. Most preferably, one material is strands of bare rubber and the other material yarn is polypropylene yarn.
The fabric of the present invention can be used in a number of applications including yoga and exercise mats; upholstery applications such as free standing or built-in indoor and outdoor furniture; exercise apparel; medical applications such as wound dressings and athletic or garment support wraps; military applications such as combat utility uniforms (CUU) and temporary shelters; the aeronautic, recreational vehicle, and automotive industries including upholstery or interior fabrics such as roof, trunk or other linings; mats used for place settings in restaurants and cafeterias; camping and other outdoor recreational equipment; nursery or other primary grade schools where mats are utilized; footwear; attire such as gloves or socks; and mats such as those used in commercial kitchens, hospitals, spas, hotels or other areas where mats with the properties of the present invention are desired. Depending upon the overall thickness of the fabric desired the gauge or denier of one or more of the yarns can be increased or decreased accordingly. Furthermore, depending upon the application of the fabric, one skilled in the art can select the appropriate yarn to form the jersey knit and the appropriate yarn to form the tuck stitch. For example, in applications that a non-skid surface is desired, the jersey knit stitch can be made with rubber yarn and the tuck stitch can be made with a polypropylene yarn. Alternatively, in applications such as outdoor furniture, a softer exterior of the fabric may be desired and, therefore, the jersey knit stitch can be made from polypropylene yarn and the tuck stitch can be made from rubber yarn. A combination fabric comprising one or more components wherein the jersey knit stitch is made with rubber yarn and the tuck stitch is made with a polypropylene yarn is contiguous with one or more components wherein the jersey knit stitch is made from polypropylene yarn and the tuck stitch is made from rubber yarn, is also contemplated. The combination fabric can be continuously knit or knit as separate fabrics that are further joined together by one or more means well known in the art. The combination fabric can be made to provide a fabric with decorative and/or functional features including aesthetic designs or borders.
In certain applications, more or less stretch in the fabric may be desired. In one embodiment, the fabric of the present invention is a four way stretch fabric. Generally, the stretch in the fabric of the present invention is provided by the rubber yarn incorporated into the fabric. The amount of stretch of the finished fabric can be controlled by a number of variables. In one embodiment, the amount of stretch is controlled by the type of elastomeric yarn selected. In another embodiment, wherein the jersey knit stitch is formed by strands of bare rubber and the tuck stitch is formed by the polypropylene yarn, the spacing of the tuck stitch can be utilized to control the overall amount of stretch in the fabric. For example, if less overall stretch of the fabric is desired, the tuck stitch can be formed on every needle and will, therefore, provide tuck stitches that are relatively close together in the fabric and will result in less overall stretch of the fabric. Alternatively, when more stretch is desired, the tuck stitch can be formed on every third or fourth needle, resulting in relatively more space between the tuck stitches and further resulting in more stretch in the finished fabric.
The fabric of the present invention provides multiple advantages over fabrics previously described or those made from only rubber yarn or only polypropylene yarns, or combinations of other yarn types with similar modified knit structures. In one embodiment, the modified knit structure fabric of the present invention comprises the combination of rubber yarn and polypropylene yarn and provides a fabric with a variable amount of stretch in the fabric as described above and further provides superior stretch recovery. The phrase “superior stretch recovery” is understood by those skilled in the relevant art but can include, but is not limited to, the meaning wherein superior stretch recovery of the fabric of the instant invention is as compared to a knit fabric made solely from rubber yarn or solely from polypropylene yarns, a knit fabric comprising one or more other yarn types with a similar knit structure, or a fabric constructed with rubber yarn and polypropylene yarn but with a different knit structure. The superior stretch recovery of the fabric of the present invention is provided by the knit structure of the fabric and the selection of the combination of yarns.
In addition to superior stretch recovery, the fabric of the present invention further provides advantageous properties as a result of the knit structure and the specific selection of the combination of bare rubber and polypropylene yarns. These properties include, but are not limited to, moisture passage, breathability, antimicrobial, heat and sun resistance, cushioning, and non-skid surface.
Another aspect of the invention provides a method for forming a modified knit structure fabric. In one embodiment, the invention provides a method for forming a modified knit structure fabric on a double bed flatbed knitting machine comprising a front needle bed and a back needle bed, wherein the fabric comprises polypropylene yarn and bare rubber yarn, and the fabric further comprises five or more properties selected from the group consisting of superior stretch recovery, superior moisture passage, superior breathability, superior microbial growth resistance, superior heat and sun degradation resistance, superior cushioning, and superior skid resisting surfaces.
The present invention includes a method of making a modified knitted fabric, comprising a) forming one or more rows of jersey knit stitch on both the front and back beds of the knitting machine, wherein the number of rows of jersey knit stitch formed is the same on both the front and back beds, b) forming one or more rows of tuck stitches connecting the rows of jersey knit stitches formed on the front and back beds in step a), and c) repeating steps a) and b) until the knit fabric is of the desired size. In a particular embodiment, the number of rows of jersey knit stitch formed in step a) is two on the front bed and two on the back bed, and the number of rows of tuck stitches formed in step b) is one or two. In another embodiment, the invention provides a method for forming a modified knit structure fabric on a double bed flatbed knitting machine comprising a front needle bed and a back needle bed, wherein the fabric comprises polypropylene yarn and bare rubber yarn, and the fabric further comprises five or more properties selected from the group consisting of superior stretch recovery, superior moisture passage, superior breathability, superior microbial growth resistance, superior heat and sun degradation resistance, superior cushioning, and superior skid resisting surfaces; the method further comprising i) forming a single row of tuck stitches across both beds, ii) forming a single row of jersey knit stitch on the front bed and a single row of jersey knit stitch on the back bed, iii) forming a single row of tuck stitches across both beds, iv) forming a single row of jersey knit stitch on the front bed and a single row of jersey knit stitch on the back bed, and v) repeating steps i) through iv) until the knit fabric is of the desired size. In another embodiment, the method further comprises the tuck stitches being formed on every needle, every other needle, every third needle, or every fourth needle of the knitting machine. In a particular embodiment, the method further comprises the tuck stitches being formed on every other needle to form a 1×1 rib structure. In one embodiment, the method further comprises forming the jersey knit stitches on every other needle to form a half gauge tubular knit structure.
In one embodiment, the fabric of the present invention can be knit on a 3-system knitting machine and structured as shown in the technical drawings shown in
Further, the fabric of the present invention can be formed in accordance with a method of the present invention as disclosed in
It is well known in the art that machine knitting with strands of bare rubber is challenging at best as bare rubber tends to catch and adhere to surfaces as it is used in a knitting process and it is subject to stretching, breaking, and/or sticking to the needles or other components of the knitting machine, such as feeding mechanisms, resulting in undesirable properties such as dropped or uneven stitches, mal-formed fabrics that do not lie flat, or fabrics that are not properly shaped. Many of the difficulties previously mentioned are directly related to the fact that strands of bare rubber catch on knitting machine surfaces and then stretch during the knitting process and the amount of stretch of the rubber strands during the knitting process cannot be controlled using conventional feeding techniques suitable for non-elastomeric yarns or cover elastomeric strands. One approach to solving the problem of machine knitting with strands of rubber that has been employed by the industry is to cover the rubber with a coating of yarn of one kind or another, such as for instance with an outer layer of nylon or non-elastic, or a layer of any other suitable material that generally allows strands of bare rubber to glide freely through the knitting machine and feeding mechanisms. Unfortunately, covering the bare rubber also negates some of the natural properties of bare rubber such as providing a non-skid or gripping surface. In one embodiment, the method of the present invention includes utilizing one or more agents to temporarily coat or at least partially coat the uncovered bare rubber surface of the respective bare rubber strands so that the catch or grab associated with bare rubber as it is drawn over other surfaced made of metal, hard plastic or the like can be temporarily reduced so that the elongation that generally results from such catch or grab when such bare rubber surfaces engage or slide over such metal, hard plastic or other hard surface in a typical knitting process, so that the tendency for elongation of the bare rubber during or prior to the incorporation of the bare rubber into the fabric is reduced or eliminated. In a preferred embodiment, where the agents disclosed elsewhere herein are employed to temporarily reduce or eliminate the grabbing and catching between these respective surfaces that results in the elongation of the uncovered strands of bare rubber will not negate the advantageous properties that the uncovered bare rubber provides in the fabric, because these agents are relatively easy to remove and do not generally require complete removal. In this regard it will be appreciated that using industrial grade Talcum powder has been discovered to be especially cost effective because it comes on the scored sheets of bare rubber from the manufacturer and the distributor. In addition, addition Talcum powder is inexpensive and any remaining Talcum powder on the bare rubber in the finished fabric will desiccate the fabric to at least a limited degree, which adds to the perceived value of this particular agent. Alternatively, unwanted Talcum powder can be blown off of the bare rubber strands after formation of the desired fabrics. As will be appreciated, the bare rubber is typically purchased in a multi-strand ribbon; typically 40 such strands that are extruded individually and join together into a single multi-strand ribbon that is coated with talcum powder and then shipped. Once received, the multiple strands of the multi-strand ribbon must be separated and then wound onto separate cones for later incorporation into the preferred fabric of the present invention. A preferred method of adding powder to the individual strands of bare rubber is to simply added a large amount of talcum powder to the container in which the multi-stranded ribbon is transported, generally a box. The newly added powder will coat the multi-strand ribbon and hence the individual strands as they are drawn out of the container to be separated into separate strands of powder coated bare rubber by a Rubber Separator (as for example a Rubber Separator made by H.H. Arnold Co., Inc., 529 Liberty St., Rockland, Mass. 02370 as an attachment for a Rubber Covering Machine) and subsequently wound onto cones for subsequent use in the knitting process. It will be appreciated that other methods of further coating the individual strands of bare rubber with additional powder will include passing the strands through an additional container containing powder and/or dusting the strands either before or after separation and/or spraying additional powder on the strands either before or after separation. In preferred embodiments the amount of powder on the individual strands of bare rubber will be an amount that is equal to from about 0.5 to about 5.0 percent of the weight of the bare rubber, preferably from about 1.0 to about 4.0 percent of the weight of the bare rubber. In preferred embodiments the powder coating the bare rubber strands will be from about 1.5 to about 3.0 percent of the weight of the bare rubber.
In one embodiment, the yarn feeding apparatus is adjusted such that the rubber yarn is only slightly or not at all elongated when incorporated into the fabric of the present invention. In another embodiment, the bare rubber yarn is temporarily coated with a powder, such as Talcum powder and starch powder or the like, or with silicone or any such other substance that is known to reduce adhesion and catch so that it will allow the bare rubber to pass freely through the yarn feeding equipment and the knitting machine thus reducing or eliminating the elongation caused by when the bare rubber sticks to one or more components of the knitting machine or feeding mechanisms during the knitting process. The powder or silicone can easily be removed after knitting is completed in order to provide the non-skid property of the bare rubber in the finished fabric. In the case of the respective powders, the fabric can blown with air or other gas or gases and/or washed with water or other solvents to remove excess powder or silicone lubricants. Alternatively, or in addition to, the feeding equipment used in conjunction with the flat bed knitting machine can be modified or adjusted in order to overcome the sticking and inconsistent stretch of the bare rubber yarn that is typical of bare rubber yarn being fed into a knitting machine. The yarn feeding equipment controls the amount of tension on the yarns or strand materials that are being fed into the knitting machine as well as the angle and speed at which the yarns are being fed. In order to maintain consistent tension of the rubber yarn, a variable tension setting can be employed wherein the tension is adjusted according to the amount of stretch and tension that the rubber yarn has as it passes through the feeding equipment. In one embodiment, the amount of tension is automatically controlled by the feeding equipment wherein the tension is adjusted according to the increase and/or decrease in the amount of stretch and/or tension sensed in the rubber yarn that was immediately previously fed through the feeding equipment. For example, the method of the present invention can employ the apparatus and methods for feeding and knitting with elastomeric yarns or strand materials as described in published patent application US2011/0010002 and hereby incorporated herein by reference. In preferred embodiment of the present invention the strands of uncovered bare rubber that are preferably at least partially coated with either a moisture absorbing powder or a silicone containing lubrication agent, will be unrolled from a spool of such rubber strand material through one or more Memminger IRO (MI) MSF feeders purchased from MEMMINGER-IRO GmbH (MEMMINGER-IRO GmbH; Jakob-Mutz-Straβe 7; 72280 Dornstetten, Germany).
In another embodiment, the stretch or tension introduced into the rubber yarn during the knitting process of the present invention is minimized by utilizing a roller apparatus for feeding the rubber yarn into the knitting machine. For example, strands of the rubber yarn can be pulled from spindles mounted above the knitting machine and passed through a roller mechanism prior to entering the knitting mechanism. The two or more rollers are positioned very close together and in some configurations are touching each other, with only enough space between the rollers to allow the bare rubber to pass through to the knitting machine. As the rollers rotate, the rubber yarn is pulled off of the spindles and any elongation of the rubber yarn occurs prior to the rubber yarn exiting the rollers. Therefore, the yarn or strand material exits the rollers in a relaxed or un-elongated state. The rollers, typically revolving in opposite directions, can be synchronized to rotate in timing with the corresponding rubber yarn consumption of the knitting mechanism. In one embodiment, the roller apparatus further comprises a range of lateral motion allowing the roller apparatus to synchronically travel with the knitting mechanism to either eliminate or minimize the amount of elongation introduced into the bare rubber in the knitting process during each pass.
Combinations of each of the above mentioned embodiments of the invention are also contemplated and are encompassed by the present invention. For example, in order to reduce or eliminate the elongation of the bare rubber during the knitting process, the tension settings on the feeding equipment can be adjusted in combination with the bare rubber being coated with Talcum powder, cornstarch or the like.
The following example is merely illustrative of the present invention and should not be considered as limiting the scope of the invention in any way as the example and other equivalents thereof will be apparent.
The knit fabric of Example 1 is a weft knit fabric made on a 3-system flatbed 12 gauge computerized flatbed knitting machine (CMS 530 HP Multi-Gauge) made by Stoll (H. Stoll GmbH & Co. KG, Stollweg 1, 72760 Reutlingen, Germany). The knit fabric is constructed as a half gauge tubular knit structure joined together by a 1×1 rib knit structure that is knit inside of the tubular structure. The tubular knit structure is knit using a jersey knit stitch preferably made of bare rubber strands, although further alternate embodiments can be made from a combination of bare rubber strands and non-elastic yarns, such as polypropylene yarn(s) and the rib structure is formed using a tuck stitch made of non-elastic yarn, preferably spun polypropylene yarns. In this example, extruded, 38 gauge uncovered natural bare rubber strands, at least partially coated with an amount of industrial grade Talcum powder that is equal to or less that the weight of the bare rubber is used to make the jersey stitch on both the front side and the rear side of the knit structure and the tuck stitch made with the preferred non-elastic yarn holds the jersey stitch on the front side in place with respect to the jersey stitch on the back side. The uncovered bare rubber strands are ribbons that come in a sheet of ribbons that are scored so that they can be separated into individual strands or ribbons and then wound up onto cones for use during the knitting process. The scored sheets of bare rubber are at least partially coated with an amount of industrial grade Talcum powder equal to or less than the weight of the bare rubber and are purchased from Piedmont Stretch, Inc. (Winston Salem, N.C. 27103). The sheets of scored ribbons are separated and wound onto a plurality of cones or spools by Norbut Manufacturing (Fall River, Mass. 02721). The non-elastic yarn used for the tuck stitch in this example is spun polypropylene yarn, preferably 200 denier polypropylene yarns purchased from Hickory Throwing (Hickory, N.C.).
During the knitting process non-elastic yarn will be fed to the knitting machine as is standard in the industry, but the uncovered, partially coated strands of bare rubber will preferably be fed to the knitting machine with a plurality of Memminger IRO (MI) MSF feeders, preferably one for each feed, in conjunction with one or two MI EFS 920 feeders, and electrical accessories that are standard in the industry. The feeders are available from MEMMINGER-IRO GmbH (MEMMINGER-IRO GmbH; Jakob-Mutz-Straβe 7; 72280 Dornstetten, Germany).
The knit fabric made in accordance with this example is shown in
It is to be understood, however, that even though numerous characteristics and advantages of the present invention have been set forth in the foregoing description, together with details of the structure and function of the invention, the disclosure is illustrative only, and changes may be made in detail, especially in matters of shape, size and arrangement of parts within the principles of the invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.
The present application is a continuation-in-part of PCT application number PCT/US2012/039423 filed May 24, 2012, which claims priority to U.S. Provisional Application No. 61/489,317, filed May 24, 2011; the present application also claims benefit under 35 U.S.C. 119(e) of U.S. Provisional Application No. 61/730,606, filed Nov. 28, 2012, the disclosures of which are hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2503444 | Lawson | Apr 1950 | A |
2653463 | Crimmins | Sep 1953 | A |
3729956 | Nebel | May 1973 | A |
3733859 | Wittmann | May 1973 | A |
5284031 | Stoll | Feb 1994 | A |
5312667 | Lumb | May 1994 | A |
5385036 | Spillane | Jan 1995 | A |
5528910 | Azais | Jun 1996 | A |
5651847 | Loeffler | Jul 1997 | A |
5735145 | Pernick | Apr 1998 | A |
5783277 | Rock | Jul 1998 | A |
5817391 | Rock | Oct 1998 | A |
5896758 | Rock | Apr 1999 | A |
6156406 | Rock | Dec 2000 | A |
6644070 | Ikenaga | Nov 2003 | B2 |
6755052 | Sytz | Jun 2004 | B1 |
6779369 | Shepherd | Aug 2004 | B2 |
7360378 | Foshee | Apr 2008 | B2 |
7380420 | Liu | Jun 2008 | B1 |
7380421 | Liu | Jun 2008 | B1 |
7552604 | Waldrop | Jun 2009 | B1 |
7611999 | McMurray | Nov 2009 | B2 |
7849715 | Starbuck | Dec 2010 | B2 |
7867057 | Scheininger | Jan 2011 | B2 |
20030106346 | Matsumoto | Jun 2003 | A1 |
20040168479 | McMurray | Sep 2004 | A1 |
20130295812 | Lee | Nov 2013 | A1 |
Number | Date | Country |
---|---|---|
2160800 | Dec 2000 | RU |
943349 | Jul 1982 | SU |
1675434 | Sep 1991 | SU |
Entry |
---|
PCT/US2012/039423 International Search Report and Written Opinion of the International Searching Authority. |
Number | Date | Country | |
---|---|---|---|
20130295812 A1 | Nov 2013 | US |
Number | Date | Country | |
---|---|---|---|
61489317 | May 2011 | US | |
61730606 | Nov 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2012/039423 | May 2012 | US |
Child | 13901042 | US |