Claims
- 1. An aqueous slurry comprising asbestos fibers and a blend of resinous modifiers, said slurry being designed for forming same into an electrolyte permeable diaphragm separator for an electrolytic cell, wherein said blend is composed of two distinctly different forms of finely-divided fluorocarbon polymer, namely between about 5% and about 40% of high fibrous particles and between about 1% and about 9% of chunky particles based upon the total weight of the asbestos fibers plus both forms of fluorocarbon polymer particles, and wherein the proportion by weight of fibrous to chunky polymeric particles is between about 2 to 1 and about 8 to 1.
- 2. The slurry of claim 1, which also includes between about 0.5 and about 5% by weight, based upon the combined weight of both the chunky and fibrous particles of fluorocarbon polymer, of an effective synthetic organic wetting agent.
- 3. The slurry as described in claim 2, wherein the synthetic organic wetting agent is non-ionic or anionic.
- 4. The slurry of claim 1 or 2, wherein each of the fluorocarbon polymers is derived predominantly from completely fluorinated monomers such as tetrafluoroethylene, hexafluoropropylene, and perfluoroalkoxyethylenes, or from such monomers together with a minor proportion of monomers such as chlorotrifluoroethylene, vinylidene fluoride and ethylene, or from perfluorinated ethylene-propylene copolymer.
- 5. The slurry of claim 1, wherein both the chunky and fibrous polymeric particles are derived primarily from fluorocarbon polymers in which the atomic ratio of fluorine to hydrogen is at least about 1/1.
- 6. The slurry of claim 5, wherein at least the fibrous particles are formed predominantly of perfluorocarbon polymers.
- 7. The slurry of claim 6, wherein the chunky particles as well as the fibrous particles are formed predominantly of perfluorocarbon polymers.
- 8. The slurry of claim 1, wherein the fibrous particles are predominantly between about 2 and about 200 microns in equivalent cross-sectional diameter and between about 1,000 and 20,000 microns in length, while the chunky particles average between about 0.1 and about 100 microns in equivalent spherical diameter and the proportion by weight of fibrous to chunky particles is between about 3 to 1 and about 7 to 1.
- 9. The slurry of claim 8, wherein the fibrous particles are between about 5 and about 100 microns in equivalent cross-sectional diameter and between about 2,000 and about 12,000 microns in length while the chunky particles are between about 0.2 and about 75 microns in equivalent spherical diameter and the fibrous particles represent about 10% to about 30% while the chunky particles represent between about 2% and about 7% of the total weight of the asbestos fibers plus both forms of fluorocarbon polymer particles.
- 10. The slurry of claim 9, wherein the crystalline melting point of the fluorocarbon polymer of which said chunky particles are composed is not higher than that of the polymeric material of which said fibrous particles are formed, and wherein the spread in crystalline melting points of the respective types of polymeric particles is not more than 150.degree. C.
- 11. The slurry of claim 1, wherein the polymeric fibrous particles are derived predominantly from tetrafluoroethylene and said particles are selected from the group consisting of particles that are substantially regular and uniform in cross-section, or particles that are variable in cross-section with considerable roughness and fibrillation along their outer surfaces, or mixtures thereof.
- 12. The slurry of claim 1, wherein the fibrous particles are fibrids exhibiting considerable variations of thickness, mass and degree of branching and fibrillation.
Parent Case Info
This is a division of application Ser. No. 555,807, filed Nov. 28, 1983 now U.S. Pat. No. 4,563,260, which in turn is a continuation-in-part of application Ser. No. 461,565, filed Jan. 27, 1983, now U.S. Pat. No. 4,447,566.
US Referenced Citations (7)
Foreign Referenced Citations (3)
Number |
Date |
Country |
1410313 |
Oct 1975 |
GBX |
1498733 |
Jan 1978 |
GBX |
1533429 |
Nov 1978 |
GBX |
Divisions (1)
|
Number |
Date |
Country |
Parent |
555807 |
Nov 1983 |
|
Continuation in Parts (1)
|
Number |
Date |
Country |
Parent |
461565 |
Jan 1983 |
|