MODIFIED ORTHOPOXVIRUS VECTORS

Abstract
The disclosure relates to modified orthopoxvirus vectors, as well as methods of using the same for the treatment of various cancers. The disclosure provides modified orthopoxvirus vectors that exhibit various beneficial therapeutic activities, including enhanced oncolytic activity, spread of infection, immune evasion, tumor persistence, capacity for incorporation of exogenous DNA sequences and safety. The viruses we have discovered are also amenable to large scale manufacturing protocols.
Description
FIELD

The invention relates to the field of immunotherapy, e.g., for the treatment of cell proliferation disorders, such as cancers. Particularly, the invention relates to genetically modified orthopoxviruses, as well as methods of making and using the same.


BACKGROUND

The immune system may be stimulated to identify tumor cells and target them for destruction. Immunotherapy employing oncolytic orthopoxviruses is a rapidly evolving area in cancer research. New approaches are needed to engineer and/or enhance tumor-selectivity for oncolytic viruses in order to maximize efficiency and safety. This selectivity is especially important when potentially toxic therapeutic agents or genes are added to the viruses.


Although the use of orthopoxviruses as clinical oncolytic vectors is a promising paradigm for cancer treatment, due to toxicity, such as pox lesions in patients, and immunosuppressive side effects, most current clinical candidates have shown only modest clinical success. There exists a need for methods to engineer orthopoxviruses that exhibit more robust virus replication, cancer cell killing, and spreading from the point of infection. The present invention addresses this need and provides a solution to selectivity and safety limitations by employing a modified vaccinia virus.


SUMMARY

The present disclosure describes the use of orthopoxviruses for the treatment of cancer. In particular, the disclosure is based in part on the surprisingly enhanced oncolytic activity, spread of infection, and safety results engendered when a orthopoxvirus is genetically modified to contain deletions in one or more, or all, of the following genes: C2L, C1L, N1L, N2L, M1L, M2L, K1L, K2L, K3L, K4L, K5L, K6L, K7R, F1L, F2L, F3L, B14R, B15R, B16R, B17L, B18R, B19R, B20R, K ORF A, K ORF B, B ORF E, B ORF F, B ORF G, B21R, B22R, B23R, B24R, B25R, B26R, B27R, B28R, and B29R. Genetically modified orthopoxviruses, such as vaccinia viruses (e.g., Copenhagen, Western Reserve, Wyeth, Lister, EM63, ACAM2000, LC16m8, CV-1, modified vaccinia Ankara (MVA), Dairen I, GLV-1h68, IHD-J, L-IVP, LC16m8, LC16mO, Tashkent, Tian Tan, and WAU86/88-1 viruses) that exhibit mutations in one or more, or all, of these genes may exhibit an array of beneficial features, such as improved oncolytic ability, replication in tumors, infectivity, immune evasion, tumor persistence, capacity for incorporation of exogenous DNA sequences, and/or amenability for large scale manufacturing. The present disclosure describes orthopox viruses further genetically modified to contain deletions in the B8R gene. In various embodiments disclosed below, the invention may or may not include a deletion of the B8R gene. In various embodiments, the modified orthopoxvirus expresses at least one of three transgenes: IL-12-TM, FLT3-L and anti-CLTA4 antibody.


In a first aspect, the invention features a nucleic acid that includes a recombinant orthopoxvirus genome, wherein the recombinant orthopoxvirus genome has a deletion of at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 or 22 genes, each independently selected from the group consisting of C2L, C1L, N1L, N2L, M1L, M2L, K1L, K2L, K3L, K4L, K5L, K6L, K7R, F1L, F2L, F3L, B14R, B15R, B16R, B17L, B18R, B19R, B20R. In some embodiments, the deletion includes each of C2L, C1L, N1L, N2L, M1L, M2L, K1L, K2L, K3L, K4L, K5L, K6L, K7R, F1L, F2L, F3L, B14R, B15R, B16R, B17L, B18R, B19R, B20R genes. In any one of the embodiments, disclosed herein, the recombinant orthopoxvirus genome may further include a deletion of the B8R gene.


In another aspect, the invention features a nucleic acid that includes a recombinant orthopoxvirus genome, wherein the recombinant orthopoxvirus genome has a deletion of at least 1 gene selected from the group consisting of B14R, B16R, B17L, B18R, B19R, and B20R. In some embodiments, the deletion includes at least 2, 3, 4, or 5 genes, each independently selected from the group consisting of B14R, B16R, B17L, B18R, B19R, and B20R. In some embodiments, the deletion includes each of B14R, B16R, B17L, B18R, B19R, and B20R. In any one of the embodiments, disclosed herein, the recombinant orthopoxvirus genome may further include a B8R deletion.


In another aspect, the invention features a nucleic acid that includes a recombinant orthopoxvirus genome, wherein the recombinant orthopoxvirus genome has a deletion of at least 1 gene selected from the group consisting of C2L, C1L, N1L, N2L, M1L, M2L, K1L, K2L, K3L, K4L, K5L, K6L, K7R, F1L, F2L, and F3L. In some embodiments, the deletion includes at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15 genes, each independently selected from the group consisting of C2L, C1L, N1L, N2L, M1L, M2L, K1L, K2L, K3L, K4L, K5L, K6L, K7R, F1L, F2L, and F3L. In some embodiments, the deletion includes each of C2L, C1L, N1L, N2L, M1L, M2L, K1L, K2L, K3L, K4L, K5L, K6L, K7R, F1L, F2L, and F3L. In any one of the embodiments, disclosed herein, the recombinant orthopoxvirus genome may further include a B8R deletion.


In another aspect, the invention features a nucleic acid that includes a recombinant orthopoxvirus genome, wherein the recombinant orthopoxvirus genome has a deletion of at least 1 gene that encodes a caspase-9 inhibitor.


In some embodiments, the recombinant orthopoxvirus genome has a deletion of at least 1 gene that encodes a caspase-9 inhibitor. In some embodiments, the gene that encodes a caspase-9 inhibitor is F1L.


In another aspect, the invention features a nucleic acid that includes a recombinant orthopoxvirus genome, wherein the recombinant orthopoxvirus genome has a deletion of at least 1 gene that encodes a BCL-2 inhibitor.


In some embodiments, the recombinant orthopoxvirus genome has a deletion of at least 1 gene that encodes a BCL-2 inhibitor. In some embodiments, the gene that encodes a BCL-2 inhibitor is N1L.


In another aspect, the invention features a nucleic acid that includes a recombinant orthopoxvirus genome, wherein the recombinant orthopoxvirus genome has a deletion of at least 1 gene that encodes a dUTPase.


In some embodiments, the recombinant orthopoxvirus genome has a deletion of at least 1 gene that encodes a dUTPase. In some embodiments, the gene that encodes a dUTPase is F2L.


In another aspect, the invention features a nucleic acid that includes a recombinant orthopoxvirus genome, wherein the recombinant orthopoxvirus genome has a deletion of at least 1 gene that encodes a IFN-alpha/beta-receptor-like secreted glycoprotein.


In some embodiments, the recombinant orthopoxvirus genome has a deletion of at least 1 gene that encodes a IFN-alpha/beta-receptor-like secreted glycoprotein. In some embodiments, the gene that encodes a IFN-alpha/beta-receptor-like secreted glycoprotein is B19R.


In another aspect, the invention features a nucleic acid that includes a recombinant orthopoxvirus genome, wherein the recombinant orthopoxvirus genome has a deletion of at least 1 gene that encodes an IL-1-beta-inhibitor.


In some embodiments, the recombinant orthopoxvirus genome has a deletion of at least 1 gene that encodes an IL-1-beta-inhibitor. In some embodiments, the gene that encodes an IL-1-beta-inhibitor is B16R.


In another aspect, the invention features a nucleic acid that includes a recombinant orthopoxvirus genome, wherein the recombinant orthopoxvirus genome has a deletion of at least 1 gene that encodes a phospholipase-D.


In some embodiments, the recombinant orthopoxvirus genome has a deletion of at least 1 gene that encodes a phospholipase-D. In some embodiments, the gene that encodes a phospholipase-D is K4L.


In another aspect, the invention features a nucleic acid that includes a recombinant orthopoxvirus genome, wherein the recombinant orthopoxvirus genome has a deletion of at least 1 gene that encodes a PKR inhibitor.


In some embodiments, the recombinant orthopoxvirus genome has a deletion of at least 1 gene that encodes a PKR inhibitor. In some embodiments, the gene that encodes a PKR inhibitor is K3L.


In another aspect, the invention features a nucleic acid that includes a recombinant orthopoxvirus genome, wherein the recombinant orthopoxvirus genome has a deletion of at least 1 gene that encodes a serine protease inhibitor.


In some embodiments, the recombinant orthopoxvirus genome has a deletion of at least 1 gene that encodes a serine protease inhibitor. In some embodiments, the gene that encodes a serine protease inhibitor is K2L.


In another aspect, the invention features a nucleic acid that includes a recombinant orthopoxvirus genome, wherein the recombinant orthopoxvirus genome has a deletion of at least 1 gene that encodes a TLR signaling inhibitor. In some embodiments, the recombinant orthopoxvirus genome has a deletion of at least 1 gene that encodes a TLR signaling inhibitor. In some embodiments, the gene that encodes a TLR signaling inhibitor is N2L.


In another aspect, the invention features a nucleic acid that includes a recombinant orthopoxvirus genome, wherein the recombinant orthopoxvirus genome has a deletion of at least 1 gene that encodes a kelch-like protein. In some embodiments, the recombinant orthopoxvirus genome has a deletion of at least 1 gene that encodes a kelch-like protein. In some embodiments, the recombinant orthopoxvirus genome has a deletion of at least 2 genes that each encodes a kelch-like protein. In some embodiments, the genes that encode a kelch-like protein are, independently, selected from the group consisting of F3L and C2L.


In another aspect, the invention features a nucleic acid that includes a recombinant orthopoxvirus genome, wherein the recombinant orthopoxvirus genome has a deletion of at least 1 gene that encodes a monoglyceride lipase.


In some embodiments, the recombinant orthopoxvirus genome has a deletion of at least 1 or 2 genes that encodes a monoglyceride lipase. In some embodiments, the genes that encode a monoglyceride lipase are, independently, selected from the group consisting of K5L and K6L.


In another aspect, the invention features a nucleic acid that includes a recombinant orthopoxvirus genome, wherein the recombinant orthopoxvirus genome has a deletion of at least 1, 2 or 3 genes that encodes an NF-κB inhibitor. In some embodiments, the genes that encode an NF-κB inhibitor are, independently selected from the group consisting of K7R, K1L, and M2L.


In another aspect, the invention features a nucleic acid that includes a recombinant orthopoxvirus genome, wherein the recombinant orthopoxvirus genome has a deletion of at least 1, 2, or 3 genes that encodes an Ankyrin repeat protein. In some embodiments, the genes that encode an Ankyrin repeat protein are, independently, selected from the group consisting of B18R, B20R, and M1L.


In another aspect, the invention features a nucleic acid that includes a recombinant orthopoxvirus genome, wherein the recombinant orthopoxvirus genome has a deletion of at least 1, 2 or 3 genes each independently selected from the group consisting of B15R, B17R, and B14R.


In another aspect, the invention features a nucleic acid that includes a recombinant orthopoxvirus genome, wherein the recombinant orthopoxvirus genome has a deletion of at least 1, 2, 3, or 4, gene selected from the group consisting of K ORF A, K ORF B, B ORF E, B ORF F, and B ORF G. In any one of the embodiments, disclosed herein, the recombinant orthopoxvirus genome further includes a B8R deletion.


In some embodiments, the recombinant orthopoxvirus genome has a deletion of at least 1 gene selected from the group of inverted terminal repeat (ITR) genes consisting of B21R, B22R, B23R, B24R, B25R, B26R, B27R, B28R, and B29R. In some embodiments, the deletion includes at least 2, 3, 4, 5, 6, 7, or 8 genes, each independently selected from the group of ITR genes consisting of B21R, B22R, B23R, B24R, B25R, B26R, B27R, B28R, and B29R. In some embodiments, the deletion includes each of B21R, B22R, B23R, B24R, B25R, B26R, B27R, B28R, and B29R. In any one of the embodiments, disclosed herein, the recombinant orthopoxvirus genome may further include a B8R deletion.


In some embodiments, the vaccinia virus is a strain selected from the group consisting of Copenhagen, Western Reserve, Wyeth, Lister, EM63, ACAM2000, LC16m8, CV-1, modified vaccinia Ankara (MVA), Dairen I, GLV-1h68, IHD-J, L-IVP, LC16m8, LC16mO, Tashkent, Tian Tan, and WAU86/88-1. In some embodiments, the vaccinia virus is a strain selected from the group consisting of Copenhagen, Western Reserve, Tian Tan, Wyeth, and Lister. In some embodiments, the vaccinia virus is a Copenhagen strain vaccinia virus.


In some embodiments, one or more, or all, of the deletions is a deletion of the entire polynucleotide encoding the corresponding gene. In some embodiments, one or more, or all, of the deletions is a deletion of a portion of the polynucleotide encoding the corresponding gene, such that the deletion is sufficient to render the gene nonfunctional, e.g., upon introduction into a host cell.


In some embodiments, the nucleic acid further includes a transgene encoding a tumor-associated antigen. In some embodiments, the tumor-associated antigen is a tumor-associated antigen listed in any one of Tables 3-30 herein. In some embodiments, the tumor-associated antigen is a tumor-associated antigen selected from the group consisting of CD19, CD33, EpCAM, CEA, PSMA, EGFRvIII, CD133, EGFR, CDH19, ENPP3, DLL3, MSLN, ROR1, HER2, HLAA2, EpHA2, EpHA3, MCSP, CSPG4, NG2, RON, FLT3, BCMA, CD20, FAPα, FRα, CA-9, PDGFRα, PDGFRβ, FSP1, S100A4, ADAM12m, RET, MET, FGFR, INSR, and NTRK. In some embodiments, the tumor-associated antigen includes MAGE-A3, or one or more fragments thereof. In some embodiments, the tumor-associated antigen includes NY-ESO-1, or one or more fragments thereof. In some embodiments, the tumor-associated antigen includes one or more human papillomavirus (HPV) proteins, or fragments thereof. In some embodiments, the tumor-associated antigen includes (i) E6 and E7 proteins, or fragments thereof, of HPV16 and (ii) E6 and E7 proteins, or fragments thereof, of HPV18. In some embodiments, the tumor-associated antigen includes brachyury or one or more fragments thereof. In some embodiments, the tumor-associated antigen includes prostatic acid phosphatase, or one or more fragments thereof.


In some embodiments, the nucleic acid further includes a transgene encoding an immune checkpoint inhibitor. In some embodiments, the immune checkpoint inhibitor is selected from the group consisting of OX40 ligand, ICOS ligand, anti-CD47 antibody or antigen-binding fragment thereof, anti-CD40/CD40L antibody or antigen-binding fragment thereof, anti-Lag3 antibody or antigen-binding fragment thereof, anti-CTLA-4 antibody or antigen-binding fragment thereof, anti-PD-L1 antibody or antigen-binding fragment thereof, anti-PD1 antibody or antigen-binding fragment thereof, and anti-Tim-3 antibody or antigen-binding fragment thereof. In some embodiments, the immune checkpoint inhibitor is an anti-PD1 antibody or antigen-binding fragment thereof or an anti-CTLA-4 antibody or antigen-binding fragment thereof. In some embodiments, the immune checkpoint inhibitor is an anti-PD1 antibody or antigen-binding fragment thereof. In some embodiments, the immune checkpoint inhibitor is an anti-CTLA-4 antibody or antigen-binding fragment thereof.


Antibodies or antigen-binding fragments thereof described herein may be full-length antibodies or antibody fragments, such as a monoclonal antibody or antigen-binding fragment thereof, a polyclonal antibody or antigen-binding fragment thereof, a humanized antibody or antigen-binding fragment thereof, a primatized antibody or antigen-binding fragment thereof, a bispecific antibody or antigen-binding fragment thereof, a multi-specific antibody or antigen-binding fragment thereof, a dual-variable immunoglobulin domain, a monovalent antibody or antigen-binding fragment thereof, a chimeric antibody or antigen-binding fragment thereof, a single-chain Fv molecule (scFv), a diabody, a triabody, a nanobody, an antibody-like protein scaffold, a domain antibody, a Fv fragment, a Fab fragment, a F(ab′)2 molecule, and a tandem scFv (taFv). In some embodiments, the antibody or antigen-binding fragment thereof contains two or more CDRs covalently bound to one another, e.g., by an amide bond, a thioether bond, a carbon-carbon bond, or a disulfide bridge, or by a linker, such as a linker described herein. In some embodiments, the antibody or antigen-binding fragment thereof is a single-chain polypeptide. In some embodiments, the antibody or antigen-binding fragment thereof has an isotype selected from the group consisting of IgG, IgA, IgM, IgD, and IgE.


In some embodiments, the nucleic acid further includes a transgene encoding an interleukin. In some embodiments, the interleukin (IL) is selected from the group consisting of IL-1 alpha, IL-1 beta, IL-2, IL-4, IL-7, IL-10, IL-12 p35, IL-12 p40, IL-12 p70, IL-15, IL-18, IL-21, and IL-23. In some embodiments, the interleukin is selected from the group consisting of IL-12 p35, IL-12 p40, and IL-12 p70. In some embodiments, the interleukin is membrane-bound.


In some embodiments, the nucleic acid further includes a transgene encoding an interferon. In some embodiments, the interferon is selected from the group consisting of IFN-alpha, IFN-beta, IFN-delta, IFN-epsilon, IFN-tau, IFN-omega, IFN-zeta, and IFN-gamma.


In some embodiments, the nucleic acid further includes a transgene encoding a TNF superfamily member protein. In some embodiments, the TNF superfamily member protein is selected from the group consisting of TRAIL, Fas ligand, LIGHT (TNFSF-14), TNF-alpha, and 4-1BB ligand.


In some embodiments, the nucleic acid further includes a transgene encoding a cytokine. In some embodiments, the cytokine selected from the group consisting of GM-CSF, FMS-like tyrosine kinase 3 ligand (Flt3 ligand), CD40 ligand, anti-TGF-beta, anti-VEGF-R2, and guanyl adenylate cyclase (cGAS). In some embodiments, the cytokine is Flt3 ligand.


In another aspect, the invention features a recombinant orthopoxvirus vector that has a deletion of at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 or 22 genes, each independently selected from the group consisting of C2L, C1L, N1L, N2L, M1L, M2L, K1L, K2L, K3L, K4L, K5L, K6L, K7R, F1L, F2L, F3L, B14R, B15R, B16R, B17L, B18R, B19R, B20R. In some embodiments, the deletion includes each of C2L, C1L, N1L, N2L, M1L, M2L, K1L, K2L, K3L, K4L, K5L, K6L, K7R, F1L, F2L, F3L, B14R, B15R, B16R, B17L, B18R, B19R, and B20R. In any one of the embodiments, disclosed herein, the recombinant orthopoxvirus genome may further include a B8R deletion.


In another aspect, the invention features a recombinant orthopoxvirus vector that includes a recombinant orthopoxvirus genome, wherein the recombinant orthopoxvirus genome has a deletion of at least 1 gene selected from the group consisting of B14R, B16R, B17L, B18R, B19R, and B20R. In some embodiments, the deletion includes at least 2, 3, 4, or 5 genes, each independently selected from the group consisting of B14R, B16R, B17L, B18R, B19R, and B20R. In some embodiments, the deletion includes each of B14R, B16R, B17L, B18R, B19R, and B20R. In any one of the embodiments, disclosed herein, the recombinant orthopoxvirus genome may further include a B8R deletion.


In another aspect, the invention features a recombinant orthopoxvirus vector that includes a recombinant orthopoxvirus genome, wherein the recombinant orthopoxvirus genome has a deletion of at least 1 gene selected from the group consisting of C2L, C1L, N1L, N2L, M1L, M2L, K1L, K2L, K3L, K4L, K5L, K6L, K7R, F1L, F2L, and F3L. In any one of the embodiments, disclosed herein, the recombinant orthopoxvirus genome may further include a B8R deletion.


In some embodiments, the recombinant orthopoxvirus vector has a deletion of at least 1 gene selected from the group consisting of C2L, C1L, N1L, N2L, M1L, K1L, K2L, K3L, K4L, K7R, and F2L. In some embodiments, the deletion includes at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, or 16 genes, each independently selected from the group consisting of C2L, C1L, N1L, N2L, M1L, M2L, K1L, K2L, K3L, K4L, K5L, K6L, K7R, F1L, F2L, and F3L. In some embodiments, the deletion includes each of C2L, C1L, N1L, N2L, M1L, M2L, K1L, K2L, K3L, K4L, K5L, K6L, K7R, F1L, F2L, and F3. In any one of the embodiments, disclosed herein, the recombinant orthopoxvirus genome may further include a B8R deletion.


In another aspect, the invention features a recombinant orthopoxvirus vector that has a deletion of at least 1 gene that encodes a caspase-9 inhibitor.


In some embodiments, the recombinant orthopoxvirus genome has a deletion of at least 1 gene that encodes a caspase-9 inhibitor. In some embodiments, the gene that encodes a caspase-9 inhibitor is F1L.


In another aspect, the invention features a recombinant orthopoxvirus vector has a deletion of at least 1 gene that encodes a BCL-2 inhibitor.


In some embodiments, the recombinant orthopoxvirus genome has a deletion of at least 1 gene that encodes a BCL-2 inhibitor. In some embodiments, the gene that encodes a BCL-2 inhibitor is N1L.


In another aspect, the invention features a recombinant orthopoxvirus vector has a deletion of at least 1 gene that encodes a dUTPase.


In some embodiments, the recombinant orthopoxvirus genome has a deletion of at least 1 gene that encodes a dUTPase. In some embodiments, the gene that encodes a dUTPase is F2L.


In another aspect, the invention features a recombinant orthopoxvirus vector has a deletion of at least 1 gene that encodes a IFN-alpha/beta-receptor-like secreted glycoprotein.


In some embodiments, the recombinant orthopoxvirus genome has a deletion of at least 1 gene that encodes a IFN-alpha/beta-receptor-like secreted glycoprotein. In some embodiments, the gene that encodes a IFN-alpha/beta-receptor-like secreted glycoprotein is B19R.


In another aspect, the invention features a recombinant orthopoxvirus vector has a deletion of at least 1 gene that encodes an IL-1-beta-inhibitor.


In some embodiments, the recombinant orthopoxvirus genome has a deletion of at least 1 gene that encodes an IL-1-beta-inhibitor. In some embodiments, the gene that encodes an IL-1-beta-inhibitor is B16R.


In another aspect, the invention features a recombinant orthopoxvirus vector has a deletion of at least 1 gene that encodes a phospholipase-D.


In some embodiments, the recombinant orthopoxvirus genome has a deletion of at least 1 gene that encodes a phospholipase-D. In some embodiments, the gene that encodes a phospholipase-D is K4L.


In another aspect, the invention features a recombinant orthopoxvirus vector has a deletion of at least 1 gene that encodes a PKR inhibitor.


In some embodiments, the recombinant orthopoxvirus genome has a deletion of at least 1 gene that encodes a PKR inhibitor. In some embodiments, the gene that encodes a PKR inhibitor is K3L.


In another aspect, the invention features a recombinant orthopoxvirus vector has a deletion of at least 1 gene that encodes a serine protease inhibitor.


In some embodiments, the recombinant orthopoxvirus genome has a deletion of at least 1 gene that encodes a serine protease inhibitor. In some embodiments, the gene that encodes a serine protease inhibitor is K2L.


In another aspect, the invention features a recombinant orthopoxvirus vector has a deletion of at least 1 gene that encodes a TLR signaling inhibitor.


In some embodiments, the recombinant orthopoxvirus genome has a deletion of at least 1 gene that encodes a TLR signaling inhibitor. In some embodiments, the gene that encodes a TLR signaling inhibitor is N2L.


In another aspect, the invention features a recombinant orthopoxvirus vector has a deletion of at least 1 gene that encodes a kelch-like protein.


In some embodiments, the recombinant orthopoxvirus genome has a deletion of at least 1 or 2 genes that encodes a kelch-like protein. In some embodiments, the genes that encode a kelch-like protein are, independently, selected from the group consisting of F3L and C2L.


In another aspect, the invention features a recombinant orthopoxvirus vector has a deletion of at least 1 gene that encodes a monoglyceride lipase.


In some embodiments, the recombinant orthopoxvirus genome has a deletion of at least 1 gene that encodes a monoglyceride lipase. In some embodiments, the recombinant orthopoxvirus genome has a deletion of at least 2 genes that each encodes a monoglyceride lipase. In some embodiments, the genes that encode a monoglyceride lipase are, independently, selected from the group consisting of K5L and K6L.


In another aspect, the invention features a recombinant orthopoxvirus vector has a deletion of at least 1 gene that encodes an NF-κB inhibitor.


In some embodiments, the recombinant orthopoxvirus genome has a deletion of at least 1, 2, or 3 genes that encodes an NF-κB inhibitor. In some embodiments, the genes that encode an NF-κB inhibitor are, independently, selected from the group consisting of K7R, K1L, and M2L.


In another aspect, the invention features a recombinant orthopoxvirus vector has a deletion of at least 1 gene that encodes an Ankyrin repeat protein.


In some embodiments, the recombinant orthopoxvirus genome has a deletion of at least 1 gene that encodes an Ankyrin repeat protein. In some embodiments, the recombinant orthopoxvirus genome has a deletion of at least 2 genes that each encodes an Ankyrin repeat protein. In some embodiments, the recombinant orthopoxvirus genome has a deletion of at least 3 genes that each encodes an Ankyrin repeat protein. In some embodiments, the genes that encode an Ankyrin repeat protein are, independently, selected from the group consisting of B18R, B20R, and M1L.


In another aspect, the invention features a recombinant orthopoxvirus vector has a deletion of at least 1 gene selected from the group consisting of B15R, B17R, and B14R.


In some embodiments, the recombinant orthopoxvirus genome has a deletion of at least 1 gene selected from the group consisting of B15R, B17R, and B14R. In some embodiments, the recombinant orthopoxvirus genome has a deletion of at least 2 genes selected from the group consisting of B15R, B17R, and B14R. In some embodiments, the recombinant orthopoxvirus genome has a deletion of at least 3 genes selected from the group consisting of B15R, B17R, and B14R. In any one of the embodiments, disclosed herein, the recombinant orthopoxvirus genome may further include a B8R deletion.


In another aspect, the invention features a recombinant orthopoxvirus vector that includes a recombinant orthopoxvirus genome, wherein the recombinant orthopoxvirus genome has a deletion of at least 1 gene selected from the group consisting of K ORF A, K ORF B, B ORF E, B ORF F, and B ORF G.


In some embodiments, the recombinant orthopoxvirus vector has a deletion of at least 1 gene selected from the group consisting of K ORF A, K ORF B, B ORF E, B ORF F, and B ORF G. In some embodiments, the vector has a deletion of at least 2, 3, or 4 genes selected from the group consisting of K ORF A, K ORF B, B ORF E, B ORF F, and B ORF G. In some embodiments, the deletion includes each of K ORF A, K ORF B, B ORF E, B ORF F, and B ORF G. In any one of the embodiments, disclosed herein, the recombinant orthopoxvirus genome may further include a B8R deletion.


In some embodiments, the recombinant orthopoxvirus vector has a deletion of at least 1 gene selected from the group of ITR genes consisting of B21R, B22R, B23R, B24R, B25R, B26R, B27R, B28R, and B29R. In some embodiments, the deletion includes at least 2, 3, 4, 5, 6, 7 or 8 genes, each independently selected from the group of ITR genes consisting of B21R, B22R, B23R, B24R, B25R, B26R, B27R, B28R, and B29R. In some embodiments, the deletion includes each of B21R, B22R, B23R, B24R, B25R, B26R, B27R, B28R, and B29R. In any one of the embodiments, disclosed herein, the recombinant orthopoxvirus genome may further include a B8R deletion.


In some embodiments, the orthopoxvirus is a vaccinia virus.


In some embodiments, the vaccinia virus is a strain selected from the group consisting of Copenhagen, Western Reserve, Wyeth, Lister, EM63, ACAM2000, LC16m8, CV-1, modified vaccinia Ankara (MVA), Dairen I, GLV-1h68, IHD-J, L-IVP, LC16m8, LC16mO, Tashkent, Tian Tan, and WAU86/88-1. In some embodiments, the vaccinia virus is a strain selected from the group consisting of Copenhagen, Western Reserve, Tian Tan, Wyeth, and Lister. In some embodiments, the vaccinia virus is a Copenhagen strain vaccinia virus.


In some embodiments, one or more, or all, of the deletions is a deletion of the entire polynucleotide encoding the corresponding gene. In some embodiments, one or more, or all, of the deletions is a deletion of a portion of the polynucleotide encoding the corresponding gene, such that the deletion is sufficient to render the gene nonfunctional, e.g., upon introduction into a host cell.


In some embodiments, the vector further includes a transgene encoding a tumor-associated antigen. In some embodiments, the tumor-associated antigen is a tumor-associated antigen listed in any one of Tables 3-30 herein. In some embodiments, the tumor-associated antigen is a tumor-associated antigen selected from the group consisting of CD19, CD33, EpCAM, CEA, PSMA, EGFRvIII, CD133, EGFR, CDH19, ENPP3, DLL3, MSLN, ROR1, HER2, HLAA2, EpHA2, EpHA3, MC SP, CSPG4, NG2, RON, FLT3, BCMA, CD20, FAPα, FRα, CA-9, PDGFRα, PDGFRβ, FSP1, S100A4, ADAM12m, RET, MET, FGFR, INSR, and NTRK. In some embodiments, the tumor-associated antigen includes MAGE-A3, or one or more fragments thereof. In some embodiments, the tumor-associated antigen includes NY-ESO-1, or one or more fragments thereof. In some embodiments, the tumor-associated antigen includes one or more human papillomavirus (HPV) proteins, or fragments thereof. In some embodiments, the tumor-associated antigen includes (i) E6 and E7 proteins, or fragments thereof, of HPV16 and (ii) E6 and E7 proteins, or fragments thereof, of HPV18. In some embodiments, the tumor-associated antigen includes brachyury or one or more fragments thereof. In some embodiments, the tumor-associated antigen includes prostatic acid phosphatase, or one or more fragments thereof.


In some embodiments, the vector further includes a transgene encoding an immune checkpoint inhibitor. In some embodiments, the immune checkpoint inhibitor is selected from the group consisting of OX40 ligand, ICOS ligand, anti-CD47 antibody or antigen-binding fragment thereof, anti-CD40/CD40L antibody or antigen-binding fragment thereof, anti-Lag3 antibody or antigen-binding fragment thereof, anti-CTLA-4 antibody or antigen-binding fragment thereof, anti-PD-L1 antibody or antigen-binding fragment thereof, anti-PD1 antibody or antigen-binding fragment thereof, and anti-Tim-3 antibody or antigen-binding fragment thereof. In some embodiments, the immune checkpoint inhibitor is an anti-PD1 antibody or antigen-binding fragment thereof or an anti-CTLA-4 antibody or antigen-binding fragment thereof. In some embodiments, the immune checkpoint inhibitor is an anti-PD1 antibody or antigen-binding fragment thereof. In some embodiments, the immune checkpoint inhibitor is an anti-CTLA-4 antibody or antigen-binding fragment thereof.


As described above, antibodies or antigen-binding fragments thereof described herein may be full-length antibodies or antibody fragments, such as a monoclonal antibody or antigen-binding fragment thereof, a polyclonal antibody or antigen-binding fragment thereof, a humanized antibody or antigen-binding fragment thereof, a primatized antibody or antigen-binding fragment thereof, a bispecific antibody or antigen-binding fragment thereof, a multi-specific antibody or antigen-binding fragment thereof, a dual-variable immunoglobulin domain, a monovalent antibody or antigen-binding fragment thereof, a chimeric antibody or antigen-binding fragment thereof, a single-chain Fv molecule (scFv), a diabody, a triabody, a nanobody, an antibody-like protein scaffold, a domain antibody, a Fv fragment, a Fab fragment, a F(ab′)2 molecule, and a tandem scFv (taFv). In some embodiments, the antibody or antigen-binding fragment thereof contains two or more CDRs covalently bound to one another, e.g., by an amide bond, a thioether bond, a carbon-carbon bond, or a disulfide bridge, or by a linker, such as a linker described herein. In some embodiments, the antibody or antigen-binding fragment thereof is a single-chain polypeptide. In some embodiments, the antibody or antigen-binding fragment thereof has an isotype selected from the group consisting of IgG, IgA, IgM, IgD, and IgE.


In some embodiments, the vector further includes a transgene encoding an interleukin. In some embodiments, the interleukin (IL) is selected from the group consisting of IL-1 alpha, IL-1 beta, IL-2, IL-4, IL-7, IL-10, IL-12 p35, IL-12 p40, IL-12 p70, IL-15, IL-18, IL-21, and IL-23. In some embodiments, the interleukin is selected from the group consisting of IL-12 p35, IL-12 p40, and IL-12 p70. In some embodiments, the interleukin is membrane-bound.


In some embodiments, the vector further includes a transgene encoding an interferon. In some embodiments, the interferon is selected from the group consisting of IFN-alpha, IFN-beta, IFN-delta, IFN-epsilon, IFN-tau, IFN-omega, IFN-zeta, and IFN-gamma.


In some embodiments, the vector further includes a transgene encoding a TNF superfamily member protein. In some embodiments, the TNF superfamily member protein is selected from the group consisting of TRAIL, Fas ligand, LIGHT (TNFSF-14), TNF-alpha, and 4-1BB ligand.


In some embodiments, the vector further includes a transgene encoding a cytokine. In some embodiments, the cytokine selected from the group consisting of GM-CSF, FMS-like tyrosine kinase 3 ligand (Flt3 ligand), CD40 ligand, anti-TGF-beta, anti-VEGF-R2, and guanyl adenylate cyclase (cGAS). In some embodiments, the cytokine is Flt3 ligand.


In some embodiments, upon contacting a population of mammalian cells (e.g., human cells, such as human cancer cells) with the nucleic acid or the recombinant orthopoxvirus vector, the cells exhibit increased syncytia formation relative to a population of mammalian cells of the same type contacted with a form of the orthopoxvirus vector that does not include the deletions, as assessed, for instance, by visual inspection using microscopy techniques described herein or known in the art.


In some embodiments, upon contacting a population of mammalian cells (e.g., human cells, such as human cancer cells) with the nucleic acid or the recombinant orthopoxvirus vector, the cells exhibit increased spreading of the orthopoxvirus vector relative to a population of mammalian cells of the same type contacted with a form of the orthopoxvirus vector that does not include the deletions, as assessed, for instance, using plaque-forming assays described herein or known in the art.


In some embodiments, the nucleic acid or the recombinant orthopoxvirus vector exerts an increased cytotoxic effect on a population of mammalian cells (e.g., human cells, such as human cancer cells) relative to that of a form of the orthopoxvirus vector that does not include the deletions, as assessed, for instance, using cell death assays descried herein or known in the art.


In some embodiments, the mammalian cells are from a cell line selected from the group consisting of U2OS, 293, 293T, Vero, HeLa, A549, BHK, BSC40, CHO, OVCAR-8, 786-0, NCI-H23, U251, SF-295, T-47D, SKMEL2, BT-549, SK-MEL-28, MDA-MB-231, SK-OV-3, MCF7, M14, SF-268, CAKI-1, HPAV, OVCAR-4, HCT15, K-562, and HCT-116.


In another aspect, the invention features a packaging cell line that contains the nucleic acid or the recombinant orthopoxvirus vector of any of the aspects or embodiments described herein.


In another aspect, the invention features a method of treating cancer in a mammalian patient by administering a therapeutically effective amount of the nucleic acid or the recombinant orthopoxvirus vector to the patient.


In some embodiments, the mammalian patient is a human patient.


In some embodiments, the cancer is selected from the group consisting of leukemia, lymphoma, liver cancer, bone cancer, lung cancer, brain cancer, bladder cancer, gastrointestinal cancer, breast cancer, cardiac cancer, cervical cancer, uterine cancer, head and neck cancer, gallbladder cancer, laryngeal cancer, lip and oral cavity cancer, ocular cancer, melanoma, pancreatic cancer, prostate cancer, colorectal cancer, testicular cancer, and throat cancer.


In some embodiments, the cancer is selected from the group consisting of acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), chronic lymphocytic leukemia (CLL), chronic myelogenous leukemia (CML), adrenocortical carcinoma, AIDS-related lymphoma, primary CNS lymphoma, anal cancer, appendix cancer, astrocytoma, atypical teratoid/rhabdoid tumor, basal cell carcinoma, bile duct cancer, extrahepatic cancer, ewing sarcoma family, osteosarcoma and malignant fibrous histiocytoma, central nervous system embryonal tumors, central nervous system germ cell tumors, craniopharyngioma, ependymoma, bronchial tumors, burkitt lymphoma, carcinoid tumor, primary lymphoma, chordoma, chronic myeloproliferative neoplasms, colon cancer, extrahepatic bile duct cancer, ductal carcinoma in situ (DCIS), endometrial cancer, ependymoma, esophageal cancer, esthesioneuroblastoma, extracranial germ cell tumor, extragonadal germ cell tumor, fallopian tube cancer, fibrous histiocytoma of bone, gastrointestinal carcinoid tumor, gastrointestinal stromal tumors (GIST), testicular germ cell tumor, gestational trophoblastic disease, glioma, childhood brain stem glioma, hairy cell leukemia, hepatocellular cancer, langerhans cell histiocytosis, hodgkin lymphoma, hypopharyngeal cancer, islet cell tumors, pancreatic neuroendocrine tumors, wilms tumor and other childhood kidney tumors, langerhans cell histiocytosis, small cell lung cancer, cutaneous T cell lymphoma, intraocular melanoma, merkel cell carcinoma, mesothelioma, metastatic squamous neck cancer, midline tract carcinoma, multiple endocrine neoplasia syndromes, multiple myeloma/plasma cell neoplasm, myelodysplastic syndromes, nasal cavity and paranasal sinus cancer, nasopharyngeal cancer, neuroblastoma, non-hodgkin lymphoma (NHL), non-small cell lung cancer (NSCLC), epithelial ovarian cancer, germ cell ovarian cancer, low malignant potential ovarian cancer, pancreatic neuroendocrine tumors, papillomatosis, paraganglioma, paranasal sinus and nasal cavity cancer, parathyroid cancer, penile cancer, pharyngeal cancer, pheochromocytoma, pituitary tumor, pleuropulmonary blastoma, primary peritoneal cancer, rectal cancer, retinoblastoma, rhabdomyosarcoma, salivary gland cancer, kaposi sarcoma, rhabdomyosarcoma, sezary syndrome, small intestine cancer, soft tissue sarcoma, throat cancer, thymoma and thymic carcinoma, thyroid cancer, transitional cell cancer of the renal pelvis and ureter, urethral cancer, endometrial uterine cancer, uterine sarcoma, vaginal cancer, vulvar cancer, and Waldenström macroglobulinemia.


In some embodiments, the method further includes administering to the patient an immune checkpoint inhibitor. In some embodiments, the immune checkpoint inhibitor is selected from a group consisting of OX40 ligand, ICOS ligand, anti-CD47 antibody or antigen-binding fragment thereof, anti-CD40/CD40L antibody or antigen-binding fragment thereof, anti-Lag3 antibody or antigen-binding fragment thereof, anti-CTLA-4 antibody or antigen-binding fragment thereof, anti-PD-L1 antibody or antigen-binding fragment thereof, anti-PD1 antibody or antigen-binding fragment thereof, and anti-Tim-3 antibody or antigen-binding fragment thereof. In some embodiments, the immune checkpoint inhibitor is an anti-PD1 antibody or antigen-binding fragment thereof or an anti-CTLA-4 antibody or antigen-binding fragment thereof. In some embodiments, the immune checkpoint inhibitor is an anti-PD1 antibody or antigen-binding fragment thereof. In some embodiments, the immune checkpoint inhibitor is an anti-CTLA-4 antibody or antigen-binding fragment thereof.


In some embodiments, the method further includes administering to the patient an interleukin. In some embodiments, the interleukin is selected from a group consisting of IL-1 alpha, IL-1 beta, IL-2, IL-4, IL-7, IL-10, IL-12 p35, IL-12 p40, IL-12 p70, IL-15, IL-18, IL-21, and IL-23. In some embodiments, the interleukin is selected from a group consisting of IL-12 p35, IL-12 p40, and IL-12 p70. In some embodiments, the interleukin is membrane-bound.


In some embodiments, the method further includes administering to the patient an interferon. In some embodiments, the interferon is selected from a group consisting of IFN-alpha, IFN-beta, IFN-delta, IFN-epsilon, IFN-tau, IFN-omega, IFN-zeta, and IFN-gamma.


In some embodiments, the method further includes administering to the patient a TNF superfamily member protein. In some embodiments, the TNF superfamily member protein is selected from a group consisting of TRAIL, Fas ligand, LIGHT (TNFSF-14), TNF-alpha, and 4-1BB ligand.


In some embodiments, the method further includes administering to the patient a cytokine. In some embodiments, the cytokine is selected from a group consisting of GM-CSF, Flt3 ligand, CD40 ligand, anti-TGF-beta, anti-VEGF-R2, and cGAS (guanyl adenylate cyclase).


In another aspect, the invention features a kit containing the nucleic acid or vector of any of the aspects or embodiments described herein and a package insert instructing a user of the kit to express the nucleic acid or vector in a host cell.


In another aspect, the invention features a kit containing the nucleic acid or recombinant orthopoxvirus vector of any of the aspects or embodiments described herein and a package insert instructing a user to administer a therapeutically effective amount of the nucleic acid or recombinant orthopoxvirus vector to a mammalian patient (e.g., a human patient) having cancer, thereby treating the cancer.


Definitions

As used herein, the term “about” refers to a value that is no more than 10% above or below the value being described. For example, the term “about 5 nM” indicates a range of from 4.5 nM to 5.5 nM.


As used herein, the term “antibody” (Ab) refers to an immunoglobulin molecule that specifically binds to, or is immunologically reactive with, a particular antigen, and includes polyclonal, monoclonal, genetically engineered and otherwise modified forms of antibodies, including but not limited to chimeric antibodies, humanized antibodies, heteroconjugate antibodies (e.g., bi- tri- and quad-specific antibodies, diabodies, triabodies, and tetrabodies), and antigen-binding fragments of antibodies, including e.g., Fab′, F(ab′)2, Fab, Fv, rlgG, and scFv fragments. Moreover, unless otherwise indicated, the term “monoclonal antibody” (mAb) is meant to include both intact molecules, as well as, antibody fragments (such as, for example, Fab and F(ab′)2 fragments) that are capable of specifically binding to a target protein. Fab and F(ab′)2 fragments lack the Fc fragment of an intact antibody, clear more rapidly from the circulation of the animal, and may have less non-specific tissue binding than an intact antibody (see Wahl et al., J. Nucl. Med. 24:316, 1 983; incorporated herein by reference).


The term “antigen-binding fragment,” as used herein, refers to one or more fragments of an antibody that retain the ability to specifically bind to a target antigen. The antigen-binding function of an antibody can be performed by fragments of a full-length antibody. The antibody fragments can be a Fab, F(ab′)2, scFv, SMIP, diabody, a triabody, an affibody, a nanobody, an aptamer, or a domain antibody. Examples of binding fragments encompassed of the term “antigen-binding fragment” of an antibody include, but are not limited to: (i) a Fab fragment, a monovalent fragment consisting of the VL, VH, CL, and CH1 domains; (ii) a F(ab′)2 fragment, a bivalent fragment comprising two Fab fragments linked by a disulfide bridge at the hinge region; (iii) a Fd fragment consisting of the VH and CH1 domains; (iv) a Fv fragment consisting of the VL and VH domains of a single arm of an antibody, (v) a dAb including VH and VL domains; (vi) a dAb fragment (Ward et al., Nature 341:544-546, 1 989), which consists of a VH domain; (vii) a dAb which consists of a VH or a VL domain; (viii) an isolated complementarity determining region (CDR); and (ix) a combination of two or more isolated CDRs which may optionally be joined by a synthetic linker. Furthermore, although the two domains of the Fv fragment, VL and VH, are coded for by separate genes, they can be joined, using recombinant methods, by a linker that enables them to be made as a single protein chain in which the VL and VH regions pair to form monovalent molecules (known as single-chain Fv (scFv); see, e.g., Bird et al., Science 242:423-426, 1988, and Huston et al., Proc. Natl. Acad. Sci. USA 85:5879-5883, 1988). These antibody fragments can be obtained using conventional techniques known to those of skill in the art, and the fragments can be screened for utility in the same manner as intact antibodies. Antigen-binding fragments can be produced by recombinant DNA techniques, enzymatic or chemical cleavage of intact immunoglobulins, or, in some embodiments, by chemical peptide synthesis procedures known in the art.


As used herein, the term “bispecific antibodies” refers to monoclonal, often human or humanized antibodies that have binding specificities for at least two different antigens.


As used herein, the terms “cell,” “cell line,” and “cell culture” may be used interchangeably. All of these terms also include their progeny, which is any and all subsequent generations. It is understood that all progeny may not be identical due to deliberate or inadvertent mutations.


As used herein, the term “chimeric” antibody refers to an antibody having variable sequences derived from an immunoglobulin of one source organism, such as rat or mouse, and constant regions derived from an immunoglobulin of a different organism (e.g., a human). Methods for producing chimeric antibodies are known in the art. See, e.g., Morrison, 1985, Science 229(4719): 1202-7; Oi et al., 1986, BioTechniques 4:214-221; Gillies et al., 1985, J. Immunol. Methods 125:191-202; U.S. Pat. Nos. 5,807,715; 4,816,567; and 4,816,397; incorporated herein by reference.


As used herein, the term “complementarity determining region” (CDR) refers to a hypervariable region found both in the light chain and the heavy chain variable domains. The more highly conserved portions of variable domains are called the framework regions (FRs). As is appreciated in the art, the amino acid positions that delineate a hypervariable region of an antibody can vary, depending on the context and the various definitions known in the art. Some positions within a variable domain may be viewed as hybrid hypervariable positions in that these positions can be deemed to be within a hypervariable region under one set of criteria while being deemed to be outside a hypervariable region under a different set of criteria. One or more of these positions can also be found in extended hypervariable regions. The variable domains of native heavy and light chains each comprise four framework regions that primarily adopt a β-sheet configuration, connected by three CDRs, which form loops that connect, and in some cases form part of, the β-sheet structure. The CDRs in each chain are held together in close proximity by the FR regions in the order FR1-CDR1-FR2-CDR2-FR3-CDR3-FR4 and, with the CDRs from the other antibody chains, contribute to the formation of the target binding site of antibodies (see Kabat et al., Sequences of Proteins of Immunological Interest (National Institute of Health, Bethesda, Md. 1987; incorporated herein by reference).


As used herein, numbering of immunoglobulin amino acid residues is done according to the immunoglobulin amino acid residue numbering system of Kabat et al, unless otherwise indicated.


As used herein, the terms “conservative mutation,” “conservative substitution,” or “conservative amino acid substitution” refer to a substitution of one or more amino acids for one or more different amino acids that exhibit similar physicochemical properties, such as polarity, electrostatic charge, and steric volume. These properties are summarized for each of the twenty naturally-occurring amino acids in table 1 below. From this table it is appreciated that the conservative amino acid families include (i) G, A, V, L and I; (ii) D and E; (iii) C, Sand T; (iv) H, K and R; (v) N and Q; and (vi) F, Y and W. A conservative mutation or substitution is therefore one that substitutes one amino acid for a member of the same amino acid family (e.g., a substitution of Ser for Thr or Lys for Arg).









TABLE 1







Representative physicochemical properties


of naturally occurring amino acids
















Electrostatic




3
1
Side-
character at




Letter
Letter
chain
physiological
Steric


Amino Acid
Code
Code
Polarity
pH (7.4)
Volume















Alanine
Ala
A
nonpolar
neutral
small


Arginine
Arg
R
polar
cationic
large


Asparagine
Asn
N
polar
neutral
intermediate


Aspartic acid
Asp
D
polar
anionic
intermediate


Cysteine
Cys
C
nonpolar
neutral
intermediate


Glutamic acid
Glu
E
polar
anionic
intermediate


Glutamine
Gln
Q
polar
neutral
intermediate


Glycine
Gly
G
nonpolar
neutral
small


Histidine
His
H
polar
Both neutral
large






and cationic







forms in







equilibrium







at pH 7.4



Isoleucine
Ile
I
nonpolar
neutral
large


Leucine
Leu
L
nonpolar
neutral
large


Lysine
Lys
K
polar
cationic
large


Methionine
Met
M
nonpolar
neutral
large


Phenylalanine
Phe
F
nonpolar
neutral
large


Proline
Pro
P
non-polar
neutral
intermediate


Serine
Ser
S
polar
neutral
small


Threonine
Thr
T
polar
neutral
intermediate


Tryptophan
Trp
W
nonpolar
neutral
bulky


Tyrosine
Tyr
Y
polar
neutral
large


Valine
Val
V
nonpolar
neutral
intermediate






based on volume in A3: 50-100 is small, 100-150 is intermediate, 150-200 is large, and >200 is bulky







As used herein, the terms “delete,” “deletion,” and the like refer to modifications to a gene or a regulatory element associated therewith or operatively linked thereto (e.g., a transcription factor-binding site, such as a promoter or enhancer element) that remove the gene or otherwise render the gene nonfunctional. Exemplary deletions, as described herein, include the removal of the entirety of a nucleic acid encoding a gene of interest, from the start codon to the stop codon of the target gene. Other examples of deletions as described herein include the removal of a portion of the nucleic acid encoding the target gene (e.g., one or more codons, or a portion thereof, such as a single nucleotide deletion) such that, upon expression of the partially-deleted target gene, the product is nonfunctional or less functional then a wild-type form of the target gene. Exemplary deletions as described herein include the removal of all or a portion of the regulatory element(s) associated with a gene of interest, such as all or a portion of the promoter and/or enhancer nucleic acids that regulate expression of the target gene.


As used herein, the term “derivatized antibodies” refers to antibodies that are modified by a chemical reaction so as to cleave residues or add chemical moieties not native to an isolated antibody. Derivatized antibodies can be obtained by glycosylation, acetylation, pegylation, phosphorylation, amidation, derivatization by addition of known chemical protecting/blocking groups, proteolytic cleavage, linkage to a cellular ligand or other protein. Any of a variety of chemical modifications can be carried out by known techniques, including, without limitation, specific chemical cleavage, acetylation, formylation, metabolic synthesis of tunicamycin, etc. using established procedures. Additionally, the derivative can contain one or more non-natural amino acids, e.g., using amber suppression technology (see, e.g., U.S. Pat. No. 6,964,859; incorporated herein by reference).


As used herein, the term “diabodies” refers to bivalent antibodies comprising two polypeptide chains, in which each polypeptide chain includes VH and VL domains joined by a linker that is too short (e.g., a linker composed of five amino acids) to allow for intramolecular association of VH and VL domains on the same peptide chain. This configuration forces each domain to pair with a complementary domain on another polypeptide chain so as to form a homodimeric structure. Accordingly, the term “triabodies” refers to trivalent antibodies comprising three peptide chains, each of which contains one VH domain and one VL domain joined by a linker that is exceedingly short (e.g., a linker composed of 1-2 amino acids) to permit intramolecular association of VH and VL domains within the same peptide chain. In order to fold into their native structure, peptides configured in this way typically trimerize so as to position the VH and VL domains of neighboring peptide chains spatially proximal to one another to permit proper folding (see Holliger et al., Proc. Natl. Acad. Sci. USA 90:6444-48, 1993; incorporated herein by reference).


As used herein, a “dual variable domain immunoglobulin” (“DVD-lg”) refers to an antibody that combines the target-binding variable domains of two monoclonal antibodies via linkers to create a tetravalent, dual-targeting single agent. (Gu et al., Meth. Enzymol., 502:25-41, 2012; incorporated by reference herein).


As used herein, the term “endogenous” describes a molecule (e.g., a polypeptide, nucleic acid, or cofactor) that is found naturally in a particular organism (e.g., a human) or in a particular location within an organism (e.g., an organ, a tissue, or a cell, such as a human cell).


As used herein, the term “exogenous” describes a molecule (e.g., a polypeptide, nucleic acid, or cofactor) that is not found naturally in a particular organism (e.g., a human) or in a particular location within an organism (e.g., an organ, a tissue, or a cell, such as a human cell). Exogenous materials include those that are provided from an external source to an organism or to cultured matter extracted there from.


As used herein, the term “framework region” or “FW region” includes amino acid residues that are adjacent to the CDRs. FW region residues may be present in, for example, human antibodies, rodent-derived antibodies (e.g., murine antibodies), humanized antibodies, primatized antibodies, chimeric antibodies, antibody fragments (e.g., Fab fragments), single-chain antibody fragments (e.g., scFv fragments), antibody domains, and bispecific antibodies, among others.


As used herein, the term “heterospecific antibodies” refers to monoclonal, preferably human or humanized, antibodies that have binding specificities for at least two different antigens. Traditionally, the recombinant production of heterospecific antibodies is based on the co-expression of two immunoglobulin heavy chain-light chain pairs, where the two heavy chains have different specificities (Milstein et al., Nature 305:537, 1 983). Similar procedures are disclosed, e.g., in WO 93/08829, U.S. Pat. Nos. 6,210,668; 6,193,967; 6,132,992; 6,106,833; 6,060,285; 6,037,453; 6,010,902; 5,989,530; 5,959,084; 5,959,083; 5,932,448; 5,833,985; 5,821,333; 5,807,706; 5,643,759, 5,601,819; 5,582,996, 5,496,549, 4,676,980, WO 91/00360, WO 92/00373, EP 03089, Traunecker et al., EMBO J. 10:3655 (1991), Suresh et al., Methods in Enzymology 121:21 0 (1986); incorporated herein by reference. Heterospecific antibodies can include Fc mutations that enforce correct chain association in multi-specific antibodies, as described by Klein et al, mAbs 4(6):653-663, 2012; incorporated herein by reference.


As used herein, the term “human antibody” refers to an antibody in which substantially every part of the protein (e.g., CDR, framework, CL, CH domains (e.g., CH1, CH2, CH3), hinge, (VL, VH)) is substantially non-immunogenic in humans, with only minor sequence changes or variations. A human antibody can be produced in a human cell (e.g., by recombinant expression), or by a non-human animal or a prokaryotic or eukaryotic cell that is capable of expressing functionally rearranged human immunoglobulin (e.g., heavy chain and/or light chain) genes. Further, when a human antibody is a single-chain antibody, it can include a linker peptide that is not found in native human antibodies. For example, an Fv can comprise a linker peptide, such as two to about eight glycine or other amino acid residues, which connects the variable region of the heavy chain and the variable region of the light chain. Such linker peptides are considered to be of human origin. Human antibodies can be made by a variety of methods known in the art including phage display methods using antibody libraries derived from human immunoglobulin sequences. See U.S. Pat. Nos. 4,444,887 and 4,716,111; and PCT publications WO 1998/46645; WO 1998/50433; WO 1998/24893; WO 1998/16654; WO 1996/34096; WO 1996/33735; and WO 1991/10741; incorporated herein by reference. Human antibodies can also be produced using transgenic mice that are incapable of expressing functional endogenous immunoglobulins, but which can express human immunoglobulin genes. See, e.g., PCT publications WO 98/24893; WO 92/01047; WO 96/34096; WO 96/33735; U.S. Pat. Nos. 5,413,923; 5,625,126; 5,633,425; 5,569,825; 5,661,016; 5,545,806; 5,814,318; 5,885,793; 5,916,771; and 5,939,598; incorporated by reference herein.


As used herein, the term “humanized” antibodies refers to forms of non-human (e.g., murine) antibodies that are chimeric immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab′, F(ab′)2 or other target-binding subdomains of antibodies) which contain minimal sequences derived from non-human immunoglobulin. In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin. All or substantially all of the FR regions may also be those of a human immunoglobulin sequence. The humanized antibody can also comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin consensus sequence. Methods of antibody humanization are known in the art. See, e.g., Riechmann et al., Nature 332:323-7, 1988; U.S. Pat. Nos. 5,530,101; 5,585,089; 5,693,761; 5,693,762; and U.S. Pat. No. 6,180,370 to Queen et al; EP239400; PCT publication WO 91/09967; U.S. Pat. No. 5,225,539; EP592106; and EP519596; incorporated herein by reference.


As used herein, the term “monoclonal antibody” refers to an antibody that is derived from a single clone, including any eukaryotic, prokaryotic, or phage clone, and not the method by which it is produced.


As used herein, the term “multi-specific antibodies” refers to antibodies that exhibit affinity for more than one target antigen. Multi-specific antibodies can have structures similar to full immunoglobulin molecules and include Fc regions, for example IgG Fc regions. Such structures can include, but not limited to, IgG-Fv, lgG-(scFv)2, DVD-1g, (scFv)2-(scFv)2-Fc and (scFv)2-Fc-(scFv)2. In case of lgG-(scFv)2, the scFv can be attached to either the N-terminal or the C-terminal end of either the heavy chain or the light chain. Exemplary multi-specific molecules have been reviewed by Kontermann, 2012, mAbs 4(2):182-197, Yazaki et al., 2013, Protein Engineering, Design & Selection 26(3):1 87-1 93, and Grote et al., 2012, in Proetzel & Ebersbach (eds.), Antibody Methods and Protocols, Methods in Molecular Biology vol. 901, chapter 16:247-263; incorporated herein by reference. Exemplary multi-specific molecules that lack Fc regions and into which antibodies or antibody fragments can be incorporated include scFv dimers (diabodies), trimers (triabodies) and tetramers (tetrabodies), Fab dimers (conjugates by adhesive polypeptide or protein domains) and Fab trimers (chemically conjugated), are described by Hudson and Souriau, 2003, Nature Medicine 9:129-134; incorporated herein by reference.


As used herein, the term “percent (%) sequence identity” refers to the percentage of amino acid (or nucleic acid) residues of a candidate sequence that are identical to the amino acid (or nucleic acid) residues of a reference sequence after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity (e.g., gaps can be introduced in one or both of the candidate and reference sequences for optimal alignment and non-homologous sequences can be disregarded for comparison purposes). Alignment for purposes of determining percent sequence identity can be achieved in various ways that are within the skill in the art, for instance, using publicly available computer software, such as BLAST, ALIGN, or Megalign (ONASTAR) software. Those skilled in the art can determine appropriate parameters for measuring alignment, including any algorithms needed to achieve maximal alignment over the full length of the sequences being compared. For example, a reference sequence aligned for comparison with a candidate sequence may show that the candidate sequence exhibits from 50% to 100% sequence identity across the full length of the candidate sequence or a selected portion of contiguous amino acid (or nucleic acid) residues of the candidate sequence. The length of the candidate sequence aligned for comparison purposes may be, for example, at least 30%, (e.g., 30%, 40, 50%, 60%, 70%, 80%, 90%, or 100%) of the length of the reference sequence. When a 5 position in the candidate sequence is occupied by the same amino acid residue as the corresponding position in the reference sequence, then the molecules are identical at that position.


As used herein, the term “primatized antibody” refers to an antibody comprising framework regions from primate-derived antibodies and other regions, such as CDRs and constant regions, from antibodies of a non-primate source. Methods for producing primatized antibodies are known in the art. See e.g., U.S. Pat. Nos. 5,658,570; 5,681,722; and 5,693,780; incorporated herein by reference.


As used herein, the term “operatively linked” in the context of a polynucleotide fragment is intended to mean that the two polynucleotide fragments are joined such that the amino acid sequences encoded by the two polynucleotide fragments remain in-frame.


As used herein, the terms “regulatory element” and the like refer to promoters, enhancers, and other expression control elements (e.g., polyadenylation signals) that control the transcription or translation of the antibody chain genes. Such regulatory sequences are described, for example, in Goeddel, Gene Expression Technology: Methods in Enzymology 185 (Academic Press, San Diego, C A, 1990); incorporated herein by reference.


As used herein, the terms “subject” and “patient” refer to an organism that receives treatment for a particular disease or condition as described herein (such as cancer or an infectious disease). Examples of subjects and patients include mammals, such as humans, receiving treatment for diseases or conditions, for example, cell proliferation disorders, such as cancer.


As used herein, the term “scFv” refers to a single-chain Fv antibody in which the variable domains of the heavy chain and the light chain from an antibody have been joined to form one chain. scFv fragments contain a single polypeptide chain that includes the variable region of an antibody light chain (VL) (e.g., CDR-L1, CDR-L2, and/or CDR-L3) and the variable region of an antibody heavy chain (VH) (e.g., CDR-H1, CDR-H2, and/or CDR-H3) separated by a linker. The linker that joins the VL and VH regions of a scFv fragment can be a peptide linker composed of proteinogenic amino acids. Alternative linkers can be used to so as to increase the resistance of the scFv fragment to proteolytic degradation (e.g., linkers containing D-amino acids), in order to enhance the solubility of the scFv fragment (e.g., hydrophilic linkers such as polyethylene glycol-containing linkers or polypeptides containing repeating glycine and serine residues), to improve the biophysical stability of the molecule (e.g., a linker containing cysteine residues that form intramolecular or intermolecular disulfide bonds), or to attenuate the immunogenicity of the scFv fragment (e.g., linkers containing glycosylation sites). scFv molecules are known in the art and are described, e.g., in U.S. Pat. No. 5,892,019, Flo et al., (Gene 77:51, 1989); Bird et al., (Science 242:423, 1988); Pantoliano et al., (Biochemistry 30:10117, 1991); Milenic et al., (Cancer Research 51:6363, 1991); and Takkinen et al., (Protein Engineering 4:837, 1991). The VL and VH domains of a scFv molecule can be derived from one or more antibody molecules. It will also be understood by one of ordinary skill in the art that the variable regions of the scFv molecules of the invention can be modified such that they vary in amino acid sequence from the antibody molecule from which they were derived. For example, in some embodiments, nucleotide or amino acid substitutions leading to conservative substitutions or changes at amino acid residues can be made (e.g., in CDR and/or framework residues). Alternatively or in addition, mutations are made to CDR amino acid residues to optimize antigen binding using art recognized techniques. scFv fragments are described, for example, in WO 2011/084714; incorporated herein by reference.


As used herein, the phrase “specifically binds” refers to a binding reaction which is determinative of the presence of an antigen in a heterogeneous population of proteins and other biological molecules that is recognized, e.g., by an antibody or antigen-binding fragment thereof, with particularity. An antibody or antigen-binding fragment thereof that specifically binds to an antigen may bind to the antigen with a K D of less than 100 nM. For example, an antibody or antigen-binding fragment thereof that specifically binds to an antigen may bind to the antigen with a K D of up to 100 nM (e.g., between 1 pM and 100 nM). An antibody or antigen-binding fragment thereof that does not exhibit specific binding to a particular antigen or epitope thereof may exhibit a K D of greater than 100 nM (e.g., greater than 500 nm, 1 μM, 100 μM, 500 μM, or 1 mM) for that particular antigen or epitope thereof. A variety of immunoassay formats may be used to select antibodies specifically immunoreactive with a particular protein or carbohydrate. For example, solid-phase ELISA immunoassays are routinely used to select antibodies specifically immunoreactive with a protein or carbohydrate. See, Harlow & Lane, Antibodies, A Laboratory Manual, Cold Spring Harbor Press, New York (1988) and Harlow & Lane, Using Antibodies, A Laboratory Manual, Cold Spring Harbor Press, New York (1999), for a description of immunoassay formats and conditions that can be used to determine specific immunoreactivity.


As used herein, the term “transfection” refers to any of a wide variety of techniques commonly used for the introduction of exogenous DNA into a prokaryotic or eukaryotic host cell, e.g., electroporation, lipofection, calcium-phosphate precipitation, DEAE-dextran transfection and the like.


As used herein, the terms “treat” or “treatment” refer to therapeutic treatment, in which the object is to prevent or slow down (lessen) an undesired physiological change or disorder, such as the progression of a cell proliferation disorder, such as cancer. Beneficial or desired clinical results include, but are not limited to, alleviation of symptoms, diminishment of extent of disease, stabilized (i.e., not worsening) state of disease, delay or slowing of disease progression, amelioration or palliation of the disease state, and remission (whether partial or total), whether detectable or undetectable. Those in need of treatment include those already with the condition or disorder, as well as those prone to have the condition or disorder or those in which the condition or disorder is to be prevented.


As used herein, the term “vector” refers to a nucleic acid vector, e.g., a DNA vector, such as a plasmid, a RNA vector, virus or other suitable replicon (e.g., viral vector). A variety of vectors have been developed for the delivery of polynucleotides encoding exogenous proteins into a prokaryotic or eukaryotic cell. Examples of such expression vectors are disclosed in, e.g., WO 1994/11026; incorporated herein by reference. Expression vectors of the invention may contain one or more additional sequence elements used for the expression of proteins and/or the integration of these polynucleotide sequences into the genome of a host cell, such as a mammalian cell (e.g., a human cell). Exemplary vectors that can be used for the expression of antibodies and antibody fragments described herein include plasmids that contain regulatory sequences, such as promoter and enhancer regions, which direct gene transcription. Vectors may contain nucleic acids that modulate the rate of translation of a target gene or that improve the stability or nuclear export of the mRNA that results from gene transcription. These sequence elements may include, e.g., 5′ and 3′ untranslated regions, an internal ribosomal entry site (IRES), and polyadenylation signal site in order to direct efficient transcription of the gene carried on the expression vector. The vectors described herein may also contain a polynucleotide encoding a marker for selection of cells that contain such a vector. Examples of a suitable marker include genes that encode resistance to antibiotics, such as ampicillin, chloramphenicol, kanamycin, or nourseothricin.


As used herein, the term “VII” refers to the variable region of an immunoglobulin heavy chain of an antibody, including the heavy chain of an Fv, scFv, or Fab. References to “VL” refer to the variable region of an immunoglobulin light chain, including the light chain of an Fv, scFv, dsFv or Fab. Antibodies (Abs) and immunoglobulins (Igs) are glycoproteins having the same structural characteristics. While antibodies exhibit binding specificity to a specific target, immunoglobulins include both antibodies and other antibody-like molecules which lack target specificity. Native antibodies and immunoglobulins are usually heterotetrameric glycoproteins of about 1 50,000 Daltons, composed of two identical light (L) chains and two identical heavy (H) chains. Each heavy chain of a native antibody has at the amino terminus a variable domain (VH) followed by a number of constant domains. Each light chain of a native antibody has a variable domain at the amino terminus (VL) and a constant domain at the carboxy terminus.


Gene Definitions

As used herein, “C2L” refers to a orthopoxvirus gene, such as a gene that encodes a kelch-like protein. Non-limiting examples of protein sequences encoding the C2L gene are listed in tables 31-35 below. The term “C2L” may also include fragments or variants of the proteins listed in the tables below, or homologous genes from another orthopoxvirus strain.


As used herein, “C1L” refers to a orthopoxvirus gene. Non-limiting examples of protein sequences encoding the C2L gene are listed in tables 31-35 below. The term “C1L” may also include fragments or variants of the proteins listed in the tables below, or homologous genes from another orthopoxvirus strain.


As used herein, “N1L” refers to a orthopoxvirus gene, such as a gene that encodes a BCL-2 inhibitor. Non-limiting examples of protein sequences encoding the N1L gene are listed in tables 31-35 below. The term “N1L” may also include fragments or variants of the proteins listed in the tables below, or homologous genes from another orthopoxvirus strain.


As used herein, “N2L” refers to a orthopoxvirus gene, such as a gene that encodes a TLR signaling inhibitor. Non-limiting examples of protein sequences encoding the N2L gene are listed in tables 31-35 below. The term “N2L” may also include fragments or variants of the proteins listed in the tables below, or homologous genes from another orthopoxvirus strain.


As used herein, “M1L” refers to a orthopoxvirus gene, such as a gene that encodes an Ankyrin repeat protein. Non-limiting examples of protein sequences encoding the M1L gene are listed in tables 31-35 below. The term “M1L” may also include fragments or variants of the proteins listed in the tables below, or homologous genes from another orthopoxvirus strain.


As used herein, “M2L” refers to a orthopoxvirus gene, such as a gene that encodes an NF-κB inhibitor. Non-limiting examples of protein sequences encoding the M2L gene are listed in tables 31-35 below. The term “M2L” may also include fragments or variants of the proteins listed in the tables below, or homologous genes from another orthopoxvirus strain.


As used herein, “K1L” refers to a orthopoxvirus gene, such as a gene that encodes an NF-κB inhibitor. Non-limiting examples of protein sequences encoding the K1L gene are listed in tables 31-35 below. The term “K1L” may also include fragments or variants of the proteins listed in the tables below, or homologous genes from another orthopoxvirus strain.


As used herein, “K2L” refers to a orthopoxvirus gene, such as a gene that encodes an Ankyrin repeat protein. Non-limiting examples of protein sequences encoding the K2L gene are listed in tables 31-35 below. The term “K2L” may also include fragments or variants of the proteins listed in the tables below, or homologous genes from another orthopoxvirus strain.


As used herein, “K3L” refers to a orthopoxvirus gene, such as a gene that encodes a PKR inhibitor. Non-limiting examples of protein sequences encoding the K3L gene are listed in tables 31-35 below. The term “K3L” may also include fragments or variants of the proteins listed in the tables below, or homologous genes from another orthopoxvirus strain.


As used herein, “K4L” refers to a orthopoxvirus gene, such as a gene that encodes a phospholipase-D. Non-limiting examples of protein sequences encoding the K4L gene are listed in tables 31-35 below. The term “K4L” may also include fragments or variants of the proteins listed in the tables below, or homologous genes from another orthopoxvirus strain.


As used herein, “K5L” refers to a orthopoxvirus gene, such as a gene that encodes a monoglyceride lipase. Non-limiting examples of protein sequences encoding the K5L gene are listed in tables 31-35 below. The term “K5L” may also include fragments or variants of the proteins listed in the tables below, or homologous genes from another orthopoxvirus strain.


As used herein, “K6L” refers to a orthopoxvirus gene, such as a gene that encodes a monoglyceride lipase. Non-limiting examples of protein sequences encoding the K6L gene are listed in tables 31-35 below. The term “K6L” may also include fragments or variants of the proteins listed in the tables below, or homologous genes from another orthopoxvirus strain.


As used herein, “K7R” refers to a orthopoxvirus gene, such as a gene that encodes an NF-κB inhibitor. Non-limiting examples of protein sequences encoding the K7R gene are listed in tables 31-35 below. The term “K7R” may also include fragments or variants of the proteins listed in the tables below, or homologous genes from another orthopoxvirus strain.


As used herein, “F1L” refers to a orthopoxvirus gene, such as a gene that encodes a caspase-9 inhibitor. Non-limiting examples of protein sequences encoding the F1L gene are listed in tables 31-35 below. The term “F1L” may also include fragments or variants of the proteins listed in the tables below, or homologous genes from another orthopoxvirus strain.


As used herein, “F2L” refers to a orthopoxvirus gene, such as a gene that encodes a dUTPase. Non-limiting examples of protein sequences encoding the F2L gene are listed in tables 31-35 below. The term “F2L” may also include fragments or variants of the proteins listed in the tables below, or homologous genes from another orthopoxvirus strain.


As used herein, “F3L” refers to a orthopoxvirus gene, such as a gene that encodes a kelch-like protein. Non-limiting examples of protein sequences encoding the F3L gene are listed in tables 31-35 below. The term “F1L” may also include fragments or variants of the proteins listed in the tables below, or homologous genes from another orthopoxvirus strain.


As used herein, “B14R” refers to a orthopoxvirus gene. Non-limiting examples of protein sequences encoding the B14R gene are listed in tables 36-40 below. The term “B14R” may also include fragments or variants of the proteins listed in the tables below, or homologous genes from another orthopoxvirus strain.


As used herein, “B15R” refers to a orthopoxvirus gene. Non-limiting examples of protein sequences encoding the B15R gene are listed in tables 36-40 below. The term “B15R” may also include fragments or variants of the proteins listed in the tables below, or homologous genes from another orthopoxvirus strain.


As used herein, “B16R” refers to a orthopoxvirus gene, such as a gene that encodes a IL-1-beta inhibitor. Non-limiting examples of protein sequences encoding the B16R gene are listed in tables 31-35 below. The term “B16R” may also include fragments or variants of the proteins listed in the tables below, or homologous genes from another orthopoxvirus strain.


As used herein, “B17L” refers to a orthopoxvirus gene. Non-limiting examples of protein sequences encoding the B17L gene are listed in tables 36-40 below. The term “B17L” may also include fragments or variants of the proteins listed in the tables below, or homologous genes from another orthopoxvirus strain.


As used herein, “B18R” refers to a orthopoxvirus gene, such as a gene that encodes an Ankyrin repeat protein. Non-limiting examples of protein sequences encoding the B18R gene are listed in tables 36-40 below. The term “B18R” may also include fragments or variants of the proteins listed in the tables below, or homologous genes from another orthopoxvirus strain.


As used herein, “B19R” refers to a orthopoxvirus gene, such as a gene that encodes a IFN-alpha-beta-receptor-like secreted glycoprotein. Non-limiting examples of protein sequences encoding the B19R gene are listed in tables 36-40 below. The term “B19R” may also include fragments or variants of the proteins listed in the tables below, or homologous genes from another orthopoxvirus strain.


As used herein, “B20R” refers to a orthopoxvirus gene, such as a gene that encodes an Ankyrin repeat protein. Non-limiting examples of protein sequences encoding the B20R gene are listed in tables 36-40 below. The term “B20R” may also include fragments or variants of the proteins listed in the tables below, or homologous genes from another orthopoxvirus strain.


As used herein, “B8R” refers to a orthopoxvirus gene, such as a gene that encodes a secreted protein with homology to the gamma interferon (IFN-7). A nonlimiting example of a protein sequence encoded by an exemplary B8R gene in a Copenhagen strain of the vaccinia virus is given in UniProtKB database entry P21004 and is reproduced below:









(SEQ ID NO: 209)


MRYIIILAVLFINSIHAKITSYKFESVNFDSKIEWTGDGLYNISLKNYGI





KTWQTMYTNVPEGTYDISAFPKNDFVSFWVKFEQGDYKVEEYCTGLCVEV





KIGPPTVTLTEYDDHINLYIEHPYATRGSKKIPIYKRGDMCDIYLLYTAN





FTFGDSEEPVTYDIDDYDCTSTGCSIDFATTEKVCVTAQGATEGFLEKIT





PWSSEVCLTPKKNVYTCAIRKEDVPNFKDKMARVIKRKFNKQSQSYLTKF





LGSTSNDVTTFLSMLNLTKYS







The term “B8R” may also include fragments or variants of the proteins listed above, or homologous genes from another orthopoxvirus strain. Variants include without limitation those sequences having 85 percent or greater identity to the sequences disclosed herein.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 shows the phylogenetic analysis of 59 poxvirus strains, including the Orthopoxvirus virus strains.



FIG. 2 shows the abundance of different viral strains after passaging 5 Vaccinia viruses in different tumor types.



FIG. 3 shows the ability to replicate in various different patient tumor cores of Vaccinia wild-type strains.



FIG. 4 shows plaque size measurements of different Vaccinia wild-type strains.



FIG. 5A shows the number of TTAA sites across 1 kb regions in Vaccinia Copenhagen genome.



FIG. 5B shows the frequency of Transposon Insertions across Vaccinia Copenhagen genome. Each dot represents a transposon knockout of a particular gene. The position of the dot on the y-axis is determined by the frequency of the knockout.



FIG. 5C shows Poxvirus gene conservation in 59 viruses. Higher conservation indicates the gene is present in a larger amount of species.



FIG. 6 shows the frequency of various transposon knockouts after passaging in permissive cancer cells.



FIG. 7 shows plaque size measurements of purified transposons.



FIG. 8 shows the genomic structure of a 5p deletion (CopMD5p) and a 3p deletion (CopMD3p). CopMD5p and CopMD3p were crossed to generate CopMD5p3p.



FIG. 9 shows a heatmap showing cancer cell death following infection with either Copenhagen or CopMD5p3p at various doses.



FIG. 10 shows the growth curves of Copenhagen and CopMD5p3p replication in 4 different cancer cell lines.



FIG. 11 shows the ability of Copenhagen and CopMD5p3p to replicate in patient ex vivo samples as shown by tittering.



FIG. 12 shows that the modified CopMD5p3p virus forms different plaques than the parental virus. CopMD5p3p plaques are much clearer in the middle and we can see syncytia (cell fusion).



FIG. 13 shows CopMD5p3p induces syncytia (cell fusion) in 786-O cells.



FIG. 14 shows that CopMD5p3p is able to control tumour growth similarly to Copenhagen wild-type but does not cause weight loss.



FIG. 15 shows that CopMD5p3p does not cause pox lesion formation when compared to two other Vaccinia strains (Copenhagen and Wyeth) harboring the oncolytic knockout of thymidine kinase.



FIG. 16 shows the IVIS bio-distribution of Vaccinia after systemic administration in nude CD-1 mice. Luciferase encoding CopMD5p3p (TK KO) is tumor specific and does not replicate in off target tissues.



FIG. 17 shows the bio-distribution of Vaccinia after systemic administration. CopMD5p3p replicates similarly to other oncolytic Vaccinia in the tumour but replicates less in off target tissues/organs.



FIG. 18 shows the immunogenicity of Vaccinia in Human PBMCs. The ability of CopMD5p3p to induce human innate immune cell activation is stronger than that of wild-type Copenhagen. Data was acquired through flow cytometric analysis.



FIG. 19 shows the immunogenicity of Vaccinia in Mouse Splenocytes. The ability of CopMD5p3p to induce mouse innate immune cell activation is stronger than that of Copenhagen. Data was acquired through flow cytometric analysis.



FIG. 20 shows the immunogenicity of Vaccinia in Human cells. The ability of CopMD5p3p to activate NF-kB immune transcription factor is stronger than that of Copenhagen or VVdd but similar to that of MG-1. Data shown are western blots.



FIG. 21 shows the synergy with immune checkpoint inhibitor Anti-CTLA-4 (100 μg) in an aggressive melanoma model (B16-F10). In vivo efficacy measured by survival in an immune competent murine model treated with Vaccinia and Immune Checkpoint Inhibitors Anti-CTLA4.



FIG. 22 shows the synergy with immune checkpoint inhibitor Anti-CTLA4 (100 μg). In vivo efficacy measured by tumor growth (top row) and survival (bottom row) in an immune competent murine model treated with Vaccinia and Immune Checkpoint Inhibitor Anti-CTLA4. CopMD5p3p (left column) is compared to oncolytic Copenhagen TK KO (right column).



FIG. 23 shows the synergy with immune checkpoint inhibitor Anti-PD1 (100 μg). In vivo efficacy measured by tumor growth (top row) and survival (bottom row) in an immune competent murine model treated with Vaccinia and Immune Checkpoint Inhibitor Anti-PD1. CopMD5p3p (left column) is compared to oncolytic Copenhagen TK KO (right column).



FIG. 24 shows the synergy with immune checkpoint inhibitor Anti-PD1 (25 μg) and Anti-CTLA-4 (25 μg). In vivo efficacy measured by tumor growth (top row) and survival (bottom row) in an immune competent murine model treated with Vaccinia and Immune Checkpoint Inhibitors Anti-PD1 and Anti-CTLA4. CopMD5p3p (left column) is compared to oncolytic Copenhagen TK KO (right column).



FIG. 25 shows a schematic representation of the homologous recombination targeting strategy employed to generate denovo 5p (left) and 3p (right) major deletions in various vaccinia strains.



FIG. 26 shows the ability of wild-type Copenhagen vaccinia virus and several modified Copenhagen vaccinia virions to proliferate in various cell lines.



FIG. 27 shows the cytotoxic effects of wild-type Copenhagen vaccinia virus and several modified Copenhagen vaccinia virions on various cell lines, as assessed by coomassie blue (upper panel) and an Alamar Blue assay (lower panel). The order of strains listed for each cell line along the x-axis of the chart shown in the lower panel is as follows: from left to right, CopMD5p, CopMD5p3p, CopMD3p, and CopWT.



FIG. 28 shows the distribution of wild-type Copenhagen vaccinia virus and several modified Copenhagen vaccinia virions upon administration to mice.



FIG. 29 shows the ability of wild-type Copenhagen vaccinia virus and several modified Copenhagen vaccinia virions to activate Natural Killer (NK) cells and stimulate an immune response.



FIG. 30 shows the ability of wild-type Copenhagen vaccinia virus and several modified Copenhagen vaccinia virions to enhance NK cell-mediated degranulation against HT29 cells, a measure of NK cell activity and stimulate an immune response.



FIG. 31 shows the ability of wild-type Copenhagen vaccinia virus and several modified Copenhagen vaccinia virions to prime T-cells to initiate an anti-tumor immune response.



FIG. 32 shows the ability of wild-type Copenhagen vaccinia virus and several modified Copenhagen vaccinia virions to spread to distant locations from the initial point of infection.



FIG. 33 shows the ability of wild-type Copenhagen vaccinia virus and several modified Copenhagen vaccinia virions to form plaques, a measure of viral proliferation.



FIG. 34 shows the ability of wild-type Copenhagen vaccinia virus and several modified Copenhagen vaccinia virions to form plaques in 786-O cells.



FIG. 35 shows the percentage of genes deleted in CopMD5p3p in various poxvirus genomes.



FIG. 36 shows infection of normal versus cancer cell lines of SKV-B8R+ virus.



FIG. 37 shows SKV-B8R+ does not impair interferon signaling.



FIG. 38 shows SKV (CopMD5p3-B8R−) has similar efficacy in tumour control compared to SKV-B8R+.



FIG. 39 shows SKV engineered to express 2 immunotherapeutic transgenes and an antibody.



FIG. 40 shows SKV expressing murine IL-12 p35 membrane bound has greater efficacy in controlling murine tumours.



FIG. 41 shows major double deletions engineered in various vaccinia strains enhance cancer cell killing in vitro.



FIG. 42 shows the phenotypic characterization of HeLa cells infected with various vaccinia strains.



FIG. 43 shows 5p3p vaccinia strains do not induce weight loss compared to wildtype strains.



FIG. 44 shows 5p3p vaccinia strains do not induce pox lesions compared to wildtype strains.





DETAILED DESCRIPTION

The present invention features genetically modified orthopoxviruses, such as vaccinia viruses (e.g. Copenhagen, Western Reserve, Wyeth, Lister, EM63, ACAM2000, LC16m8, CV-1, modified vaccinia Ankara (MVA), Dairen I, GLV-1h68, IHD-J, L-IVP, LC16m8, LC16mO, Tashkent, Tian Tan, and WAU86/88-1 viruses), as well as the use of the same for the treatment of various cancers. The invention is based in part on the surprising discovery that orthopoxviruses, such as Copenhagen, Western Reserve, Wyeth, Lister, EM63, ACAM2000, LC16m8, CV-1, modified vaccinia Ankara (MVA), Dairen I, GLV-1h68, IHD-J, L-IVP, LC16m8, LC16mO, Tashkent, Tian Tan, and WAU86/88-1 viruses, exhibit markedly improved oncolytic activity, replication in tumors, infectivity, immune evasion, tumor persistence, capacity for incorporation of exogenous DNA sequences, and amenability for large scale manufacturing when the viruses are engineered to contain deletions in one or more, or all, of the C2L, C1L, N1L, N2L, M1L, M2L, K1L, K2L, K3L, K4L, K5L, K6L, K7R, F1L, F2L, F3L, B14R, B15R, B16R, B17L, B18R, B19R, B20R, K ORF A, K ORF B, B ORF E, B ORF F, B ORF G, B21R, B22R, B23R, B24R, B25R, B26R, B27R, B28R, and B29R genes. In various embodiments of the invention, the modified orthopox viruses contain a deletion of the B8R gene. While inactive in mice, the B8R gene neutralizes antiviral activity of human IFN-γ. In various embodiments, at least one transgene is subsequently inserted into locus of the B8R gene (now deleted) through a homologous recombination targeting strategy. In various embodiments, the modified orthopoxvirus expresses at least one of three transgenes: IL-12-TM, FLT3-L and anti-CLTA4 antibody.


The orthopoxviruses described herein can be administered to a patient, such as a mammalian patient (e.g., a human patient) to treat a variety of cell proliferation disorders, including a wide range of cancers. The sections that follow describe orthopoxviruses and genetic modifications thereto, as well as methods of producing and propagating genetically modified orthopoxviruses and techniques for administering the same to a patient.


Poxvirus

Generally, a poxvirus viral particle is oval or brick-shaped, measuring some 200-400 nm long. The external surface is ridged in parallel rows, sometimes arranged helically. Such particles are extremely complex, containing over 100 distinct proteins. The extracellular forms contain two membranes (EEV: extracellular enveloped virions), whereas intracellular particles only have an inner membrane (IMV: intracellular mature virions). The outer surface is composed of lipid and protein that surrounds the core, which is composed of a tightly compressed nucleoprotein. Antigenically, poxviruses are also very complex, inducing both specific and cross-reacting antibodies. There are at least ten enzymes present in the particle, mostly concerned with nucleic acid metabolism/genome replication.


The genome of the wild-type poxvirus is linear double-stranded DNA of 130-300 Kbp. The ends of the genome have a terminal hairpin loop with several tandem repeat sequences. Several poxvirus genomes have been sequenced, with most of the essential genes being located in the central part of the genome, while non-essential genes are located at the ends. There are about 250 genes in the poxvirus genome. Replication takes place in the cytoplasm, as the virus is sufficiently complex to have acquired all the functions necessary for genome replication. There is some contribution by the cell, but the nature of this contribution is not clear. However, even though poxvirus gene expression and genome replication occur in enucleated cells, maturation is blocked, indicating some role by the cell.


Once into the cell cytoplasm, gene expression is carried out by viral enzymes associated with the core. Expression is divided into 2 phases: early genes: which represent about of 50% genome, and are expressed before genome replication, and late genes, which are expressed after genome replication. The temporal control of expression is provided by the late promoters, which are dependent on DNA replication for activity. Genome replication is believed to involve self-priming, leading to the formation of high molecular weight concatemers, which are subsequently cleaved and repaired to make virus genomes. Viral assembly occurs in the cytoskeleton and probably involves interactions with the cytoskeletal proteins (e.g., actin-binding proteins). Inclusions form in the cytoplasm that mature into virus particles. Cell to cell spread may provide an alternative mechanism for spread of infection. Overall, replication of this large, complex virus is rather quick, taking just 12 hours on average. At least nine different poxviruses cause disease in humans, but variola virus and vaccinia are the best known. Variola strains are divided into variola major (25-30% fatalities) and variola minor (same symptoms but less than 1% death rate). Infection with both viruses occurs naturally by the respiratory route and is systemic, producing a variety of symptoms, but most notably with variola characteristic pustules and scarring of the skin.


Vaccinia Virus as a Species of Orthopoxvirus

Vaccinia virus is a large, complex enveloped virus having a linear double-stranded DNA genome of about 190K by and encoding for approximately 250 genes. Vaccinia is well-known for its role as a vaccine that eradicated smallpox. Post-eradication of smallpox, scientists have been exploring the use of vaccinia as a tool for delivering genes into biological tissues (gene therapy and genetic engineering). Vaccinia virus is unique among DNA viruses as it replicates only in the cytoplasm of the host cell. Therefore, the large genome is required to code for various enzymes and proteins needed for viral DNA replication. During replication, vaccinia produces several infectious forms, which differ in their outer membranes: the intracellular mature virion (IMV), the intracellular enveloped virion (IEV), the cell-associated enveloped virion (CEV), and the extracellular enveloped virion (EEV). IMV is the most abundant infectious form and is thought to be responsible for spread between hosts. On the other hand, the CEV is believed to play a role in cell-to-cell spread and the EEV is thought to be important for long-range dissemination within the host organism.


Vaccinia virus is closely related to the virus that causes cowpox. The precise origin of vaccinia is unknown, but the most common view is that vaccinia virus, cowpox virus, and variola virus (the causative agent for smallpox) were all derived from a common ancestral virus. There is also speculation that vaccinia virus was originally isolated from horses. A vaccinia virus infection is mild and typically asymptomatic in healthy individuals, but it may cause a mild rash and fever, with an extremely low rate of fatality. An immune response generated against a vaccinia virus infection protects that person against a lethal smallpox infection. For this reason, vaccinia virus was used as a live-virus vaccine against smallpox. The vaccinia virus vaccine is safe because it does not contain the smallpox virus, but occasionally certain complications and/or vaccine adverse effects may arise, especially if the vaccine is immunocompromised.


Exemplary strains of the vaccinia virus include, but are not limited to, Copenhagen, Western Reserve, Wyeth, Lister, EM63, ACAM2000, LC16m8, CV-1, modified vaccinia Ankara (MVA), Dairen I, GLV-1h68, IHD-J, L-IVP, LC16m8, LC16mO, Tashkent, Tian Tan, and WAU86/88-1.


Thymidine Kinase Mutants

Several current clinical studies testing vaccinia virus as an oncolytic virus harbor deletions in the viral Thymidine Kinase (TK) gene. This deletion attenuates the virus, rendering the virus dependent upon the activity of cellular thymidine kinase for DNA replication and, thus, viral propagation. Cellular thymidine kinase is expressed at a low level in most normal tissues and at elevated levels in many cancer cells. Through metabolic targeting, TK-viruses can grow in cells that have a high metabolic rate (e.g., healthy cells or tumor cells) and will not grow well in cells that have low levels of thymidine kinase. Since there exist quiescent tumour cells (e.g., cancer stem cells), TK-viruses are likely compromised in their ability to kill this population of cancer cells just as chemotherapy is largely ineffective. The modified viral vectors described in this disclosure retains virus synthetic machinery (including TK) and may propagate in quiescent cancer cells. The viral modifications of this disclosure may allow the virus to be highly selective without deleting TK or other DNA metabolizing enzymes (e.g., ribonucleotide reductase) and could be more effective in tumors with a low metabolic rate.


Virus Propagation

The present invention features poxviruses, including those constructed with one or more gene deletions compared to wild-type, such that the virus exhibits desirable properties for use against cancer cells, while being less toxic or non-toxic to non-cancer cells. This section summarizes various protocols, by way of example, for producing recombinant poxviruses described herein, such as methods for generating mutated viruses through the use of recombinant DNA technology.


For example, to generate mutations in the poxvirus genome, native and modified polypeptides may be encoded by a nucleic acid molecule comprised in a vector. Vectors include plasmids, cosmids, viruses (bacteriophage, animal viruses, and plant viruses), and artificial chromosomes (e.g., YACs). One of skill in the art would be well equipped to construct a vector through standard recombinant techniques, which are described in Sambrook et al., (1989) and Ausubel et al., 1994, both incorporated herein by reference. In addition to encoding a modified polypeptide such as modified gelonin, a vector may encode non-modified polypeptide sequences such as a tag or targeting molecule.


In order to propagate a vector in a host cell, it may contain one or more origins of replication sites (often termed “ori”), which is a specific nucleic acid sequence at which replication is initiated. Alternatively an autonomously replicating sequence (ARS) can be employed if the host cell is yeast.


In the context of expressing a heterologous nucleic acid sequence, “host cell” refers to a prokaryotic or eukaryotic cell, and it includes any transformable organisms that is capable of replicating a vector and/or expressing a heterologous gene encoded by a vector. A host cell can, and has been, used as a recipient for vectors or viruses (which does not qualify as a vector if it expresses no exogenous polypeptides). A host cell may be “transfected” or “transformed,” which refers to a process by which exogenous nucleic acid, such as a modified protein-encoding sequence, is transferred or introduced into the host cell. A transformed cell includes the primary subject cell and its progeny. Host cells may be derived from prokaryotes or eukaryotes, including yeast cells, insect cells, and mammalian cells, depending upon whether the desired result is replication of the vector or expression of part or all of the vector-encoded nucleic acid sequences. Numerous cell lines and cultures are available for use as a host cell, and they can be obtained through the American Type Culture Collection (ATCC), which is an organization that serves as an archive for living cultures and genetic materials (www.atcc.org). An appropriate host can be determined by one of skill in the art based on the vector backbone and the desired result. A plasmid or cosmid, for example, can be introduced into a prokaryote host cell for replication of many vectors. Bacterial cells used as host cells for vector replication and/or expression include DH5α, JM109, and KCB, as well as a number of commercially available bacterial hosts such as SURE® Competent Cells and SOLOPACK™ Gold Cells (STRATAGENE®, La Jolla, Calif.). Alternatively, bacterial cells such as E. coli LE392 could be used as host cells for phage viruses. Appropriate yeast cells include Saccharomyces cerevisiae, Saccharomyces pombe, and Pichia pastoris. Examples of eukaryotic host cells for replication and/or expression of a vector include HeLa, NIH3T3, Jurkat, 293, Cos, CHO, Saos, and PC12. Many host cells from various cell types and organisms are available and would be known to one of skill in the art. Similarly, a viral vector may be used in conjunction with either a eukaryotic or prokaryotic host cell, particularly one that is permissive for replication or expression of the vector. Some vectors may employ control sequences that allow it to be replicated and/or expressed in both prokaryotic and eukaryotic cells. One of skill in the art would further understand the conditions under which to incubate all of the above described host cells to maintain them and to permit replication of a vector. Also understood and known are techniques and conditions that would allow large-scale production of vectors, as well as production of the nucleic acids encoded by vectors and their cognate polypeptides, proteins, or peptides.


Genetic Modifications to the Orthopoxvirus Genome
Methods of Genetic Modification.

Methods for the insertion or deletion of nucleic acids from a target genome include those described herein and known in the art. One such method that can be used for incorporating polynucleotides encoding target genes into a target genome involves the use of transposons. Transposons are polynucleotides that encode transposase enzymes and contain a polynucleotide sequence or gene of interest flanked by 5′ and 3′ excision sites. Once a transposon has been delivered to a target nucleic acid (e.g., in a host cell), expression of the transposase gene commences and results in active enzymes that cleave the gene of interest from the transposon. This activity is mediated by the site-specific recognition of transposon excision sites by the transposase. In certain cases, these excision sites may be terminal repeats or inverted terminal repeats. Once excised from the transposon, the gene of interest can be integrated into the target genome by transposase-catalyzed cleavage of similar excision sites that exist within the nuclear genome of the cell. This allows the gene of interest to be inserted into the cleaved nuclear DNA at the complementary excision sites, and subsequent covalent ligation of the phosphodiester bonds that join the gene of interest to the DNA of the target genome completes the incorporation process. In certain cases, the transposon may be a retrotransposon, such that the gene encoding the target gene is first transcribed to an RNA product and then reverse-transcribed to DNA before incorporation in the mammalian cell genome. Transposon systems include the piggybac transposon (described in detail in, e.g., WO 2010/085699) and the sleeping beauty transposon (described in detail in, e.g., US2005/0112764), the disclosures of each of which are incorporated herein by reference.


Additional methods for nucleic acid delivery to effect expression of compositions of the present invention are believed to include virtually any method by which a nucleic acid (e.g., DNA, including viral and non-viral vectors) can be introduced into an organelle, a cell, a tissue or an organism, as described herein or as would be known to one of ordinary skill in the art. Such methods include, but are not limited to, direct delivery of DNA such as by injection (U.S. Pat. Nos. 5,994,624, 5,981,274, 5,945,100, 5,780,448, 5,736,524, 5,702,932, 5,656,610, 5,589,466 and 5,580,859, each incorporated herein by reference), including microinjection (Harland and Weintraub, 1985; U.S. Pat. No. 5,789,215, incorporated herein by reference); by electroporation (U.S. Pat. No. 5,384,253, incorporated herein by reference); by calcium phosphate precipitation (Graham and Van Der Eb, 1973; Chen and Okayama, 1987; Rippe et al., 1990); by using DEAE-dextran followed by polyethylene glycol (Gopal, 1985); by direct sonic loading (Fechheimer et al., 1987); by liposome mediated transfection (Nicolau and Sene, 1982; Fraley et al., 1979; Nicolau et al., 1987; Wong et al., 1980; Kaneda et al., 1989; Kato et al., 1991); by microprojectile bombardment (PCT Application Nos. WO 94/09699 and 95/06128; U.S. Pat. Nos. 5,610,042; 5,322,783, 5,563,055, 5,550,318, 5,538,877 and 5,538,880, and each incorporated herein by reference); by agitation with silicon carbide fibers (Kaeppler et al., 1990; U.S. Pat. Nos. 5,302,523 and 5,464,765, each incorporated herein by reference); by Agrobacterium-mediated transformation (U.S. Pat. Nos. 5,591,616 and 5,563,055, each incorporated herein by reference); or by PEG-mediated transformation of protoplasts (Omirulleh et al., 1993; U.S. Pat. Nos. 4,684,611 and 4,952,500, each incorporated herein by reference); by desiccation/inhibition-mediated DNA uptake (Potrykus et al., 1985). Through the application of techniques such as these, organelle(s), cell(s), tissue(s) or organism(s) may be stably or transiently transformed.


CopMD5p, CopMD3p, and CopMD5p3p Deletions.

In various embodiments, various genes are deleted to enhance the oncolytic activity of the orthopoxvirus. Most of the deletions described herein are either involved in blocking a host response to viral infection or otherwise have an unknown function. In various embodiments, at least one of the genes depicted in Table 2 are deleted from the recombinant orthopoxvirus genome. In various embodiments, at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 or 31 of the genes depicted in Table 2 are deleted from the recombinant orthopox genome. In various embodiments, all of the genes depicted in Table 2 are deleted from the recombinant orthopoxvirus genome. Three exemplary embodiments of the present invention, CopMD5p, CopMD3p and CopMD5p3p, are described herein. Depicted in Table 2 below are clusters of deleted genes and their function in CopMD5p, CopMD3p, and CopMD5p3p virus. In various embodiments, where two copies of an ITR exist, only the right ITR of the genome is deleted and the left ITR remains intact. Deletions are confirmed by whole genome sequencing.









TABLE 2







Deleted genes in Orthopoxviruses










Name
Category
Function
Virus Deletions














C2L
Host interaction
Inhibits NFkB
CopMD5p
CopMD5p3p


C1L
Unknown
Unknown




N1L
Host interaction
Inhibits NFkB and Apoptosis




N2L
Host interaction
Inhibits IRF3




M1L
Unknown
Unknown




M2L
Host interaction
Inhibits NFkB and Apoptosis




K1L
Host interaction
Inhibits PKR and NF-kB




K2L
Host interaction
Prevents cell fusion




K3L
Host interaction
Inhibits PKR




K4L
DNA replication
DNA modifying nuclease




K5L
Pseudogene
Pseudogene




K6L
Pseudogene
Pseudogene




K7R
Host interaction
Inhibits NFkB and IRF3




F1L
Host interaction
Inhibits Apoptosis




F2L
DNA replication
Deoxyuridine triphosphatase




F3L
Host interaction
Virulence factor




B14R
Pseudogene
Pseudogene
CopMD3p



B15R
Unknown
Unknown




B16R
Host interaction
IL-1-beta-inhibitor




B17L
Unknown
Unknown




B18R
Unknown
Ankyrin-like




B19R
Host interaction
Secreted IFNa sequestor




B20R
Unknown
Ankyrin-like




B21R-ITR*
Unknown
Unknown




B22R-ITR*
Unknown
Unknown




B23R-ITR*
Unknown
Unknown




B24R-ITR*
Unknown
Unknown




B25R-ITR*
Unknown
Unknown




B26R-ITR*
Unknown
Unknown




B27R-ITR*
Unknown
Unknown




B28R-ITR*
Pseudogene
TNF-a receptor




B29R-ITR*
Host interaction
Secreted CC-chemokine sequestor









B8R Gene Deletions.

In various embodiments, the orthopox viruses are further genetically modified to contain deletions in the B8R gene. The vaccinia virus B8R gene encodes a secreted protein with homology to gamma interferon receptor (IFN-γ). In vitro, the B8R protein binds to and neutralizes the antiviral activity of several species of gamma interferon including human and rat gamma interferon; it does not, however, bind significantly to murine IFN-γ. Deleting the B8R gene prevents the impairment of IFN-γ in humans. Deletion of the B8R gene results in enhanced safety without a concomitant reduction in immunogenicity.


Transgene Insertions

In various embodiments, additional transgenes may be inserted into the vector. In various embodiments, one, two or three transgenes are inserted into the locus of the deleted B8R gene. In some strains, in addition to the transgene(s) present at the site of the B8R deletion, the strain also has, at least one transgene is inserted into an additional locus on the orthopox virus that is not the locus of the deleted B8R gene. In various embodiments, at least one transgene is inserted into boundaries of the 5p deletions, at least one transgene is inserted into the boundaries of the 3p deletions or both. In various, embodiments at least three, four, five or more transgenes are inserted into the modified orthopox virus genome.


In various embodiments, the recombinant orthopoxvirus vector can include at least one transgene encoding an immune checkpoint inhibitor. Exemplary immune checkpoint inhibitors for expression by the orthopoxvirus of the compositions and methods of the invention include but are not limited to OX40 ligand, ICOS ligand, anti-CD47 antibody or antigen-binding fragment thereof, anti-CD40/CD40L antibody or antigen-binding fragment thereof, anti-Lag3 antibody or antigen-binding fragment thereof, anti-CTLA-4 antibody or antigen-binding fragment thereof, anti-PD-L1 antibody or antigen-binding fragment thereof, anti-PD1 antibody or antigen-binding fragment thereof, and anti-Tim-3 antibody or antigen-binding fragment thereof.


In various embodiments, the recombinant orthopoxvirus vector can include at least one transgene encoding at least one interleukin protein. Exemplary interleukin proteins for expression by the orthopoxvirus of the compositions and methods of the invention include but are not limited to IL-1 alpha, IL-1 beta, IL-2, IL-4, IL-7, IL-10, IL-12 p35, IL-12 p40, IL-12 p70, IL-15, IL-18, IL-21, and IL-23.


In various embodiments, recombinant orthopoxvirus vector can include a transgene encoding an interferon. Exemplary interferons for expression by the orthopoxvirus of the compositions and methods of the invention include but are not limited to IFN-alpha, IFN-beta, IFN-delta, IFN-epsilon, IFN-tau, IFN-omega, IFN-zeta, and IFN-gamma.


In various embodiments, the recombinant orthopoxvirus vector can include a transgene encoding a TNF superfamily member protein. Exemplary TNF superfamily member proteins for expression by the orthopoxvirus of the compositions and methods of the invention include but are not limited to TRAIL, Fas ligand, LIGHT (TNFSF-14), TNF-alpha, and 4-1BB ligand.


In various embodiments, the recombinant orthopoxvirus vector can include a transgene encoding a cytokine. Exemplary cytokines for expression by the orthopoxvirus of the compositions and methods of the invention include but are not limited to GM-CSF, Flt3 ligand, CD40 ligand, anti-TGF-beta, anti-VEGF-R2, and cGAS (guanyl adenylate cyclase).


In various embodiments, the recombinant orthopoxvirus vector can include a transgene encoding a tumor-associated antigen. Exemplary tumor-associated antigens for expression by the orthopoxvirus of the compositions and methods of the invention include but are not limited to CD19, CD33, EpCAM, CEA, PSMA, EGFRvIII, CD133, EGFR, CDH19, ENPP3, DLL3, MSLN, ROR1, HER2, HLAA2, EpHA2, EpHA3, MCSP, CSPG4, NG2, RON, FLT3, BCMA, CD20, FAPα, FRα, CA-9, PDGFRα, PDGFRβ, FSP1, S100A4, ADAM12m, RET, MET, FGFR, INSR, NTRK, MAGE-A3, NY-ESO-1, one or more human papillomavirus (HPV) proteins, E6 and E7 proteins of HPV16, E6 and E7 proteins of HPV18, brachyury, or prostatic acid phosphatase, or one or more fragments thereof. Additional examples of tumor-associated antigens for use in conjunction with the compositions and methods described herein include, but are not limited to, those listed in tables 3-30.


Methods of Treatment
Pharmaceutical Composition, Administration, and Doses

Therapeutic compositions containing recombinant orthopoxvirus vectors of the invention can be prepared using methods known in the art. For example, such compositions can be prepared using, e.g., physiologically acceptable carriers, excipients or stabilizers (Remington's Pharmaceutical Sciences 16th edition, Osol, A. Ed. (1980); incorporated herein by reference), and in a desired form, e.g., in the form of lyophilized formulations or aqueous solutions.


To induce oncolysis, kill cells, inhibit growth, inhibit metastases, decrease tumor size and otherwise reverse or reduce the malignant phenotype of tumor cells, using the methods and compositions of the present invention, one may contact a tumor with the modified orthopoxvirus, e.g., by administration of the orthopoxvirus to a patient having cancer by way of, for instance, one or more of the routes of administration described herein. The route of administration may vary with the location and nature of the cancer, and may include, e.g., intradermal, transdermal, parenteral, intravenous, intramuscular, intranasal, subcutaneous, regional (e.g., in the proximity of a tumor, particularly with the vasculature or adjacent vasculature of a tumor), percutaneous, intratracheal, intraperitoneal, intraarterial, intravesical, intratumoral, inhalation, perfusion, lavage, and oral administration and formulation.


The term “intravascular” is understood to refer to delivery into the vasculature of a patient, meaning into, within, or in a vessel or vessels of the patient. In certain embodiments, the administration is into a vessel considered to be a vein (intravenous), while in others administration is into a vessel considered to be an artery. Veins include, but are not limited to, the internal jugular vein, a peripheral vein, a coronary vein, a hepatic vein, the portal vein, great saphenous vein, the pulmonary vein, superior vena cava, inferior vena cava, a gastric vein, a splenic vein, inferior mesenteric vein, superior mesenteric vein, cephalic vein, and/or femoral vein. Arteries include, but are not limited to, coronary artery, pulmonary artery, brachial artery, internal carotid artery, aortic arch, femoral artery, peripheral artery, and/or ciliary artery. It is contemplated that delivery may be through or to an arteriole or capillary.


Intratumoral injection, or injection directly into the tumor vasculature is specifically contemplated for discrete, solid, accessible tumors. Local, regional or systemic administration also may be appropriate. The viral particles may advantageously be contacted by administering multiple injections to the tumor, spaced, for example, at approximately 1 cm intervals. In the case of surgical intervention, the present invention may be used preoperatively, such as to render an inoperable tumor subject to resection. Continuous administration also may be applied where appropriate, for example, by implanting a catheter into a tumor or into tumor vasculature. Such continuous perfusion may take place, for example, for a period of from about 1-2 hours, to about 2-6 hours, to about 6-12 hours, or about 12-24 hours following the initiation of treatment. Generally, the dose of the therapeutic composition via continuous perfusion may be equivalent to that given by a single or multiple injections, adjusted over a period of time during which the perfusion occurs. It is further contemplated that limb perfusion may be used to administer therapeutic compositions of the present invention, particularly in the treatment of melanomas and sarcomas.


Treatment regimens may vary, and often depend on tumor type, tumor location, disease progression, and health and age of the patient. Certain types of tumor will require more aggressive treatment, while at the same time, certain patients cannot tolerate more taxing protocols. The clinician will be best suited to make such decisions based on the known efficacy and toxicity (if any) of the therapeutic formulations. In certain embodiments, the tumor being treated may not, at least initially, be resectable. Treatments with the therapeutic agent of the disclosure may increase the resectability of the tumor due to shrinkage at the margins or by elimination of certain particularly invasive portions. Following treatments, resection may be possible. Additional treatments subsequent to resection will serve to eliminate microscopic residual disease at the tumor site.


The treatments may include various “unit doses.” Unit dose is defined as containing a predetermined-quantity of the therapeutic composition. The quantity to be administered, and the particular route and formulation, are within the skill of those in the clinical arts. A unit dose need not be administered as a single injection but may comprise continuous infusion over a set period of time. Unit dose of the present invention may conveniently be described in terms of plaque forming units (pfu) for a viral construct. Unit doses may range from 103, 104, 105, 106, 107, 108, 109, 1010, 1011, 1012, to 1013 pfu and higher. Additionally or alternatively, depending on the kind of virus and the titer attainable, one may deliver 1 to 100, 10 to 50, 100-1000, or up to about or at least about 1×104, 1×105, 1×106, 1×107, 1×108, 1×109, 1×1010, 1×1011, 1×1012, 1×1013, 1×1014, or 1×1015 or higher infectious viral particles (vp), including all values and ranges there between, to the tumor or tumor site.


Another method of delivery of the recombinant orthopoxvirus genome disclosed herein to cancer or tumor cells may be via intratumoral injection. However, the pharmaceutical compositions disclosed herein may alternatively be administered parenterally, intravenously, intradermally, intramuscularly, transdermally or even intraperitoneally as described in U.S. Pat. Nos. 5,543,158; 5,641,515 and 5,399,363 (each specifically incorporated herein by reference in its entirety). Injection of nucleic acid constructs may be delivered by syringe or any other method used for injection of a solution, as long as the expression construct can pass through the particular gauge of needle required for injection. An exemplary needleless injection system that may be used for the administration of recombinant orthopoxviruses described herein is exemplified in U.S. Pat. No. 5,846,233. This system features a nozzle defining an ampule chamber for holding the solution and an energy device for pushing the solution out of the nozzle to the site of delivery. Another exemplary syringe system is one that permits multiple injections of predetermined quantities of a solution precisely at any depth (U.S. Pat. No. 5,846,225).


Mixtures of the viral particles or nucleic acids described herein may be prepared in water suitably mixed with one or more excipients, carriers, or diluents. Dispersions may also be prepared in glycerol, liquid polyethylene glycols, and mixtures thereof and in oils. Under ordinary conditions of storage and use, these preparations may contain a preservative to prevent the growth of microorganisms. The pharmaceutical forms suitable for injectable use include sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions (U.S. Pat. No. 5,466,468, specifically incorporated herein by reference in its entirety). In all cases the form may be sterile and may be fluid to the extent that easy syringability exists. It may be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms, such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (e.g., glycerol, propylene glycol, and liquid polyethylene glycol, and the like), suitable mixtures thereof, and/or vegetable oils. Proper fluidity may be maintained, for example, by the use of a coating, such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. The prevention of the action of microorganisms can be brought about by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars or sodium chloride. Prolonged absorption of the injectable compositions can be brought about by the use in the compositions of agents delaying absorption, for example, aluminum monostearate and gelatin.


For parenteral administration in an aqueous solution, for example, the solution may be suitably buffered if necessary and the liquid diluent first rendered isotonic with sufficient saline or glucose. These particular aqueous solutions are especially suitable for intravenous, intramuscular, subcutaneous, intratumoral and intraperitoneal administration. In this connection, sterile aqueous media that can be employed will be known to those of skill in the art in light of the present disclosure. For example, one dosage may be dissolved in 1 ml of isotonic NaCl solution and either added to 1000 ml of hypodermoclysis fluid or injected at the proposed site of infusion. Some variation in dosage will necessarily occur depending on the condition of the subject being treated. The person responsible for administration will, in any event, determine the appropriate dose for the individual subject. Moreover, for human administration, preparations should meet sterility, pyrogenicity, general safety, and purity standards as required by FDA Office of Biologics standards.


As used herein, “carrier” includes any and all solvents, dispersion media, vehicles, coatings, diluents, antibacterial and antifungal agents, isotonic and absorption delaying agents, buffers, carrier solutions, suspensions, colloids, and the like. The use of such media and agents for pharmaceutical active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active ingredient, its use in the therapeutic compositions is contemplated. Supplementary active ingredients can also be incorporated into the compositions. The phrase “pharmaceutically acceptable” or “pharmacologically-acceptable” refers to molecular entities and compositions that do not produce an allergic or similar untoward reaction when administered to a human. The preparation of an aqueous composition that contains a protein as an active ingredient is well understood in the art. Typically, such compositions are prepared as injectables, either as liquid solutions or suspensions; solid forms suitable for solution in, or suspension in, liquid prior to injection can also be prepared.


Cancer

The recombinant orthopoxvirus disclosed herein can be administered to a mammalian subject, such as a human, suffering from a cell proliferation disorder, such as cancer, e.g., to kill cancer cells directly by oncolysis and/or to enhance the effectiveness of the adaptive immune response against the target cancer cells. In some embodiments, the cell proliferation disorder is a cancer, such as leukemia, lymphoma, liver cancer, bone cancer, lung cancer, brain cancer, bladder cancer, gastrointestinal cancer, breast cancer, cardiac cancer, cervical cancer, uterine cancer, head and neck cancer, gallbladder cancer, laryngeal cancer, lip and oral cavity cancer, ocular cancer, melanoma, pancreatic cancer, prostate cancer, colorectal cancer, testicular cancer, or throat cancer. In particular cases, the cell proliferation disorder may be a cancer selected from the group consisting of acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), chronic lymphocytic leukemia (CLL), chronic myelogenous leukemia (CML), adrenocortical carcinoma, AIDS-related lymphoma, primary CNS lymphoma, anal cancer, appendix cancer, astrocytoma, atypical teratoid/rhabdoid tumor, basal cell carcinoma, bile duct cancer, extrahepatic cancer, ewing sarcoma family, osteosarcoma and malignant fibrous histiocytoma, central nervous system embryonal tumors, central nervous system germ cell tumors, craniopharyngioma, ependymoma, bronchial tumors, burkitt lymphoma, carcinoid tumor, primary lymphoma, chordoma, chronic myeloproliferative neoplasms, colon cancer, extrahepatic bile duct cancer, ductal carcinoma in situ (DCIS), endometrial cancer, ependymoma, esophageal cancer, esthesioneuroblastoma, extracranial germ cell tumor, extragonadal germ cell tumor, fallopian tube cancer, fibrous histiocytoma of bone, gastrointestinal carcinoid tumor, gastrointestinal stromal tumors (GIST), testicular germ cell tumor, gestational trophoblastic disease, glioma, childhood brain stem glioma, hairy cell leukemia, hepatocellular cancer, langerhans cell histiocytosis, hodgkin lymphoma, hypopharyngeal cancer, islet cell tumors, pancreatic neuroendocrine tumors, wilms tumor and other childhood kidney tumors, langerhans cell histiocytosis, small cell lung cancer, cutaneous T-cell lymphoma, intraocular melanoma, merkel cell carcinoma, mesothelioma, metastatic squamous neck cancer, midline tract carcinoma, multiple endocrine neoplasia syndromes, multiple myeloma/plasma cell neoplasm, myelodysplastic syndromes, nasal cavity and paranasal sinus cancer, nasopharyngeal cancer, neuroblastoma, non-hodgkin lymphoma (NHL), non-small cell lung cancer (NSCLC), epithelial ovarian cancer, germ cell ovarian cancer, low malignant potential ovarian cancer, pancreatic neuroendocrine tumors, papillomatosis, paraganglioma, paranasal sinus and nasal cavity cancer, parathyroid cancer, penile cancer, pharyngeal cancer, pheochromocytoma, pituitary tumor, pleuropulmonary blastoma, primary peritoneal cancer, rectal cancer, retinoblastoma, rhabdomyosarcoma, salivary gland cancer, kaposi sarcoma, rhabdomyosarcoma, sezary syndrome, small intestine cancer, soft tissue sarcoma, throat cancer, thymoma and thymic carcinoma, thyroid cancer, transitional cell cancer of the renal pelvis and ureter, urethral cancer, endometrial uterine cancer, uterine sarcoma, vaginal cancer, vulvar cancer, and Waldenström macroglobulinemia.


A physician having ordinary skill in the art can readily determine an effective amount of the recombinant orthopoxvirus vector for administration to a mammalian subject (e.g., a human) in need thereof. For example, a physician may start prescribing doses of recombinant orthopoxvirus vector at levels lower than that required in order to achieve the desired therapeutic effect and gradually increase the dosage until the desired effect is achieved. Alternatively, a physician may begin a treatment regimen by administering a dose of recombinant orthopoxvirus vector and subsequently administer progressively lower doses until a therapeutic effect is achieved (e.g., a reduction in the volume of one or more tumors). In general, a suitable daily dose of a recombinant orthopoxvirus vector of the invention will be an amount of the recombinant orthopoxvirus vector which is the lowest dose effective to produce a therapeutic effect. A daily dose of a therapeutic composition of the recombinant orthopoxvirus vector of the invention may be administered as a single dose or as two, three, four, five, six or more doses administered separately at appropriate intervals throughout the day, week, month, or year, optionally, in unit dosage forms. While it is possible for the recombinant orthopoxvirus vector of the invention to be administered alone, it may also be administered as a pharmaceutical formulation in combination with excipients, carriers, and optionally, additional therapeutic agents.


Recombinant orthopoxvirus vectors of the invention can be monitored for their ability to attenuate the progression of a cell proliferation disease, such as cancer, by any of a variety of methods known in the art. For instance, a physician may monitor the response of a mammalian subject (e.g., a human) to treatment with recombinant orthopoxvirus vector of the invention by analyzing the volume of one or more tumors in the patient. Alternatively, a physician may monitor the responsiveness of a subject (e.g., a human) t to treatment with recombinant orthopoxvirus vector of the invention by analyzing the T-reg cell population in the lymph of a particular subject. For instance, a physician may withdraw a sample from a mammalian subject (e.g., a human) and determine the quantity or density of cancer cells using established procedures, such as fluorescence activated cell sorting. A finding that the quantity of cancer cells in the sample has decreased (e.g., by 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 96%, 97%, 98%, 99%, or more) relative to the quantity of cancer cells in a sample obtained from the subject prior to administration of the recombinant orthopoxvirus may be an indication that the orthopoxvirus administration is effectively treating the cancer.


Combination Therapy

In various embodiments, the recombinant orthopoxvirus may be co-administered with other cancer therapeutics. Furthermore, in various embodiments, the recombinant orthopoxviruses described herein are administered in conjunction with other cancer treatment therapies, e.g., radiotherapy, chemotherapy, surgery, and/or immunotherapy. In some aspects of this invention, the recombinant orthopoxvirus described herein are administered in conjunction with checkpoint inhibitors. In various embodiments, the recombinant orthopoxvirus may be administered in conjunction with treatment with another immunoncology product. The recombinant orthopoxviruses of the present invention and other therapies or therapeutic agents can be administered simultaneously or sequentially by the same or different routes of administration. The determination of the identity and amount of therapeutic agent(s) for use in the methods of the present invention can be readily made by ordinarily skilled medical practitioners using standard techniques known in the art.


The recombinant orthopoxvirus vectors described herein may be administered with one or more additional agents, such as an immune checkpoint inhibitor. For instance, the recombinant orthopoxvirus vector can be administered simultaneously with, admixed with, or administered separately from an immune checkpoint inhibitor. Exemplary immune checkpoint inhibitors for use in conjunction with the compositions and methods of the invention include but are not limited to OX40 ligand, ICOS ligand, anti-CD47 antibody or antigen-binding fragment thereof, anti-CD40/CD40L antibody or antigen-binding fragment thereof, anti-Lag3 antibody or antigen-binding fragment thereof, anti-CTLA-4 antibody or antigen-binding fragment thereof, anti-PD-L1 antibody or antigen-binding fragment thereof, anti-PD1 antibody or antigen-binding fragment thereof, and anti-Tim-3 antibody or antigen-binding fragment thereof.


Additionally or alternatively, a vector of the invention can be administered simultaneously with, admixed with, or administered separately from an interleukin (IL). For instance, the recombinant orthopoxvirus vector can be administered simultaneously with, admixed with, or administered separately from an interleukin. Exemplary interleukins for use in conjunction with the compositions and methods of the invention include but are not limited to IL-1 alpha, IL-1 beta, IL-2, IL-4, IL-7, IL-10, IL-12 p35, IL-12 p40, IL-12 p70, IL-15, IL-18, IL-21, and IL-23.


Additionally or alternatively, a vector of the invention can be administered simultaneously with, admixed with, or administered separately from an interferon. For instance, the recombinant orthopoxvirus vector can be administered simultaneously with, admixed with, or administered separately from an interferon. Exemplary interferons for use in conjunction with the compositions and methods of the invention include but are not limited to IFN-alpha, IFN-beta, IFN-delta, IFN-epsilon, IFN-tau, IFN-omega, IFN-zeta, and IFN-gamma.


Additionally or alternatively, a vector of the invention can be administered simultaneously with, admixed with, or administered separately from a TNF superfamily member protein. For instance, the recombinant orthopoxvirus vector can be administered simultaneously with, admixed with, or administered separately from a TNF superfamily member protein. Exemplary TNF superfamily member proteins for use in conjunction with the compositions and methods of the invention include but are not limited to TRAIL, Fas ligand, LIGHT (TNFSF-14), TNF-alpha, and 4-1BB ligand.


Additionally or alternatively, a vector of the invention can be administered simultaneously with, admixed with, or administered separately from a cytokine. For instance, the recombinant orthopoxvirus vector can be administered simultaneously with, admixed with, or administered separately from a cytokine. Exemplary cytokines for use in conjunction with the compositions and methods of the invention includes but are not limited to GM-CSF, Flt3 ligand, CD40 ligand, anti-TGF-beta, anti-VEGF-R2, and cGAS (guanyl adenylate cyclase).









TABLE 3







Ovarian cancer











Tumor-associated
Reported immunogenic



No.
antigen
epitopes
Sources













1
Kallikrein 4
FLGYLILGV;
Wilkinson et al. Cancer Immunol.




SVSESDTIRSISIAS;
Immunother. 61(2): 169-79 (2012).




LLANGRMPTVLQCVN;
Hural et al. J. Immunol. 169(1): 557-




and
65 (2002).




RMPTVLQCVNVSVVS






2
PBF
CTACRWKKACQR
Tsukahara et al. Cancer Res.





64(15): 5442-8 (2004).





3
PRAME
VLDGLDVLL;
Kessler et al. J. Exp. Med.




SLYSFPEPEA;
193(1): 73-88 (2001).




ALYVDSLFFL;
Ikeda et al. Immunity 6(2): 199-208




SLLQHLIGL;
(1997).




and





LYVDSLFFL






4
WT1
TSEKRPFMCAY;
Asemissen et al. Clin. Cancer Res.




CMTWNQMNL;
12(24): 7476-82 (2006)




LSHLQMHSRKH;
Ohminami et al. Blood. 95(1): 286-




KRYFKLSHLQMHSRKH;
93 (2000).




and
Guo et al. Blood. 106(4): 1415-8




KRYFKLSHLQMHSRKH
2005).





Lin et al. J. Immunother. 36(3): 159-





70 (2013).





Fujiki et al. J. Immunother.





30(3): 282-93 (2007).





5
HSDL1
CYMEAVAL
Wick et al. Clin. Cancer Res.





20(5): 1125-34 (2014).





6
Mesothelin
SLLFLLFSL
Hassan et al. Appl.




VLPLTVAEV
Immunohistochem. Mol. Morphol.




ALQGGGPPY
13(3): 243-7 (2005).




LYPKARLAF
Thomas et al J Exp Med. 2004 Aug




AFLPWHRLF
2; 200(3):  297-306.





7
NY-ESO-1
HLA-A2-restricted peptide
Jager et al. Proc. Natl. Acad. Scie.




p157-165 (SLLMWITQC),
U.S.A. 103(39): 14453-8 (2006).




HLA-
Gnjatic et al. PNAS




Cw3-restricted p92-100
Sep. 26, 2000 vol. 97 no. 20 p.




(LAMP-FATPM)
10919




and HLA-Cw6-
Jager et al. J Exp Med. 187(2): 265-




restricted p80-88
70 (1998).




(ARGPESRLL) 
Chen et al. J Immunol. 165(2): 948-




SLLMWITQC
55 (2000).




MLMAQEALAFL
Valmori et al. Cancer Res.




YLAMPFATPME
60(16): 4499-506 (2000).




ASGPGGGAPR
Aarnoudse et al. Int J Cancer.




LAAQERRVPR
82(3): 442-8 (1999).




TVSGNILTIR
Eikawa et al. Int J Cancer.




APRGPHGGAASGL
132(2): 345-54 (2013).




MPFATPMEAEL
Wang et al. J Immunol. 161(7): 3598-




KEFTVSGNILTI
606 (1998).




MPFATPMEA
Matsuzaki et al. Cancer Immunol




FATPMEAEL
Immunother. 57(8)1185-95 (2008).




FATPMEAELAR
Ebert et al. Cancer Res. 69(3): 1046-




LAMPFATPM
54 (2009).




ARGPESRLL
Eikawa et al. Int J Cancer.




SLLMWITQCFLPVF 
132(2): 345-54 (2013).




LLEFYLAMPFATPMEAE
Knights et al. Cancer Immunol




L-ARRSLAQ
Immunother. 58(3): 325-38 (2009).




EFYLAMPFATPM
Jager et al. Cancer Immun. 2: 12




PGVLLKEFTVSGNILTIR
(2002).




L-TAADHR
Zeng et al. Proc Natl Acad Sci USA.




RLLEFYLAMPFA
98(7): 3964-9 (2001).




QGAMLAAQERRVPRAA
Mandic et al. J Immunol.




E-VPR
174(3): 1751-9 (2005).




PFATPMEAELARR
Chen et al. Proc Natl Acad Sci USA.




PGVLLKEFTVSGNILTIR
101(25): 9363-8 (2004).




LT
Ayyoub et al. Clin Cancer Res.




VLLKEFTVSG
16(18): 4607-15 (2010).




AADHRQLQLSISSCLQQL
Slager et al. J Immunol.




LKEFTVSGNILTIRL
172(8): 5095-102 (2004).




PGVLLKEFTVSGNILTIR
Mizote et al. Vaccine. 28(32): 5338-




L-TAADHR
46 (2010).




LLEFYLAMPFATPMEAE
Jager et al. J Exp Med. 191(4): 625-




L-ARRSLAQ
30 (2000).




KEFTVSGNILT
Zarour et al. Cancer Res.




LLEFYLAMPFATPM
60(17): 4946-52 (2000).




AGATGGRGPRGAGA
Zeng et at. J Immunol. 165(2): 1153-





9(2000).





Bioley et al. Clin Cancer Res.





15(13): 4467-74 (2009).





Zarour et al. Cancer Res. 62(1): 213-





8 (2002).





Hasegawa et al. Clin Cancer Res.





12(6): 1921-7 (2006).





8
CEA
TYYRPGVNLSLSC
Galanis et al. Cancer Res. 70(3): 875-




EIIYPNASLLIQN
82 (2010).




YACFVSNLATGRNNS
Bast et al. Am. J. Obstet. Gynecol.




LWWVNNQSLPVSP
149(5): 553-9 (1984).




LWWVNNQSLPVSP
Crosti et al. J Immunol.




LWWVNNQSLPVSP
176(8): 5093-9 (2006).




EIIYPNASLLIQN
Kobayashi et al. Clin Cancer Res.




NSIVKSITVSASG
8(10): 3219-25 (2002).




KTWGQYWQV
Campi et al. Cancer Res.




(A)MLGTHTMEV
63(23): 8481-6 (2003).




ITDQVPFSV
Bakker et al. Int J Cancer. 62(1): 97-




YLEPGPVTA
102 (1995).




LLDGTATLRL
Tsai et al. J Immunol. 158(4): 1796-




VLYRYGSFSV
802 (1997).




SLADTNSLAV
Kawakami et al. J Immunol.




RLMKQDFSV
154(8): 3961-8 (1995).




RLPRIFCSC
Cox et al. Science. 264(5159): 716-9




LIYRRRLMK
(1994).




ALLAVGATK
Kawakami et al. J Immunol.




IALNFPGSQK
154(8): 3961-8 (1995).




RSYVPLAHR
Kawakami et al. J Immunol.





161(12): 6985-92 (1998).





Skipper et al. J Immunol.





157(11): 5027-33 (1996).





Michaux et al. J Immunol.





192(4): 1962-71 (2014).





9
p53
VVPCEPPEV
Hung et al. Immunol. Rev. 222: 43-





69 (2008).





10
Her2/Neu
HLYQGCQVV
Nakatsuka et al. Mod. Pathol.




YLVPQQGFFC
19(6): 804-814 (2006).




PLQPEQLQV
Pils et al. Br. J Cancer 96(3): 485-91




TLEEITGYL
(2007).




ALIHHNTHL
Scardino et al. Eur J Immunol.




PLTSIISAV
31(11): 3261-70 (2001).




VLRENTSPK
Scardino et al. J Immunol.




TYLPTNASL
168(11): 5900-6 (2002).





Kawashima et al. Cancer Res.





59(2): 431-5 (1999).





Okugawa et al. Eur J Immunol.





30(11): 3338-46 (2000).





11
EpCAM
RYQLDPKFI
Spizzo et al. Gynecol. Oncol.





103(2): 483-8 (2006).





Tajima et al. Tissue Antigens.





64(6): 650-9 (2004).





12
CA125
ILFTINFTI
Bast et al. Cancer 116(12): 2850-




VLFTINFTI
2853 (2010).




TLNFTITNL





VLQGLLKPL





VLQGLLRPV





RLDPKSPGV





QLYWELSKL





KLTRGIVEL





QLTNGITEL





QLTHNITEL





TLDRNSLYV






13
Folate 
FLLSLALML
Bagnoli et al. Gynecol. Oncol.



receptor α
NLGPWIQQV
88: S140-4 (2003).





Pampeno et al. (2016) High-ranking





In Silico epitopes [determined by 3





algorithms: BISMAS, IEDB,





RANKPEP] unpublished





14
Sperm 
ILDSSEEDK
Chiriva-Inernati et al. J.



protein 17

Immunother. 31(8): 693-703 (2008).





15
TADG-12
YLPKSWTIQV
Bellone et al. Cancer 115(4): 800-11




WIHEQMERDLKT
(2009).





Underwood et al. BBA Mol. Basis of





Disease. 1502(3): 337-350 (2000).





16
MUC-16
ILFTINFTI
Chekmasova et al. Clin. Cancer Res.




VLFTINFTI
16(14): 3594-606 (2010).




TLNFTITNL





VLQGLLKPL





VLQGLLRPV





RLDPKSPGV





QLYWELSKL





KLTRGIVEL





QLTNGITEL





QLTHNITEL





TLDRNSLYV






17
L1CAM
LLANAYIYV
Hong et al. J. Immunother. 37(2): 93-




YLLCKAFGA
104 (2014).




KLSPYVHYT
Pampeno et al. (2016) High-ranking





In Silico epitopes [determined by 3





algorithms: BISMAS, IEDB,





RANKPEP] unpublished





18
Mannan-MUC-1
PDTRPAPGSTAPPAHGV
Loveland et al. Clin. Cancer Res.




TSA
12(3 Pt 1): 869-77 (2006).




STAPPVHNV
Godelaine et al. Cancer Immunol




LLLLTVLTV
Immunother. 56(6): 753-9 (2007).




PGSTAPPAHGVT
Ma et al. Int J Cancer. 129(10): 2427-





34 (2011).





Wen et al. Cancer Sci. 102(8): 1455-





61 (2011).





Jerome et al. J Immunol.





151(3): 1654-62 (1993).





Brossart et al. Blood. 93(12): 4309-





17 (1999).





Hiltbold et al. Cancer Res.





58(22): 5066-70 (1998).





19
HERV-K-MEL
MLAVISCAV
Schiavetti et al. Cancer Res.





62(19): 5510-6 (2002).





20
KK-LC-1
RQKRILVNL
Fukuyama et al. Cancer Res.





66(9): 4922-8 (2006).





21
KM-HN-1
NYNNFYRFL
Fukuyama et al. Cancer Res.




EYSKECLKEF
66(9): 4922-8 (2006).




EYLSLSDKI
Monji et al. Clin Cancer Res. 10(19





Pt 1):  6047-57 (2004).





22
LAGE-1
MLMAQEALAFL
Aarnoudse et al. Int J Cancer.




SLLMWITQC
82(3): 442-8 (1999).




LAAQERRVPR
Rimoldi et al. J Immunol.




ELVRRILSR
165(12): 7253-61 (2000).




APRGVRMAV
Wang et al. J Immunol. 161(7): 3598-




SLLMWITQCFLPVF
606 (1998).




QGAMLAAQERRVPRAA
Sun et al. Cancer Immunol




EVP-R
Immunother. 55(6): 644-52 (2006).




AADHRQLQLSISSCLQQL
Slager et al. Cancer Gene Ther.




CLSRRPWKRSWSAGSCP
11(3): 227-36 (2004).




G-MPHL
Zeng et al. Proc Natl Acad Sci USA.




ILSRDAAPLPRPG
98(7): 3964-9 (2001).




AGATGGRGPRGAGA
Slager et al. J Immunol.





172(8): 5095-102 (2004).





Jager et al. J Exp Med. 191(4): 625-





30 (2000).





Slager et al. J Immunol.





170(3): 1490-7 (2003).





Wang et al. Immunity. 20(1): 107-18





(2004).





Hasegawa et al. Clin Cancer Res.





12(6): 1921-7 (2006).





23
MAGE-A4
EVDPASNTY
Kobayashi et al. Tissue Antigens.




GVYDGREHTV
62(5): 426-32 (2003).




NYKRCFPVI
Duffour et al. Eur J Immunol.




SESLICMIF
29(10): 3329-37 (1999).





Miyahara et al. Clin Cancer Res.





11(15): 5581-9 (2005).





Ottaviani et al. Cancer Immunol





Immunother. 55(7): 867-72 (2006)





Zang et al. Tissue Antigens.





60(5): 365-71 (2002).





24
Sp17
ILDSSEEDK
Chiriva-Internati et al. Int J Cancer.





107(5): 863-5 (2003).





25
SSX-4
INKTSGPKRGKHAWTHR
Ayyoub et al. Clin Immunol.




LRE
114(1): 70-8 (2005).




YFSKKEWEKMKSSEKIV
Valmori et al. Clin Cancer Res.




YVY
12(2): 398-404 (2006).




MKLNYEVMTKLGFKVT





LPPF





KHAWTHRLRERKQLVV





YEEI





LGFKVTLPPFMRSKRAA





DFH





KSSEKIVYVYMKLNYEV





MTK





KHAWTHRLRERKQLVV





YEEI






26
TAG-1
SLGWLFLLL
Adair et al. J Immunother. 31(1): 7-




LSRLSNRLL
17 (2008).





27
TAG-2
LSRLSNRLL
Adair et al. J Immunother. 31(1): 7-





17 (2008).
















TABLE 4







Breast cancer











Tumor-





associated
Reported immunogenic



No.
antigen
epitopes
Sources













1
ENAH(hMena)
TMNGSKSPV
Di Modugno et al. Int. J. Cancer.





109(6): 909-18 (2004).





2
mammaglobin-A
PLLENVISK
Jaramillo et al. Int. J. Cancer.





102(5): 499-506 (2002).





3
NY-BR-1
SLSKILDTV
Wang et al. Cancer Res. 66(13): 6826-





33 (2006).





4
EpCAM
RYQLDPKFI
Gastl et al. Lancet 356(9246): 1981-2





(2000).





Tajima, 2004





5
NY-ESO-1
HLA-A2-restricted peptide
Jager et al. Proc. Natl. Acad. Scie.




p157-165 (SLLMWITQC),
U.S.A. 103(39): 14453-8 (2006).




HLA-
Gnjatic et al. PNAS




Cw3-restricted p92-100
Sep. 26, 2000 vol. 97 no. 20 p.




(LAMP-FATPM)
10919




and HLA-Cw6-
Jager et al. J Exp Med. 187(2): 265-




restricted p80-88
70 (1998).




(ARGPESRLL)
Chen et al. J Immunol. 165(2): 948-




SLLMWITQC
55 (2000).




MLMAQEALAFL
Valmori et al. Cancer Res.




YLAMPFATPME
60(16): 4499-506 (2000).




ASGPGGGAPR
Aarnoudse et al. Int J Cancer.




LAAQERRVPR
82(3): 442-8 (1999).




TVSGNILTIR
Eikawa et al. Int J Cancer. 132(2): 345-




APRGPHGGAASGL
54 (2013).




MPFATPMEAEL
Wang et al. J Immunol. 161(7): 3598-




KEFTVSGNILTI
606 (1998).




MPFATPMEA
Matsuzaki et al. Cancer Immunol




FATPMEAEL
Immunother. 57(8)1185-95 (2008).




FATPMEAELAR
Ebert et al. Cancer Res. 69(3): 1046-




LAMPFATPM
54 (2009).




ARGPESRLL 
Eikawa et al. Int J Cancer. 132(2): 345-




SLLMWITQCFLPVF
54 (2013).




LLEFYLAMPFATPMEAE
Knights et al. Cancer Immunol




L-ARRSLAQ
Immunother. 58(3): 325-38 (2009).




EFYLAMPFATPM
Jäger et al. Cancer Immun. 2: 12




PGVLLICEFTVSGNILTIR
(2002).




L-TAADHR
Zeng et al. Proc Natl Acad Sci USA.




RLLEFYLAMPFA
98(7): 3964-9 (2001).




QGAMLAAQERRVPRAA
Mandic et al. J Immunol. 174(3): 1751-




E-VPR
9 (2005).




PFATPMEAELARR
Chen et al. Proc Natl Acad Sci USA.




PGVLLKEFTVSGNILTIR
101(25): 9363-8 (2004).




LT
Ayyoub et al. Clin Cancer Res.




VLLKEFTVSG
16(18): 4607-15 (2010).




AADHRQLQLSISSCLQQL
Slager et al. J Immunol. 172(8): 5095-




LKEFTVSGNILTIRL
102 (2004).




PGVLLKEFTVSGNILTIR
Mizote et al. Vaccine. 28(32): 5338-




L-TAADHR
46 (2010).




LLEFYLAMPFATPMEAE
Jager et al. J Exp Med. 191(4): 625-




L-ARRSLAQ
30 (2000).




KEFTVSGNILT
Zarour et al. Cancer Res. 60(17): 4946-




LLEFYLAMPFATPM
52 (2000).




AGATGGRGPRGAGA
Zeng et al. J Immunol. 165(2): 1153-





9 (2000).





Bioley et al. Clin Cancer Res.





15(13): 4467-74 (2009)





Zarour et al. Cancer Res. 62(1): 213-8





(2002).





Hasegawa et al. Clin Cancer Res.





12(6): 1921-7 (2006).





6
BAGE-1
AARAVFLAL
Boel et al. Immunity. 2(2): 167-





75 (1995).





7
HERV-K-
MLAVISCAV
Schiavetti et al. Cancer Res.



MEL

62(19): 5510-6 (2002).





8
KK-LC-1
RQKRILVNL
Fukuyama et al. Cancer Res.





66(9): 4922-8 (2006).





9
KM-HN-1
NYNNFYRFL
Fukuyama et al. Cancer Res.




EYSKECLKEF
66(9): 4922-8 (2006).




EYLSLSDKI
Monji et al. Clin Cancer Res. 10(18 Pt





1): 6047-57 (2004).





10
LAGE-1
MLMAQEALAFL
Aarnoudse et al. Int J Cancer.




SLLMWITQC
82(3): 442-8 (1999).




LAAQERRVPR
Rimoldi et al. J Immunol.




ELVRRILSR
165(12): 7253-61 (2000).




APRGVRMAV
Wang et al. J Immunol. 161(7): 3598-




SLLMWITQCFLPVF
606 (1998).




QGAMLAAQERRVPRAA
Sun et al. Cancer Immunol




EVP-R
Immunother. 55(6): 644-52 (2006).




AADHRQLQLSISSCLQQL
Slager et al. Cancer Gene Ther.




CLSRRPWICRSWSAGSCP
11(3): 227-36 (2004).




G-MPHL
Zeng et al. Proc Natl Acad Sci USA.




ILSRDAAPLPRPG
98(7): 3964-9 (2001).




AGATGGRGPRGAGA
Slager et al. J Immunol. 172(8): 5095-





102 (2004).





Jager et al. J Exp Med. 191(4): 625-





30 (2000).





Slager et al. J Immunol. 170(3): 1490-





7(2003).





Wang et al. Immunity. 20(1): 107-18





(2004).





Hasegawa et al. Clin Cancer Res.





12(6): 1921-7 (2006).





11
MAGE-A1
EADPTGHSY
Traversari et al. J Exp Med.




KVLEYVIKV
176(5): 1453-7 (1992).




SLFRAVITK
Ottaviani et al. Cancer Immunol




EVYDGREHSA
Immunother. 54(12): 1214-20 (2005).




RVRFFFPSL
Pascolo et al. Cancer Res.




EADPTGHSY
61(10): 4072-7 (2001).




REPVTKAEML
Chaux et al. J Immunol. 163(5): 2928-




KEADPTGHSY
36 (1999).




DPARYEFLW
Luiten et al. Tissue Anitgens.




ITKKVADLVGF
55(2): 49-52 (2000).




SAFPTTINF
Luiten et al. Tissue Antigens.




SAYGEPRKL
56(1): 77-81 (2000).




RVRFFFPSL
Tanzarella et al. Cancer Res.




TSCILESLFRAVITK
59(11): 2668-74 (1999).




PRALAETSYVKVLEY
Stroobant et al. Eur J Immunol.




FLLLKYRAREPVTKAE
42(6): 1417-28 (2012).




EYVIKVSARVRF
Corbière et al. Tissue Antigens.





63(5): 453-7 (2004).





Goodyear et al. Cancer Immunol





Immunother. 60(12): 1751-61 (2011).





van der Bruggen et al. Eur J Immunol.





24(9): 2134-40 (1994).





Wang et al. Cancer Immunol





Immunother. 56(6): 807-18 (2007).





Chaux et al. J Exp Med. 189(5): 767-78





(1999).





Chaux et al. Eur J Immunol. 31(6): 





1910-6 (2001).





12
MAGE-A2
YLQLVFGIEV
Kawashima et al. Hum Immunol.




EYLQLVFGI
59(1): 1-14 (1998).




REPVTKAEML
Tahara et al. Clin Cancer Res.




EGDCAPEEK
5(8): 2236-41 (1999).




LLKYRAREPVTKAE
Tanzarella et al. Cancer Res.





59(11): 2668-74 (1999).





Breckpot et al. J Immunol.





172(4): 2232-7 (2004).





Chaux et al. J Exp Med. 89(5): 767-78





(1999).





13
mucink
PDTRPAPGSTAPPAHGV
Jerome et al. J Immunol. 151(3): 1654-




TSA
62 (1993).





14
Sp17
ILDSSEEDK
Chiriva-Internati et al. Int J Cancer.





107(5): 863-5 (2003).





15
SSX-2
KASEKIFYV
Ayyoub et al. J Immunol.




EKIQKAFDDIAKYFSK
168(4): 1717-22 (2002).




FGRLQGISPKI
Ayyoub et al. J Immunol.




WEKMKASEKIFYVYMK
172(11): 7206-11 (2004).




RK
Neumann et al. Cancer Immunol




KIFYVYMKRKYEAMT
Immunother. 60(9): 1333-46 (2011).




KIFYVYMKRKYEAM
Ayyoub et al. Clin Immunol.





114(1): 70-8 (2005).





Neumann et al. Int J Cancer.





112(4): 661-8 (2004).





Ayyoub et al. J Clin Invest.





113(8): 1225-33 (2004).





16
TAG-1
SLGWLFLLL
Adair et al. J Immunother. 31(1): 7-17




LSRLSNRLL
(2008).





17
TAG-2
LSRLSNRLL
Adair et al. J Immunother. 31(1): 7-17





(2008).





18
TRAG-3
CEFHACWPAFTVLGE
Janjic et al. J Immunol. 177(4): 2717-





27 (2006).





19
Her2/Neu
HLYQGCQVV
Nakatsuka et al. Mod. Pathol.




YLVPQQGFFC
19(6): 804-814 (2006).




PLQPEQLQV
Pils et al. Br. J. Cancer 96(3): 485-91




TLEEITGYL
(2007).




ALIHHNTHL
Scardino et al. Eur J Immunol.




PLTSIISAV
31(11): 3261-70 (2001).




VLRENTSPK
Scardino et al. J Immunol.




TYLPTNASL
168(11): 5900-6 (2002).





Kawashima et al. Cancer Res.





59(2): 431-5 (1999).





Okugawa et al. Eur J Immunol.





30(11): 3338-46 (2000).





20
c-myc

Reuschenbach et al. Cancer Immunol.





Immunother. 58: 1535-1544 (2009)





21
cyclin B1

Reuschenbach et al. Cancer Immunol.





Immunother. 58: 1535-1544 (2009)





22
MUC1

Reuschenbach et al. Cancer Immunol.





Immunother. 58: 1535-1544 (2009)





23
p53
VVPCEPPEV
Hung et al. Immunol. Rev. 222:43-69





(2008).





http://cancerimmunity.org/peptide/mutations/





24
p62

Reuschenbach et al. Cancer Immunol.





Immunother. 58: 1535-1544 (2009)





25
Survivin

Reuschenbach et al. Cancer Immunol.





Immunother. 58: 1535-1544 (2009)
















TABLE 5 







Testicular cancer











Tumor-





associated
Reported immunogenic



No.
antigen
epitopes
Sources





1
CD45
KFLDALISL
Tomita et al. Cancer Sci.





102(4): 697-705 (2011).





2
DKK1
ALGGHPLLGV
Qian et al. Blood. (5): 1587-94





(2007).





3
PRAME
VLDGLDVLL,
Kessler et al. J Exp Med.




SLYSFPEPEA,
193(1): 73-88 (2001).




ALYVDSLFFL,
Ikeda et al. Immunity 6(2): 199-




SLLQHLIGL,
208 (1997).




LYVDSLFFL






4
RU2AS
LPRWPPPQL
Van Den Eynde et al. J. Exp.





Med. 190(12): 1793-800 (1999).





5
Telomerase
ILAKFLHWL;
Vonderheide et al. Immunity




RLVDDFLLV;
10(6): 673-9 (1999).




RPGLLGASVLGLDDI;
Miney et al. Proc. Natl. Acad.




and
Sci. U.S.A. 97(9): 4796-801




LTDLQPYMRQFVAHL
(2000).





Schroers et al. Cancer Res.





62(9): 2600-5 (2002).





Schroers et al. Clin. Cancer Res.





9(13): 4743-55 (2003).
















TABLE 6 







Pancreatic cancer











Tumor-





associated
Reported immunogenic



No.
antigen
epitopes
Sources





1
ENAH (hMena)
TMNGSKSPV 
Di Modugno et al. Int. J.





Cancer. 109(6): 909-18





(2004).





2
PBF
CTACRWKKACQR
Tsukahara et al. Cancer Res.





64(15): 5442-8 (2004).





3
K-ras
VVVGAVGVG
Gjertsen et al. Int. J. Cancer.





72(5): 784-90 (1997).





4
Mesothelin
SLLFLLFSL
Le et al. Clin. Cancer Res.




VLPLTVAEV
18(3): 858-68 (2012).




ALQGGGPPY
Hassan et al. Appl.




LYPKARLAF
Immunohistochem. Mol.




AFLPWHRLF
Morphol. 13(3): 243-7 (2005).





Thomas et al J Exp Med.





2004 Aug. 2; 200(3): 297-306.





5
mucink
PDTRPAPGSTAPPAHGVTSA
Jerome et al. J Immunol.





151(3): 1654-62 (1993).
















TABLE 7







Liver cancer











Tumor-





associated
Reported immunogenic



No.
antigen
epitopes
Sources













1
G250/
HLSTAFAR;
Vissers et al. Cancer Res. 59(21): 5554-9



MN/
KIFGSLAFL;
(1999).



CAIX
IISAVVGIL;
Fisk et al. J Exp Med. 181(6): 2109-17




ALCRWGLLL;
(1995).




ILHNGAYSL;
Brossart et al. Cancer Res. 58(4): 732-6




RLLQETELV;
(1998).




VVKGVVFGI; and
Kawashima et al. Hum Immunol.




YMIMVKCWMI
59(1): 1-14 (1998).





Rongcun et al. J Immunol. 163(2): 1037-





44 (1999).





2
Hepsin
SLLSGDWVL;
Guo et al. Scand J Immunol. 78(3): 248-




GLQLGVQAV;
57 (2013).




and





PLTEYIQPV






3
Intestinal
SPRWWPTCL
Ronsin et al. J Immunol. 163(1): 483-90



carboxyl

(1999).



esterase







4
alpha-
GVALQTMKQ;
Butterfield et al. Cancer Res.



foetoprotein
FMNICFIYEI;
59(13): 3134-42 (1999).




and QLAVSVILRV
Pichard et al. J Immunother. 31(3): 246-





53 (2008)





Alisa et al. Clin. Cancer Res.





11(18): 6686-94 (2005).





5
M-CSF
LPAVVGLSPGEQEY
Probst-Kepper et al. J Exp Med.





193(10): 1189-98 (2001).





6
PBF
CTACRWKKACQR
Tsukahara et al. Cancer Res.





64(15): 5442-8 (2004).





7
PSMA
NYARTEDFF
Horiguchi et al. Clin Cancer Res.





8(12): 3885-92 (2002).





8
NY-ESO-1
HLA-A2-restricted peptide
Jager et al. Proc. Natl. Acad. Scie.




p157-165 (SLLMWITQC),
U.S.A. 103(39): 14453-8 (2006).




HLA-
Gnjatic et al. PNAS




Cw3-restricted p92-100
Sep. 26, 2000 vol. 97 no. 20 p.




(LAMP-FATPM)
10919




and HLA-Cw6-
Jager et al. J Exp Med. 187(2): 265-




restricted p80-88
70 (1998).




(ARGPESRLL)
Chen et al. J Immunol. 165(2): 948-




SLLMWITQC
55 (2000).




MLMAQEALAFL
Valmori et al. Cancer Res. 60(16): 4499-




YLAMPFATPME
506 (2000).




ASGPGGGAPR
Aarnoudse et al. Int J Cancer.




LAAQERRVPR
82(3): 442-8 (1999).




TVSGNILTIR
Eikawa et al. Int J Cancer. 132(2): 345-




APRGPHGGAASGL
54 (2013).




MPFATPMEAEL
Wang et al. J Immunol. 161(7): 3598-




KEFTVSGNILTI
606 (1998).




MPFATPMEA
Matsuzaki et al. Cancer Immunol




FATPMEAEL
Immunother. 57(8)1185-95 (2008).




FATPMEAELAR
Ebert et al. Cancer Res. 69(3): 1046-




LAMPFATPM
54 (2009).




ARGPESRLL
Eikawa et al. Int J Cancer. 132(2): 345-




SLLMWITQCFLPVF
54 (2013).




LLEFYLAMPFATPMEAEL-
Knights et al. Cancer Immunol




ARRSLAQ
Immunother. 58(3): 325-38 (2009).




EFYLAMPFATPM
Jäger et al. Cancer Immun. 2: 12 (2002).




PGVLLKEFTVSGNILTIRL-
Zeng et al. Proc Natl Acad Sci USA.




TAADHR
98(7): 3964-9 (2001).




RLLEFYLAMPFA
Mandic et al. J Immunol. 174(3): 1751-




QGAMLAAQERRVPRAAE-
9 (2005).




VPR
Chen et al. Proc Natl Acad Sci USA.




PFATPMEAELARR
101(25): 9363-8 (2004).




PGVLLKEFTVSGNILTIRLT
Ayyoub et al. Clin Cancer Res.




VLLKEFTVSG
16(18): 4607-15 (2010).




AADHRQLQLSISSCLQQL
Slager et al. J Immunol. 172(8): 5095-




LKEFTVSGNILTIRL
102 (2004).




PGVLLKEFTVSGNILTIRL-
Mizote et al. Vaccine. 28(32): 5338-




TAADHR
46 (2010).




LLEFYLAMPFATPMEAEL-
Jager et al. J Exp Med. 191(4): 625-




ARRSLAQ
30 (2000).




KEFTVSGNILT
Zarour et al. Cancer Res. 60(17): 4946-




LLEFYLAMPFATPM
52 (2000).




AGATGGRGPRGAGA
Zeng et al. J Immunol. 165(2): 1153-





9 (2000).





Bioley et al. Clin Cancer Res.





15(13): 4467-74 (2009).





Zarour et al. Cancer Res. 62(1): 213-8





(2002). 





Hasegawa et al. Clin Cancer Res.





12(6): 1921-7 (2006).





9
LAGE-1
MLMAQEALAFL
Aarnoudse et al. Int J Cancer.




SLLMWITQC
82(3): 442-8 (1999).




LAAQERRVPR
Rimoldi et al. J Immunol.




ELVRRILSR
165(12): 7253-61 (2000).




APRGVRMAV
Wang et al. J Immunol. 161(7): 3598-




SLLMWITQCFLPVF
606 (1998).




QGAMLAAQERRVPRAAE
Sun et al. Cancer Immunol Immunother.




VP-R
55(6): 644-52 (2006).




AADHRQLQLSISSCLQQL
Slager et al. Cancer Gene Ther.




CLSRRPWKRSWSAGSCP
11(3): 227-36 (2004).




G-MPHL
Zeng et al. Proc Natl Acad Sci USA.




ILSRDAAPLPRPG
98(7): 3964-9 (2001).




AGATGGRGPRGAGA
Stager et al. J Immunol. 172(8): 5095-





102 (2004).





Jager et al. J Exp Med. 191(4): 625-





30 (2000).





Stager et al. J Immunol. 170(3): 1490-





7 (2003).





Wang et al. Immunity. 20(1): 107-18





(2004).





Hasegawa et al. Clin Cancer Res.





12(6): 1921-7 (2006).





10
HERV-K-
MLAVISCAV
Schiavetti et al. Cancer Res.



MEL

62(19): 5510-6 (2002).





11
KK-LC-1
RQKRILVNL
Fukuyama et al. Cancer Res.





66(9): 4922-8 (2006).





12
KM-HN-1
NYNNFYRFL
Fukuyama et al. Cancer Res.





66(9): 4922-8 (2006).




EYSKECLKEF
Monji et al. Clin Cancer Res. 10(18 Pt





1): 6047-57 (2004).




EYLSLSDKI






13
Sp17
ILDSSEEDK
Chiriva-Internati et al. Int J Cancer.





107(5): 863-5 (2003).





14
c-myc

Reuschenbach et al. Cancer Immunol.





Immunother. 58: 1535-1544 (2009)





15
cyclin B1

Reuschenbach et al. Cancer Immunol.





Immunother. 58: 1535-1544 (2009)





16
p53
VVPCEPPEV
Hung et al. Immunol. Rev. 222:43-69





(2008).





http://cancerimmunity.org/peptide/mutations/





17
p62

Reuschenbach et al. Cancer Immunol.





Immunother. 58: 1535-1544 (2009)





18
Survivin

Reuschenbach et al. Cancer Immunol.





Immunother. 58: 1535-1544 (2009)
















TABLE 8 







Colorectal cancer











Tumor-





associated
Reported immunogenic



No.
antigen
epitopes
Sources













1
ENAH (hMena)
TMNGSKSPV
Di Modugno et al. Int. J Cancer.





109(6): 909-18 (2004).





2
Intestinal
SPRWWPTCL
Ronsin et al. J Immunol. 163(1): 483-



carboxyl

90 (1999).



esterase







3
CASP-5
FLIIWQNTM
Schwitalle et al. Cancer Immun. 4: 14





(2004).





4
COA-1
TLYQDDTLTLQAAG
Maccalli et al. Cancer Res.





63(20): 6735-43 (2003).





5
OGT
SLYKFSPFPL
Ripberger. J Clin Immunol. 23(5): 415-





23 (2003).





6
OS-9
KELEGILLL
Vigneron et al. Cancer Immun. 2: 9





(2002).





7
TGF-betaRII
RLSSCVPVA
Linnebacher et al. Int. J. Cancer.





93(1): 6-11 (2001).





8
NY-ESO-1
HLA-A2-restricted peptide
Jager et al. Proc. Natl. Acad. Scie.




p157-165 (SLLMWITQC),
U.S.A. 103(39): 14453-8 (2006).




HLA-
Gnjatic et al. PNAS




Cw3-restricted p92-100
Sep. 26, 2000 vol. 97 no. 20 p.




(LAMP-FATPM)
10919




and HLA-Cw6-
Jager et al. J Exp Med. 187(2): 265-




restricted p80-88
70 (1998).




(ARGPESRLL)
Chen et al. J Immunol. 165(2): 948-




SLLMWITQC
55 (2000).




MLMAQEALAFL
Valmori et al. Cancer Res.




YLAMPFATPME
60(16): 4499-506 (2000).




ASGPGGGAPR
Aarnoudse et al. Int J Cancer.




LAAQERRVPR
82(3): 442-8 (1999).




TVSGNILTIR
Eikawa et al. Int J Cancer. 132(2): 345-




APRGPHGGAASGL
54 (2013).




MPFATPMEAEL
Wang et al. J Immunol. 161(7): 3598-




KEFTVSGNILTI
606 (1998).




MPFATPMEA
Matsuzaki et al. Cancer Immunol




FATPMEAEL
Immunother. 57(8)1185-95 (2008).




FATPMEAELAR
Ebert et al. Cancer Res. 69(3): 1046-




LAMPFATPM
54 (2009).




ARGPESRLL
Eikawa et al. Int J Cancer. 132(2): 345-




SLLMWITQCFLPVF
54 (2013).




LLEFYLAMPFATPMEAE
Knights et al. Cancer Immunol




L-ARRSLAQ
Immunother. 58(3): 325-38 (2009).




EFYLAMPFATPM
Jäger et al. Cancer Immun. 2:12




PGVLLKEFTVSGNILTLR
(2002).




L-TAADHR
Zeng et al. Proc Natl Acad Sci USA.




RLLEFYLAMPFA
98(7): 3964-9 (2001).




QGAMLAAQERRVPRAA
Mandic et al. J Immunol. 174(3): 1751-




E-VPR
9 (2005).




PFATPMEAELARR
Chen et al. Proc Natl Acad Sci USA.




PGVLLKEFTVSGNILTIR
101(25): 9363-8 (2004).




LT
Ayyoub et al. Clin Cancer Res.




VLLKEFTVSG
16(18): 4607-15 (2010).




AADHRQLQLSISSCLQQL
Slager et al. J Immunol. 172(8): 5095-




LKEFTVSGNILTIRL
102 (2004).




PGVLLKEFTVSGNILTIR
Mizote et al. Vaccine. 28(32): 5338-




L-TAADHR
46 (2010).




LLEFYLAMPFATPMEAE
Jager et al. J Exp Med. 191(4): 625-




L-ARRSLAQ
30 (2000).




KEFTVSGNILT
Zarour et al. Cancer Res. 60(17): 4946-




LLEFYLAMPFATPM
52 (2000).




AGATGGRGPRGAGA
Zeng et al. J Immunol. 165(2): 1153-





9 (2000).





Bioley et al. Clin Cancer Res.





15 (13): 4467-74 (2009).





Zarour et al. Cancer Res. 62(1): 213-8





(2002).





Hasegawa et al. Clin Cancer Res.





12(6): 1921-7 (2006).





9
CEA
TYYRPGVNLSLSC
Duffy, Clin. Chem. 47(4): 624-30




EIIYPNASLLIQN
(2001).




YACFVSNLATGRNNS
Parkhurst et al. Mol. Ther. 19(3): 620-6




LWWVNNQSLPVSP
(2011).




LWWVNNQSLPVSP
Galanis et al. Cancer Res. 70(3): 875-




LWWVNNQSLPVSP
82 (2010).




EIIYPNASLLIQN
Bast et al. Am. J. Obstet. Gynecol.




NSIVKSITVSASG
149(5): 553-9 (1984).




KTWGQYWQV
Crosti et al. J Immunol. 176(8): 5093-9




(A)MLGTHTMEV
(2006).




ITDQVPFSV
Kobayashi et al. Clin Cancer Res.




YLEPGPVTA
8(10): 3219-25 (2002).




LLDGTATLRL
Campi et al. Cancer Res. 63(23): 8481-




VLYRYGSFSV
6 (2003).




SLADTNSLAV
Bakker et at. Int J Cancer. 62(1): 97-




RLMKQDFSV
102 (1995).




RLPRIFCSC
Tsai et al. J Immunol. 158(4): 1796-




LIYRRRLMK
802 (1997).




ALLAVGATK
Kawakami et al. J Immunol.




IALNFPGSQK
154(8): 3961-8 (1995).




RSYVPLAHR
Cox et al. Science. 264(5159): 716-9





(1994).





Kawakami et al. J Immunol.





154(8): 3961-8 (1995).





Kawakami et al. J Immunol.





161(12): 6985-92 (1998).





Skipper et al. J Immunol.





157(11): 5027-33 (1996).





Michaux et al. J Immunol.





192(4): 1962-71 (2014).





10
HERV-K-
MLAVISCAV
Schiavetti et al. Cancer Res.



MEL

62(19): 5510-6 (2002).





11
KK-LC-1
RQKRILVNL
Fukuyama et al. Cancer Res.





66(9): 4922-8 (2006).





12
KM-HN-1
NYNNFYRFL
Fukuyama et al. Cancer Res.




EYSKECLKEF
66(9): 4922-8 (2006).




EYLSLSDKI
Monji et al. Clin Cancer Res. 10(18 Pt





1): 6047-57 (2004).





13
LAGE-1
MLMAQEALAFL
Aarnoudse et al. Int J Cancer.




SLLMWITQC
82(3): 442-8 (1999).




LAAQERRVPR
Rimoldi et al. J Immunol.




ELVRRILSR
165(12): 7253-61 (2000).




APRGVRMAV
Wang et al. J Immunol. 161(7): 3598-




SLLMWITQCFLPVF
606 (1998).




QGAMLAAQERRVPRAA
Sun et at. Cancer Immunol




EVP-R
Immunother. 55(6): 644-52 (2006).




AADHRQLQLSISSCLQQL
Slager et al. Cancer Gene Ther.




CLSRRPWKRSWSAGSCP
11(3): 227-36 (2004).




G-MPHL
Zeng et al. Proc Natl Acad Sci USA.




ILSRDAAPLPRPG 
98(7): 3964-9 (2001).




AGATGGRGPRGAGA
Slager et al. J Immunol. 172(8): 5095-





102 (2004).





Jager et al. J Exp Med. 191(4): 625-





30 (2000).





Slager et al. J Immunol. 170(3): 1490-





7(2003).





Wang et al. Immunity. 20(1): 107-18





(2004).





Hasegawa et al. Clin Cancer Res.





12(6): 1921-7 (2006).





14
MAGE-A2
YLQLVFGIEV
Kawashima et al. Hum Immunol.




EYLQLVFGI
59(1): 1-14 (1998).




REPVTKAEML
Tahara et al. Clin Cancer Res.




EGDCAPEEK
5(8): 2236-41 (1999).




LLKYRAREPVTKAE
Tanzarella et al. Cancer Res.





59(11): 2668-74 (1999).





Breckpot et al. J Immunol.





172(4): 2232-7 (2004).





Chaux et al. J Exp Med. 89(5): 767-78





(1999).





15
Sp17
ILDSSEEDK
Chiriva-Internati et al. Int J Cancer.





107(5): 863-5 (2003).





16
TAG-1
SLGWLFLLL
Adair et al. J Immunother. 31(1): 7-17




LSRLSNRLL
(2008).





17
TAG-2
LSRLSNRLL
Adair et al. J Immunother. 31(1): 7-17





(2008).





18
c-myc

Reuschenbach et al. Cancer Immunol.





Immunother. 58: 1535-1544 (2009)





19
cyclin B1

Reuschenbach et al. Cancer Immunol.





Immunother. 58: 1535-1544 (2009)





20
MUC1

Reuschenbach et al. Cancer Imnumol.





Immunother. 58: 1535-1544 (2009)





21
p53
VVPCEPPEV
Hung et al. Immunol. Rev. 222:43-69





(2008).





http://cancerimmunity.org/peptide/mutations/





22
p62

Reuschenbach et al. Cancer Immunol.





Immunother. 58: 1535-1544 (2009)





23
Survivin

Reuschenbach et al. Cancer Immunol.





Immunother. 58: 1535-1544 (2009)





24
gp70

Castle et al., BMC Genomics 15: 190





(2014)
















TABLE 9







Thyroid cancer











Tumor-





associated
Reported immunogenic



No. 
antigen
epitopes
Sources





1
CALCA
VLLQAGSLHA
El Hage et al. Proc. Natl.





Acad. Sci. U.S.A.





105(29): 10119-24 (2008).





2
NY-ESO-1
HLA-A2-restricted peptide
Jager et al. Proc. Natl. Acad.




p157-165 (SLLMWITQC),
Scie. U.S.A. 103(39): 14453-8




HLA-Cw3-
(2006).




restricted p92-100 (LAMP-
Gnjatic et al. PNAS




FATPM) and
Sep. 26, 2000 vol. 97




HLA-Cw6-restricted p80-88
no. 20 p. 10919




(ARGPESRLL)
Jager et al. J Exp Med.




SLLMWITQC
187(2): 265-70 (1998).




MLMAQEALAFL
Chen et al. J Immunol.




YLAMPFATPME
165(2): 948-55 (2000).




ASGPGGGAPR
Valmori et al. Cancer Res.




LAAQERRVPR
60(16): 4499-506 (2000).




TVSGNILTIR
Aarnoudse et al. Int J Cancer.




APRGPHGGAASGL
82(3): 442-8 (1999).




MPFATPMEAEL
Eikawa et al. Int J Cancer.




KEFTVSGNILTI
132(2): 345-54 (2013).




MPFATPMEA
Wang et al. J Immunol.




FATPMEAEL 
161(7): 3598-606 (1998).




FATPMEAELAR
Matsuzaki et al. Cancer




LAMPFATPM
Immunol Immunother.




ARGPESRLL
57(8)1185-95 (2008).




SLLMWITQCFLPVF
Ebert et al. Cancer Res.




LLEFYLAMPFATPMEAEL-
69(3): 1046-54 (2009).




ARRSLAQ
Eikawa et al. Int J Cancer.




EFYLAMPFATPM
132(2): 345-54 (2013).




PGVLLKEFTVSGNILTIRL-
Knights et al. Cancer




TAADIAR
Immunol Immunother.




RLLEFYLAMPFA
58(3): 325-38 (2009).




QGAMLAAQERRVPRAAE-
Jäger et al. Cancer Immun.




VPR
2: 12 (2002).




PFATPMEAELARR
Zeng et al. Proc Natl Acad Sci




PGVLLKEFTVSGNILTIRLT
USA. 98(7): 3964-9 (2001).




VLLKEFTVSG
Mandic et al. J Immunol.




AADHRQLQLSISSCLQQL
174(3): 1751-9 (2005).




LKEFTVSGNILTIRL
Chen et al. Proc Natl Acad




PGVLLKEFTVSGNILTIRL-
Sci USA. 101(25): 9363-




TAADHR
8 (2004).




LLEFYLAMPFATPMEAEL-
Ayyoub et al. Clin Cancer




ARRSLAQ
Res. 16(18): 4607-15 (2010).




KEFTVSGNILT
Slager et al. J Immunol.




LLEFYLAMPFATPM
172(8): 5095-102 (2004).




AGATGGRGPRGAGA
Mizote et al. Vaccine.





28(32): 5338-46 (2010).





Jager et al. J Exp Med.





191(4): 625-30 (2000).





Zarour et al. Cancer Res.





60(17): 4946-52 (2000).





Zeng et al. J Immunol.





165(2): 1153-9 (2000).





Bioley et al. Clin Cancer Res.





15(13): 4467-74 (2009).





Zarour et al. Cancer Res.





62(1): 213-8 (2002).





Hasegawa et al. Clin Cancer





Res. 12(6): 1921-7 (2006).





3
HERV-K-MEL
MLAVISCAV
Schiavetti et al. Cancer Res.





62(19): 5510-6 (2002).





4
KK-LC-1
RQKRILVNL
Fukuyama et al. Cancer Res.





66(9): 4922-8 (2006).





5
KM-HN-1
NYNNFYRFL
Fukuyama et al. Cancer Res.




EYSKECLKEF
66(9): 4922-8 (2006).




EYLSLSDKI
Monji et al. Clin Cancer Res.





10(18 Pt 1): 6047-57 (2004).





6
LAGE-1
MLMAQEALAFL
Aarnoudse et al. Int J Cancer.




SLLMWITQC
82(3): 442-8 (1999).




LAAQERRVPR
Rimoldi et al. J Immunol.




ELVRRILSR
165(12): 7253-61 (2000).




APRGVRMAV
Wang et al. J Immunol.




SLLMWITQCFLPVF
161(7): 3598-606 (1998).




QGAMLAAQERRVPRAAEVP-R
Sun et al. Cancer Immunol




AADHRQLQLSISSCLQQL
Immunother. 55(6): 644-52




CLSRRPWKRSWSAGSCPG-
(2006).




MPHL
Slager et al. Cancer Gene




ILSRDAAPLPRPG
Ther. 11(3): 227-36 (2004).




AGATGGRGPRGAGA
Zeng et al. Proc Natl Acad Sci





USA. 98(7): 3964-9 (2001).





Slager et al. J Immunol.





172(8): 5095-102 (2004).





Jager et al. J Exp Med.





191(4): 625-30 (2000).





Slager et al. J Immunol.





170(3): 1490-7 (2003).





Wang et al. Immunity.





20(1): 107-18 (2004).





Hasegawa et al. Clin Cancer





Res. 12(6): 1921-7 (2006).





7
Sp17
ILDSSEEDK
Chiriva-Internati et al. Int J





Cancer. 107(5): 863-5 (2003).
















TABLE 10







 Lung cancer











Tumor-
Reported 




associated
immunogenic



No.
antigen
epitopes
Sources













1
CD274
LLNAFTVTV
Munir et al. Cancer Res. 73(6): 1764-76





(2013).





2
mdm-2
VLFYLGQY
Asai et al. Cancer Immun. 2: 3 (2002).





3
alpha-
FIASNGVKLV
Echchakir et al. Cancer Res.



actinin-4

61(10): 4078-83 (2001).





4
Elongation
ETVSEQSNV
Hogan et al. Cancer Res. 58(22): 5144-



factor 2

50 (1998).



(squamous





cell





carcinoma of





the lung)







5
ME1(non-
FLDEFMEGV
Karanikas et al. Cancer Res.



small cell

61(9): 3718-24 (2001).



lung





carcinoma)







6
NFYC
QQITKTEV
Takenoyama et al. Int. J Cancer.



(squamous

118(8): 1992-7 (2006).



cell





carcinoma of





the lung)







7
NY-ESO-1
HLA-A2-restricted peptide
Jager et al. Proc. Natl. Acad. Scie.




p157-165 (SLLMWITQC),
U.S.A. 103(39): 14453-8 (2006).




HLA-
Gnjatic et al. PNAS




Cw3-restricted p92-100
Sep. 26, 2000 vol. 97 no. 20 p.




(LAMP-FATPM)
10919




and HLA-Cw6-
Jager et al. J Exp Med. 187(2): 265-




restricted p80-88
70 (1998).




(ARGPESRLL)
Chen et al. J Immunol. 165(2): 948-




SLLMWITQC
55 (2000).




MLMAQEALAFL
Valmori et al. Cancer Res.




YLAMPFATPME
60(16): 4499-506 (2000).




ASGPGGGAPR
Aarnoudse et al. Int J Cancer.




LAAQERRVPR
82(3): 442-8 (1999).




TVSGNILTIR
Eikawa et al. Int J Cancer. 132(2): 




APRGPHGGAASGL
345-54 (2013).




MPFATPMEAEL
Wang et al. J Immunol. 161(7): 3598-




KEFTVSGNILTI
606 (1998).




MPFATPMEA
Matsuzaki et al. Cancer Immunol




FATPMEAEL
Immunother. 57(8)1185-95 (2008).




FATPMEAELAR
Ebert et al. Cancer Res. 69(3): 1046-




LAMPFATPM
54 (2009).




ARGPESRLL
Eikawa et al. Int J Cancer. 132(2): 




SLLMWITQCFLPVF
345-54 (2013).




LLEFYLAMPFATPMEAE
Knights et al. Cancer Immunol




L-ARRSLAQ
Immunother. 58(3): 325-38 (2009).




EFYLAMPFATPM
Jäger et al. Cancer Immun. 2: 12




PGVLLKEFTVSGNILTIRL
(2002).




-TAADHR
Zeng et al. Proc Natl Acad Sci USA.




RLLEFYLAMPFA
98(7): 3964-9 (2001).




QGAMLAAQERRVPRAA
Mandic et al. J Immunol. 174(3): 1751-




E-VPR
9 (2005).




PFATPMEAELARR
Chen et al. Proc Natl Acad Sci USA.




PGVLLKEFTVSGNILTIRLT
101(25): 9363-8 (2004).




VLLKEFTVSG
Ayyoub et al. Clin Cancer Res.




AADHRQLQLSISSCLQQL
16(18): 4607-15 (2010).




LKEFTVSGNILTIRL
Slager et al. J Immunol. 172(8): 5095-




PGVLLKEFTVSGNILTIRL
102 (2004).




-TAADHR
Mizote et al. Vaccine. 28(32): 5338-




LLEFYLAMPFATPMEAE
46 (2010).




L-ARRSLAQ
Jager et al. J Exp Med. 191(4): 625-




KEFTVSGNILT
30 (2000).




LLEFYLAMPFATPM
Zarour et al. Cancer Res. 60(17): 4946-




AGATGGRGPRGAGA
52 (2000).





Zeng et al. J Immunol. 165(2): 1153-





9 (2000).





Bioley et al. Clin Cancer Res.





15(13): 4467-74 (2009).





Zarour et al. Cancer Res. 62(1): 213-8





(2002).





Hasegawa et al. Clin Cancer Res.





12(6): 1921-7 (2006).





8
GAGE-1, 2, 8
YRPRPRRY
Van den Eynde et al. J Exp Med.





182(3): 689-98 (1995).





9
HERV-K-
MLAVISCAV
Schiavetti et al. Cancer Res.



MEL

62(19): 5510-6 (2002).





10
KK-LC-1
RQKRILVNL
Fukuyama et al. Cancer Res.





66(9): 4922-8 (2006).





11
KM-HN-1
NYNNFYRFL
Fukuyama et al. Cancer Res.




EYSKECLKEF
66(9): 4922-8 (2006).




EYLSLSDKI
Monji et al. Clin Cancer Res. 10(18 Pt





1): 6047-57 (2004).





12
LAGE-1
MLMAQEALAFL
Aarnoudse et al. Int J Cancer.




SLLMWITQC
82(3): 442-8 (1999).




LAAQERRVPR
Rimoldi et al. J Immunol.




ELVRRILSR
165(12): 7253-61 (2000).




APRGVRMAV
Wang et al. J Immunol. 161(7): 3598-




SLLMWITQCFLPVF
606 (1998).




QGAMLAAQERRVPRAA
Sun et al. Cancer Immunol




EVP-R
Immunother. 55(6): 644-52 (2006).




AADHRQLQLSISSCLQQL
Slager et al. Cancer Gene Ther.




CLSRRPWKRSWSAGSCP
11(3): 227-36 (2004).




G-MPHL
Zeng et al. Proc Natl Acad Sci USA.




ILSRDAAPLPRPG
98(7): 3964-9 (2001).




AGATGGRGPRGAGA
Slager et al. J Immunol. 172(8): 5095-





102 (2004).





Jager et al. J Exp Med. 191(4): 625-





30 (2000).





Slager et al. J Immunol. 170(3): 1490-





7 (2003).





Wang et al. Immunity. 20(1): 107-18





(2004).





Hasegawa et al. Clin Cancer Res.





12(6): 1921-7 (2006).





13
MAGE-A2
YLQLVFGIEV
Kawashima et al. Hum Immunol.




EYLQLVFGI
59(1): 1-14 (1998).




REPVTKAEML
Tahara et al. Clin Cancer Res.




EGDCAPEEK
5(8): 2236-41 (1999).




LLKYRAREPVTKAE
Tanzarella et al. Cancer Res.





59(11): 2668-74 (1999).





Breckpot et al. J Immunol.





172(4): 2232-7 (2004).





Chaux et al. J Exp Med. 89(5): 767-78





(1999).





14
MAGE-A6
MVKISGGPR
Zorn et al. Eur J Immunol. 29(2): 602-7



(squamous
EVDPIGHVY
(1999).



cell lung
REPVTKAEML
Benlalam et al. J Immunol.



carcinoma)
EGDCAPEEK
171(11): 6283-9 (2003).




ISGGPRISY
Tanzarella et al. Cancer Res.




LLKYRAREPVTKAE
59(11): 2668-74 (1999).





Breckpot et al. J Immunol.





172(4): 2232-7 (2004).





Vantomme et al. Cancer Immun.





3: 17 (2003).





Chaux et al. J Exp Med. 189(5): 767-





78 (1999).





15
Sp17
ILDSSEEDK
Chiriva-Internati et al. Int J Cancer.





107(5): 863-5 (2003).





16
TAG-1
SLGWLFLLL
Adair et al. J Immunother. 31(1): 7-17




LSRLSNRLL
(2008).





17
TAG-2
LSRLSNRLL
Adair et al. J Immunother. 31(1): 7-17





(2008).





18
TRAG-3
CEFHACWPAFTVLGE
Janjic et al. J Immunol. 177(4): 2717-27





(2006).





19
XAGE-
RQKKIRIQL
Ohue et al. Int J Cancer. 131(5): E649-



1b/GAGED2a
HLGSRQKKIRIQLRSQ
58 (2012).



(non-small
CATWKVICKSCISQTPG
Shimono et al. Int J Oncol. 30(4): 835-



cell lung

40 (2007).



cancer)







20
c-myc

Reuschenbach et al. Cancer Immunol.





Immunother. 58: 1535-1544 (2009)





21
cyclin B1

Reuschenbach et al. Cancer Immunol.





Immunother. 58: 1535-1544 (2009)





22
Her2/Neu
HLYQGCQVV
Nakatsuka et al. Mod. Pathol.




YLVPQQGFFC
19(6): 804-814 (2006).




PLQPEQLQV
Pils et al. Br. J. Cancer 96(3): 485-91




TLEEITGYL
(2007).




ALIHHNTHL
Scardino et al. Eur J Immunol.




PLTSIISAV
31(11): 3261-70 (2001).




VLRENTSPK
Scardino et al. J Immunol.




TYLPTNASL
168(11): 5900-6 (2002).





Kawashima et al. Cancer Res.





59(2): 431-5 (1999).





Okugawa et al. Eur J Immunol.





30(11): 3338-46 (2000).





23
MUC1

Reuschenbach et al. Cancer Immunol.





Immunother. 58: 1535-1544 (2009)





24
p53
VVPCEPPEV
Hung et al. Immunol. Rev. 222: 43-69





(2008).





http://cancerimmunity.org/peptide/muta-





tions/





25
p62

Reuschenbach et al. Cancer Immunol.





Immunother. 58: 1535-1544 (2009)





26
Survivin

Reuschenbach et al. Cancer Immunol.





Immunother. 58: 1535-1544 (2009)
















TABLE 11







Prostate cancer











Tumor-
Reported 




associated
immunogenic



No.
antigen
epitopes
Sources













1
DKK1
ALGGHPLLGV
Qian et al. Blood.





110(5): 1587-94 (2007).





2
ENAH (hMena)
TMNGSKSPV
Di Modugno et al. Int. J.





Cancer. 109(6): 909-18





(2004).





3
Kallikrein 4
FLGYLILGV;
Wilkinson et al. Cancer




SVSESDTIRSISIAS;
Immunol Immunother.




LLANGRMPTVLQCVN;
61(2): 169-79 (2012).




and
Hural et al. J. Immunol.




RMPTVLQCVNVSVVS
169(1): 557-65 (2002).





4
PSMA
NYARTEDFF
Horiguchi et al. Clin Cancer





Res. 8(12): 3885-92 (2002).





5
STEAP1
MIAVFLPIV and
Rodeberg et al. Clin. Cancer




HQQYFYKIPILVINK
Res. 11(12): 4545-52 (2005).





Kobayashi et al. Cancer





Res. 67(11): 5498-504





(2007).





6
PAP
FLFLLFFWL;
Olson et al. Cancer




TLMSAMTNL;
Immunol Immunother.




and
59(6): 943-53 (2010).




ALDVYNGLL






7
PSA (prostate
FLTPKKLQCV and
Correale et al. J Natl.



carcinoma)
VISNDVCAQV
Cancer Inst. 89(4): 293-300





(1997).





8
NY-ESO-1
HLA-A2-restricted peptide
Jager et al. Proc. Natl. Acad.




p157-165 (SLLMWITQC),
Scie. U.S.A. 103(39): 14453-




HLA-Cw3-
8 (2006).




restricted p92-100 (LAMP-
Gnjatic et al. PNAS




FATPM) and
Sep. 26, 2000 vol. 97




HLA-Cw6-restricted p80-88
no. 20 p. 10919




(ARGPESRLL)
Jager et al. J Exp Med.




SLLMWITQC
187(2): 265-70 (1998).




MLMAQEALAFL
Chen et al. J Immunol.




YLAMPFATPME
165(2): 948-55 (2000).




ASGPGGGAPR
Valmori et al. Cancer Res.




LAAQERRVPR
60(16): 4499-506 (2000).




TVSGNILTIR
Aarnoudse et al. Int J




APRGPHGGAASGL
Cancer. 82(3): 442-8 (1999).




MPFATPMEAEL
Eikawa et al. Int J Cancer.




KEFTVSGNILTI
132(2): 345-54 (2013).




MPFATPMEA
Wang et al. J Immunol.




FATPMEAEL
161(7): 3598-606(1998).




FATPMEAELAR
Matsuzaki et al. Cancer




LAMPFATPM
Immunol Immunother.




ARGPESRLL
57(8)1185-95 (2008).




SLLMWITQCFLPVF
Ebert et al. Cancer Res.




LLEFYLAMPFATPMEAEL-
69(3): 1046-54 (2009).




ARRSLAQ
Eikawa et al. Int J Cancer.




EFYLAMPFATPM
132(2): 345-54 (2013).




PGVLLKEFTVSGNILTLRL-
Knights et al. Cancer




TAADHR)
Immunol Immunother.




RLLEFYLAMPFA
58(3): 325-38 (2009).




QGAMLAAQERRVPRAAE-
Jäger et al. Cancer Immun.




VPR
2: 12 (2002).




PFATPMEAELARR
Zeng et al. Proc Natl Acad




PGVLLKEFTVSGNILTIRLT
Sci USA. 98(7): 3964-




VLLKEFTVSG
9 (2001).




AADHRQLQLSISSCLQQL
Mandic et al. J Immunol.




LKEFTVSGNILTIRL
174(3): 1751-9 (2005).




PGVLLICEFTVSGNILTIRL-
Chen et al. Proc Natl Acad




TAADHR
Sci USA. 101(25): 9363-




LLEFYLAMPFATPMEAEL-
8 (2004).




ARRSLAQ
Ayyoub et al. Clin Cancer




KEFTVSGNILT
Res. 16(18): 4607-15 (2010).




LLEFYLAMPFATPM
Slager et al. J Immunol.




AGATGGRGPRGAGA
172(8): 5095-102 (2004).





Mizote et al. Vaccine.





28(32): 5338-46 (2010).





Jager et al. J Exp Med.





191(4): 625-30 (2000).





Zarour et al. Cancer Res.





60(17): 4946-52 (2000).





Zeng et al. J Immunol.





165(2): 1153-9 (2000).





Bioley et al. Clin Cancer





Res. 15(13): 4467-74 (2009).





Zarour et al. Cancer Res.





62(1): 213-8 (2002).





Hasegawa et al. Clin Cancer





Res. 12(6): 1921-7 (2006).





9
BAGE-1 (non-
AARAVFLAL
Boel et al. Immunity.



small cell lung

2(2): 167-75 (1995).



carcinoma)







10
GAGE-1, 2, 8
YRPRPRRY
Van den Eynde et al. J Exp



(non-small cell

Med. 182(3): 689-98 (1995).



lunch carcinoma)







11
GAGE-3, 4, 5, 6, 7
YYWPRPRRY
De Backer et al. Cancer



(lung squamous

Res. 59(13): 3157-65 (1999).



cell carcinoma





and lung





adenocarcinoma)







12
HERV-K-MEL
MLAVISCAV
Schiavetti et al. Cancer Res.





62(19): 5510-6 (2002).





13
KK-LC-1
RQKRILVNL
Fukuyama et al. Cancer Res.





66(9): 4922-8 (2006).





14
KM-HN-1
NYNNFYRFL
Fukuyama et al. Cancer Res.




EYSKECLKEF
66(9): 4922-8 (2006).




EYLSLSDKI
Monji et al. Clin Cancer





Res. 10(18 Pt 1): 6047-57





(2004).





15
LAGE-1
MLMAQEALAFL
Aarnoudse et al. Int J




SLLMWITQC
Cancer. 82(3): 442-8 (1999).




LAAQERRVPR
Rimoldi et al. J Immunol.




ELVRRILSR
165(12): 7253-61 (2000).




APRGVRMAV
Wang et al. J Immunol.




SLLMWITQCFLPVF
161(7): 3598-606 (1998).




QGAMLAAQERRVPRAAEVP-R
Sun et al. Cancer Immunol




AADHRQLQLSISSCLQQL
Immunother. 55(6): 644-52




CLSRRPWKRSWSAGSCPG-
(2006).




MPHL
Slager et al. Cancer Gene




ILSRDAAPLPRPG
Ther. 11(3): 227-36 (2004).




AGATGGRGPRGAGA
Zeng et al. Proc Natl Acad





Sci USA. 98(7): 3964-





9(2001).





Slager et al. J Immunol.





172(8): 5095-102 (2004).





Jager et al. J Exp Med.





191(4): 625-30 (2000).





Slager et al. J Immunol.





170(3): 1490-7 (2003).





Wang et al. Immunity.





20(1): 107-18 (2004).





Hasegawa et al. Clin Cancer





Res. 12(6): 1921-7 (2006).





16
Sp17
ILDSSEEDK
Chiriva-Internati et al. Int J





Cancer. 107(5): 863-5





(2003).
















TABLE 12







Kidney cancer











Tumor-
Reported 




associated
immunogenic



No.
antigen
epitopes
Sources





1
FGF5
NTYASPRFK
Hanada et al. Nature.





427(6971): 252-6 (2004).





2
Hepsin
SLLSGDWVL;
Guo et al. Scand J Immunol.




GLQLGVQAV;
78(3): 248-57 (2013).




and





PLTEYIQPV






3
Intestinal
SPRWWPTCL
Ronsin et al. J Immunol.



carboxyl

163(1): 483-90 (1999).



esterase







4
M-CSF
LPAVVGLSPGEQEY
Probst-Kepper et al. J Exp





Med. 193(10): 1189-98 (2001).





5
RU2AS
LPRWPPPQL
Van Den Eynde et al. J. Exp.





Med. 190(12): 1793-800





(1999).





6
hsp70-2 (renal
SLFEGIDIYT
Gaudin et al. J. Immunol.



cell carcinoma)

162(3): 1730-8 (1999).





7
Mannan-MUC-1
PDTRPAPGSTAPPAHGVTSA
Loveland et al. Clin. Cancer



(renal cell
STAPPVHNV
Res. 12(3 Pt 1): 869-77 (2006).



carcinoma)
LLLLTVLTV
Loveland et al. Clin. Cancer




PGSTAPPAHGVT
Res. 12(3 Pt 1): 869-77 (2006).





Godelaine et al. Cancer





Immunol Immunother.





56(6): 753-9 (2007).





Ma et al. Int J Cancer.





129(10): 2427-34 (2011).





Wen et al. Cancer Sci.





102(8): 1455-61 (2011).





Jerome et al. J Immunol.





151(3): 1654-62 (1993).





Brossart et al. Blood.





93(12): 4309-17 (1999).





Hiltbold et al. Cancer Res.





58(22): 5066-70 (1998).





8
MAGE-A9 (renal
ALSVMGVYV
Oehlrich et al. Int J Cancer.



cell carcinoma)

117(2): 256-64 (2005).
















TABLE 13







 Melanoma











Tumor-
Reported




associated
immunogenic



No.
antigen
epitopes
Sources













1
Hepsin
SLLSGDWVL;
Guo et at. Scand J Immunol.




GLQLGVQA;
78(3): 248-57 (2013).




and





PLTEYIQPV






2
ARTC1
YSVYFNLPADTIYTN
Wang et al J Immunol. 174(5): 2661-





70 (2005).





3
B-RAF
EDLTVKIGDFGLATEKSR
Sharkey et at. Cancer Res.




WSGSHQFEQLS
64(5): 1595-9 (2004).





4
beta-catenin
SYLDSGIHF
Robbins et al. J. Exp. Med.





183(3): 1185-92 (1996).





5
Cdc27
FSWAMDLDPKGA
Wang et al. Science.





284(5418): 1351-4 (1999).





6
CDK4
ACDPHSGHFV
Wölfel et al. Science.





269(5228): 1281-4 (1995).





7
CDK12
CILGKLFTK
Robbins et al. Nat Med. 19(6): 747-





52. (2013).





8
CDKN2A
AVCPWTWLR
Huang et al. J Immunol.





172(10): 6057-64 (2004).





9
CLPP
ILDKVLVHL
Corbière et al. Cancer Res.





71(4): 1253-62 (2011).





10
CSNK1A1
GLFGDIYLA
Robbins et al. Nat Med. 19(6): 747-





52 (2013).





11
FN1
MIFEKHGFRRTTPP
Wang et al. J Exp Med.





195(11): 1397-406 (2003).





12
GAS7
SLADEAEVYL
Robbins, et al. Nat Med. 19(6): 747-





52 (2013).





13
GPNMB
TLDWLLQTPK
Lennerz et al. Proc. Natl. Acad. Sci.





U.S.A. 102(44): 16013-8 (2005).





14
HAUS3
ILNAMIAKI
Robbins et al. Nat Med. 19(6): 747-





52 (2013).





15
LDLR-
WRRAPAPGA
Wang et al. J Exp Med.



fucosyltransferase
and
189(10): 1659-68 (1999).




PVTWRRAPA






16
MART2
FLEGNEVGKTY
Kawakami et al. J Immunol.





166(4): 2871-7 (2001).





17
MATN
KTLTSVFQK
Robbins et al. Nat Med. 19(6): 747-





52 (2013).





18
MUM-1
EEKLIVVLF
Coulie et al. Proc. Natl. Acad. Sci.





U.S.A. 92(17): 7976-80 (1995).





19
MUM-2
SELFRSGLDSY
Chiari et al. Cancer Res.




and
59(22): 5785-92 (1999).




FRSGLDSYV






20
MUM-3
EAFIQPITR
Baurain et al. J. Immunol.





164(11): 6057-66 (2000).





21
neo-PAP
RVIKNSIRLTL
Topalian et al. Cancer Res.





62(19): 5505-9 (2002).





22
Myosin class I
KINKNPKYK 
Zorn, et al. Eur. J. Immunol.





29(2): 592-601 (1999).





23
PPP1R3B
YTDFHCQYV
Robbins et al. Nat Med. 19(6): 747-





52 (2013).





Lu et al. J Immunol. 190(12): 6034-





42 (2013).





24
PRDX5
LLLDDLLVSI
Sensi et al. Cancer Res. 65(2): 632-





40 (2005).





25
PTPRK
PYYFAAELPPRNLPEP
Novellino et al. J. Immunol.





170(12): 6363-70 (2003).





26
N-ras
ILDTAGREEY
Linard et al. J. Immunol.





168(9): 4802-8 (2002).





27
RBAF600
RPHVPESAF
Lennerz et al. Proc. Natl. Acad. Sci.





U.S.A. 102(44): 16013-8 (2005).





28
SIRT2
KIFSEVTLK
Lennerz et al. Proc. Natl. Acad. Sci.





U.S.A. 102(44): 16013-8 (2005).





29
SNRPD1
SHETVIIEL
Lennerz et al. Proc. Natl. Acad. Sci.





U.S.A. 102(44): 16013-8 (2005).





30
Triosephosphate
GELIGILNAAKVPAD
Pieper et al. J Exp Med. 189(5): 757-



isomerase

66 (1999).





31
OA1
LYSACFWWL
Touloukian et al. J. Immunol.





170(3): 1579-85 (2003).





32
RAB38/NY-MEL-1
VLHWDPETV
Walton et al. J Immunol.





177(11): 8212-8 (2006).





33
TRP-1/gp75
MSLQRQFLR;
Touloukian et al. Cancer Res.




ISPNSVFSQWRVVCDSLE
62(18): 5144-7 (2002).




DY;
Robbins et al. J. Immunol.




SLPYWNFATG;
(10): 6036-47 (2002).




and
Osen et al. PLoS One. 5(11): e14137




SQWRVVCDSLEDYDT
(2010).





34
TRP-2
SVYDFFVWL;
Parkhurst et al. Cancer Res.




TLDSQVMSL;
58(21): 4895-901 (1998).




LLGPGRPYR;
Noppen et al. Int. J. Cancer.




ANDPIFVVL;
87(2): 241-6 (2000).




QCTEVRADTRPWSGP;
Wang et al. J. Exp. Med.




and
1184(6): 2207-16 (1996).




ALPYWNFATG
Wang et al. J. Immunol. 160(2): 890-





7(1998).





Castelli et al. J. Immunol.





162(3): 1739-48 (1999).





Paschen et al. Clin. Cancer Res.





(14): 5241-7 (2005).





Robbins et al. J. Immunol.





169(10): 6036-47 (2002).





35
tyrosinase
KCDICTDEY;
Kittlesen et al. J. Immunol.




SSDYVIPIGTY;
160(5): 2099-106 (1998).




MLLAVLYCL;
Kawakami et al. J. Immunol.




CLLWSFQTSA;
(12): 6985-92 (1998).




YMDGTMSQV;
Wölfel et al. Eur. J. Immunol.




AFLPWHRLF;
24(3): 759-64 (1994).




IYMDGTADFSF;
Riley et al. J. Immunother.




QCSGNFMGF;
24(3): 212-20 (2001).




TPRLPSSADVEF;
Skipper et al. J. Exp. Med.




LPSSADVEF;
183(2): 527-34 (1996).




LHHAFVDSIF;
Kang et al. J. Immunol.




SEIWRDIDF;
155(3): 1343-8 (1995).




QNILLSNAPLGPQFP;
Dalet et al. Proc. Natl. Acad. Sci.




SYLQDSDPDSFQD;
U.S.A. 108(29): E323-31 (2011)




and
Lennerz et al. Proc. Natl. Acad. Sci.




FLLHHAFVDSIFEQWLQR
U.S.A. 102(44): 16013-8 (2005).




HRP
Benlalam et al. J. Immunol.





171(11): 6283-9 (2003).





Morel et al. Int. J. Cancer.





83(6): 755-9 (1999).





Brichard et al. Eur. J. Immunol.





26(1): 224-30 (1996).





Topalian et al. J. Exp. Med.





(5): 1965-71 (1996).





Kobayashi et al. Cancer Res.





58(2): 296-301 (1998).





36
Melan-A/MART-1
YTTAEEAAGIGILTVILGV
Meng et al. J. Immunother. 23: 525-




LLLIGCWYCRR
534(2011)





37
gp100/Pmel17
ALNFPGSQK
El Hage et al. Proc. Natl. Acad. Sci.




ALNFPGSQK 
U.S.A. 105(29): 10119-24 (2008).




VYFFLPDHL
Kawashima et al. Hum Immunol.




RTKQLYPEW
59(1): 1-14 (1998).




HTMEVTVYHR
Robbins et al. J Immunol.




SSPGCQPPA
159(1): 303-8 (1997).




VPLDCVLYRY
Sensi et al. Tissue Antigens.




LPHSSSHWL
59(4): 273-9 (2002).




SNDGPTLI
Lennerz et al. Proc Natl Acad Sci 




GRAMLGTHTMEVTVY
USA. 102(44): 16013-8 (2005).




WNRQLYPEWTEAQRLD
Benlalam et al. J Immunol.




TTEWVETTARELPIPEPE
171(11): 6283-9 (2003).




TGRAMLGTHTMEVTVYH
Vigneron et al. Tissue Antigens.




GRAMLGTHTMEVTVY
65(2): 156-62 (2005).





Castelli et al. J Immunol.





162(3): 1739-48 (1999).





Touloukian et al. J Immunol.





164(7): 3535-42 (2000).





Parkhurst et al. J Immunother.





27(2): 79-91 (2004).





Lapointe et al. J Immunol.





167(8): 4758-64 (2001).





Kobayashi et al. Cancer Res.





61(12): 4773-8 (2001).





38
NY-ESO-1
HLA-A2-restricted peptide
Jager et al. Proc. Natl. Acad. Scie.




p157-165 (SLLMWITQC),
U.S.A. 103(39): 14453-8 (2006).




HLA-
Gnjatic et al. PNAS




Cw3-restricted p92-100
Sep. 26, 2000 vol. 97 no. 20 p.




(LAMP-FATPM)
10919




and HLA-Cw6-
Jager et al. J Exp Med. 187(2): 265-




restricted p80-88
70 (1998).




(ARGPESRLL)
Chen et al. J Immunol. 165(2): 948-




SLLMWITQC
55 (2000).




MLMAQEALAFL
Valmori et al. Cancer Res.




YLAMPFATPME
60(16): 4499-506 (2000).




ASGPGGGAPR
Aarnoudse et al. Int J Cancer.




LAAQERRVPR
82(3): 442-8 (1999).




TVSGNILTIR
Eikawa et al. Int J Cancer.




APRGPHGGAASGL
132(2): 345-54 (2013).




MPFATPMEAEL
Wang et al. J Immunol. 161(7): 3598-




KEFTVSGNILTI
606 (1998).




MPFATPMEA
Matsuzaki et al. Cancer Immunol




FATPMEAEL
Immunother. 57(8)1185-95 (2008).




FATPMEAELAR
Ebert et al. Cancer Res. 69(3): 1046-




LAMPFATPM
54 (2009).




ARGPESRLL
Eikawa et al. Int J Cancer.




SLLMWITQCFLPVF
132(2): 345-54 (2013).




LLEFYLAMPFATPMEAEL
Knights et al. Cancer Immunol




-ARRSLAQ
Immunother. 58(3): 325-38 (2009).




EFYLAMPFATPM
Jäger et al. Cancer Immun. 2: 12




PGVLLKEFTVSGNILTIRL
(2002).




-TAADHR
Zeng et al. Proc Natl Acad Sci USA.




RLLEFYLAMPFA
98(7): 3964-9 (2001).




QGAMLAAQERRVPRAAE
Mandic et al. J Immunol.




-VPR
174(3): 1751-9 (2005).




PFATPMEAELARR
Chen et al. Proc Natl Acad Sci USA.




PGVLLKEFTVSGNILTIRLT
101(25): 9363-8 (2004).




VLLKEFTVSG
Ayyoub et al. Clin Cancer Res.




AADHRQLQLSISSCLQQL
16(18): 4607-15 (2010).




LKEFTVSGNILTIRL
Slager et al. J Immunol.




PGVLLKEFTVSGNILTIRL
172(8): 5095-102 (2004).




-TAADHR
Mizote et al. Vaccine. 28(32): 5338-




LLEFYLAMPFATPMEAEL
46 (2010).




-ARRSLAQ
Jager et al. J Exp Med. 191(4): 625-




KEFTVSGNILT
30 (2000).




LLEFYLAMPFATPM
Zarour et al. Cancer Res.




AGATGGRGPRGAGA
60(17): 4946-52 (2000).





Zeng et al. J Immunol. 165(2): 1153-





9(2000).





Bioley et al. Clin Cancer Res.





15(13): 4467-74 (2009).





Zarour et al. Cancer Res. 62(1): 213-





8 (2002).





Hasegawa et al. Clin Cancer Res.





12(6): 1921-7 (2006).





39
BAGE-1
AARAVFLAL
Boel et al. Immunity. 2(2): 167-





75 (1995).





40
GAGE-1, 2, 8
YRPRPRRY
Van den Eynde et al. J Exp Med.





182(3): 689-98 (1995).





41
GAGE-3, 4, 5, 6, 7
YYWPRPRRY
De Backer et al. Cancer Res.



(cutaneous

59(13): 3157-65 (1999).



melanoma)







42
GnTVf
VLPDVFIRC(V)
Guilloux et al. J Exp Med.





183(3): 1173-83 (1996).





43
HERV-K-MEL
MLAVISCAV
Schiavetti et al. Cancer Res.





62(19): 5510-6 (2002).





44
KK-LC-1
RQKRILVNL
Fukuyama et al. Cancer Res.





66(9): 4922-8 (2006).





45
KM-HN-1
NYNNFYRFL
Fukuyama et al. Cancer Res.




EYSKECLKEF
66(9): 4922-8 (2006).




EYLSLSDKI
Monji et al. Clin Cancer Res. 10(18





Pt 1): 6047-57 (2004).





46
LAGE-1
MLMAQEALAFL
Aarnoudse et al. Int J Cancer.




SLLMWITQC
82(3): 442-8 (1999).




LAAQERRVPR
Rimoldi et al. J Immunol.




ELVRRILSR
165(12): 7253-61 (2000).




APRGVRMAV
Wang et al. J Immunol. 161(7): 3598-




SLLMWITQCFLPVF
606 (1998).




QGAMLAAQERRVPRAAE
Sun et al. Cancer Immunol




VP-R
Immunother. 55(6): 644-52 (2006).




AADHRQLQLSISSCLQQL
Stager et al. Cancer Gene Ther.




CLSRRPWKRSWSAGSCP
11(3): 227-36 (2004).




G-MPHL
Zeng et al. Proc Natl Acad Sci USA.




ILSRDAAPLPRPG
98(7): 3964-9 (2001).




AGATGGRGPRGAGA
Slager et al. J Immunol.





172(8): 5095-102 (2004).





Jager et al. J Exp Med. 191(4): 625-





30 (2000).





Slager et al. J Immunol.





170(3): 1490-7 (2003).





Wang et al. Immunity. 20(1): 107-18





(2004).





Hasegawa et al. Clin Cancer Res.





12(6): 1921-7 (2006).





47
LY6K
RYCNLEGPPI
Suda et al. Cancer Sci. 98(11): 1803-




KWTEPYCVIAAVKIFPRF
8 (2007).




FMV-AKQ
Tomita et al. Oncoimmunology.




KCCKIRYCNLEGPPINSSVF
3: e28100 (2014).





48
MAGE-A1
EADPTGHSY
Traversari et al. J Exp Med.




KVLEYVIKV
176(5): 1453-7 (1992).




SLFRAVITK
Ottaviani et al. Cancer Immunol




EVYDGREHSA
Immunother. 54(12): 1214-20 (2005).




RVRFFFPSL
Pascolo et al. Cancer Res.




EADPTGHSY 
61(10): 4072-7 (2001).




REPVTKAEML
Chaux et al. J Immunol.




KEADPTGHSY
163(5): 2928-36 (1999).




DPARYEFLW
Luiten et al. Tissue Antigens.




ITKKVADLVGF
55(2): 149-52 (2000).




SAFPTTINF
Luiten et al. Tissue Antigens.




SAYGEPRKL
56(1): 77-81 (2000).




RVRFFFPSL
Tanzarella et al. Cancer Res.




TSCILESLFRAVITK
59(11): 2668-74 (1999).




PRALAETSYVKVLEY
Stroobant et al. Eur J Immunol.




FLLIKYRAREPVTKAE
42(6): 1417-28 (2012).




EYVIKVSARVRF
Corbière et al. Tissue Antigens.





63(5): 453-7 (2004).





Goodyear et al. Cancer Immunol





Immunother. 60(12): 1751-61 (2011).





van der Bruggen et al. Eur J





Immunol. 24(9): 2134-40 (1994). 





Wang et al. Cancer Immunol





Immunother. 56(6): 807-18 (2007).





Chaux et al. J Exp Med. 189(5): 767-





78 (1999).





Chaux et al. Eur J Immunol.





31(6): 1910-6 (2001).





49
MAGE-A6
MVKISGGPR
Zorn et al. Eur J Immunol.




EVDPIGHVY
29(2): 602-7 (1999).




REPVTKAEML
Benlalam et al. J Immunol.




EGDCAPEEK
171(11): 6283-9 (2003).




ISGGPRISY
Tanzarella et al. Cancer Res.




LLKYRAREPVTKAE
59(11): 2668-74 (1999).





Breckpot et al. J Immunol.





172(4): 2232-7 (2004).





Vantomme et al. Cancer Immun.





3:17 (2003).





Chaux et al. J Exp Med. 189(5): 767-





78 (1999).





50
MAGE-A10
GLYDGMEHL
Huang et al. J Immunol.




DPARYEFLW
162(11): 6849-54 (1999).





Chaux et al. J Immunol.





163(5): 2928-36 (1999).





51
MAGE-A12
FLWGPRALV
van der Bruggen et al. Eur J




VRIGHLYIL
Immunol. 24(12): 3038-43 (1994).




EGDCAPEEK
Heidecker et al. J Immunol.




REPFTKAEMLGSVIR
164(11): 6041-5 (2000).




AELVHFLLLKYRAR
Panelli et al. J Immunol.





164(8): 4382-92 (2000).





Breckpot et al. J Immunol.





172(4): 2232-7 (2004).





Wang et al. Cancer Immunol





Immunother. 56(6): 807-18 (2007).





Chaux et al. J Exp Med. 189(5): 767-





78 (1999).





52
MAGE-C2
LLFGLALIEV
Ma et al. Int J Cancer. 109(5): 698-




ALKDVEERV
702 (2004).




SESIKKKVL
Godelaine et al. Cancer Immunol




ASSTLYLVF
Immunother. 56(6): 753-9 (2007).




SSTLYLVFSPSSFST
Ma et al. Int J Cancer. 129(10): 2427-





34 (2011).





Wen et al. Cancer Sci. 102(8): 1455-





61 (2011).





53
NA88-A
QGQHFLQKV
Moreau-Aubry et al. J Exp Med.





191(9): 1617-24 (2000).





54
Sp17
ILDSSEEDK
Chiriva-Internati et al. Int J Cancer.





107(5): 863-5 (2003).





55
SSX-2
KASEKIFYV
Ayyoub et al. J Immunol.




EKIQKAFDDIAKYFSK
168(4): 1717-22 (2002).




FGRLQGISPKI
Ayyoub et al. J Immunol.




WEKMKASEKIFYVYMKRK
172(11): 7206-11 (2004).




KIFYVYMKRKYEAMT
Neumann et al. Cancer Immunol




KIFYVYMKRKYEAM
Immunother. 60(9): 1333-46 (2011).





Ayyoub et al. Clin Immunol.





114(1): 70-8 (2005).





Neumann et al. Int J Cancer.





112(4): 661-8 (2004).





Ayyoub et al. J Clin Invest.





113(8): 1225-33 (2004).





56
SSX-4
INKTSGPKRGKHAWTHR
Ayyoub et al. J Immunol.




LRE
174(8): 5092-9 (2005).




YFSKKEWEKMKSSEKIV
Valmori et al. Clin Cancer Res.




YVY
12(2): 398-404 (2006).




MKLNYEVMTKLGFKVTL





PPF





KHAWTHRLRERKQLVV





YEEI





LGFKVTLPPFMRSKRAA





DFH





KSSEKIVYVYMKLNYEV





MTK





KHAWTHRLRERKQLVV





YEEI






57
TRAG-3
CEFHACWPAFTVLGE
Janjic et al. J Immunol. 177(4): 2717-





27 (2006).





58
TRP2-INT2g
EVISCKLIKR
Lupetti et al. J Exp Med.





188(6): 1005-16 (1998).





59
pgk

Morgan et al., J. Immunol.





171: 3287-3295 (2003)
















TABLE 14







 Squamous cell carcinoma











Tumor-
Reported




associated
immunogenic



No.
antigen
epitopes
Sources





1
CASP-8
FPSDSWCYF
Mandruzzato et al. J. Exp. Med.





186(5): 785-93 (1997).





2
p53
VVPCEPPEV
Ito et al. Int. J. Cancer.





120(12): 2618-24 (2007).





3
SAGE
LYATVIHDI
Miyahara et al. Clin Cancer Res.





11(15): 5581-9 (2005).
















TABLE 15







Chronic myeloid leukemia











Tumor-





associated
Reported immunogenic



No.
antigen
epitopes
Sources





1
BCR-ABL
SSKALQRPV;
Yotnda et al. J. Clin. Invest.




GFKQSSKAL;
101(10): 2290-6 (1998).




ATGFKQSSKALQRPVAS;
Bosch et al. Blood. 88(9): 3522-7




and
(1996).




ATGFKQSSKALQRPVAS
Makita et al. Leukemia.





16(12): 2400-7 (2002).





2
dek-can
TMKQICKKEIRRLHQY
Makita et al. Leukemia.





16(12): 2400-7 (2002).





3
EFTUD2
KILDAVVAQK
Lennerz et al. Proc. Natl. Acad.





Sci. U.S.A. 102(44): 16013-8





(2005).





4
GAGE-3, 4, 5,
YYWPRPRRY
De Backer et al. Cancer Res.



6, 7

59(13): 3157-65 (1999).
















TABLE 16







Acute lymphoblastic leukemia











Tumor-





associated
Reported immunogenic



No. 
antigen
epitopes
Sources





1
ETV6-AML1
RIAECILGM
Yotnda et al. J. Clin. Invest.




and
(2): 455-62 (1998).




IGRIAECILGMNPSR
Yun et al. Tissue Antigens.





54(2): 153-61 (1999).





2
GAGE-3, 4, 5,
YYWPRPRRY
De Backer et al. Cancer Res.



6, 7

59(13): 3157-65 (1999).
















TABLE 17







Acute myelogenous leukemia











Tumor-





associated
Reported immunogenic



No.
antigen
epitopes
Sources





1
FLT3-ITD
YVDFREYEYY
Graf et al. Blood. 109(7): 2985-8





(2007).





2
Cyclin-A1
FLDRFLSCM
Ochsenreither et al. Blood.




and
119(23): 5492-501 (2012).




SLIAAAAFCLA






3
GAGE-3, 4, 5,
YYWPRPRRY
De Backer et al. Cancer Res.



6, 7

59(13): 3157-65 (1999).
















TABLE 18







Chronic lymphocytic leukemia











Tumor-





associated
Reported immunogenic



No.
antigen
epitopes
Sources





1
FNDC3B
VVMSWAPPV
Rajasagi et al. Blood. 124(3): 453-





62 (2014).





2
GAGE-3, 4, 5,
YYWPRPRRY
De Backer et al. Cancer Res.



6, 7

59(13): 3157-65 (1999).
















TABLE 19







Promyelocytic leukemia











Tumor-





associated
Reported immunogenic



No.
antigen
epitopes
Sources





1
pml-RARalpha
NSNHVASGAGEAAIETQS
Gambacorti-Passerini et al. Blood.




SSSEEIV
81(5): 1369-75 (1993).





2
GAGE-3, 4, 5,
YYWPRPRRY
De Backer et al. Cancer Res.



6, 7

59(13): 3157-65 (1999).
















TABLE 20







Multiple myeloma











Tumor-





associated
Reported immunogenic



No.
antigen
epitopes
Sources





1
MAGE-C1
ILFGISLREV
Anderson et al. Cancer Immunol




KVVEFLAML
Immunother. 60(7): 985-97 (2011).




SSALLSIFQSSPE
Nuber et al. Proc Natl Acad Sci USA.




SFSYTLLSL
107(34): 15187-92 (2010).




VSSFFSYTL






2
NY-ESO-1
HLA-A2-restricted peptide
Jager et al. Proc. Natl. Acad. Scie.




p157-165 (SLLMWITQC),
U.S.A. 103(39): 14453-8 (2006).




HLA-
Gnjatic et al. PNAS




Cw3-restricted p92-100
Sep. 26, 2000 vol. 97 no. 20 p.




(LAMP-FATPM)
10919




and HLA-Cw6-
Jager et al. J Exp Med. 187(2): 265-




restricted p80-88
70 (1998).




(ARGPESRLL)
Chen et al. J Immunol. 165(2): 948-




SLLMWITQC
55 (2000).




MLMAQEALAFL
Valmori et al. Cancer Res.




YLAMPFATPME
60(16): 4499-506 (2000).




ASGPGGGAPR
Aarnoudse et al. Int J Cancer.




LAAQERRVPR
82(3): 442-8 (1999).




TVSGNILTIR
Eikawa et al. Int J Cancer.




APRGPHGGAASGL
132(2): 345-54 (2013).




MPFATPMEAEL
Wang et al. J Immunol. 161(7): 3598-




KEFTVSGNILTI
606 (1998).




MPFATPMEA
Matsuzaki et al. Cancer Immunol




FATPMEAEL
Immunother. 57(8)1185-95 (2008).




FATPMEAELAR
Ebert et al. Cancer Res. 69(3): 1046-




LAMPFATPM
54 (2009).




ARGPESRLL
Eikawa et al. Int J Cancer.




SLLMWITQCFLPVF
132(2): 345-54 (2013).




LLEFYLAMPFATPMEAEL
Knights et al. Cancer Immunol




-ARRSLAQ
Immunother. 58(3): 325-38 (2009).




EFYLAMPFATPM
Jäger et al. Cancer Immun. 2: 12




PGVLLKEFTVSGNILTIRL
(2002).




-TAADHR
Zeng et al. Proc Natl Acad Sci USA.




RLLEFYLAMPFA
98(7): 3964-9 (2001).




QGAMLAAQERRVPRAAE
Mandic et al. J Immunol.




-VPR
174(3): 1751-9 (2005).




PFATPMEAELARR
Chen et al. Proc Natl Acad Sci USA.




PGVLLKEFTVSGNILTIRLT
101(25): 9363-8 (2004).




VLLKEFTVSG
Ayyoub et al. Clin Cancer Res.




AADHRQLQLSISSCLQQL
16(18): 4607-15 (2010).




LKEFTVSGNILTIRL
Slager et al. J Immunol.




PGVLLKEFTVSGNILTIRL
172(8): 5095-102 (2004).




-TAADHR
Mizote et al. Vaccine. 28(32): 5338-




LLEFYLAMPFATPMEAEL
46 (2010).




-ARRSLAQ
Jager et al. J Exp Med. 191(4): 625-




KEFTVSGNILT
30 (2000).




LLEFYLAMPFATPM
Zarour et al. Cancer Res.




AGATGGRGPRGAGA
60(17): 4946-52 (2000).





Zeng et al. J Immunol. 165(2): 1153-





9(2000).





Bioley et al. Clin Cancer Res.





15(13): 4467-74 (2009).





Zarour et al. Cancer Res. 62(1): 213-





8 (2002).





Hasegawa et al. Clin Cancer Res.





12(6): 1921-7 (2006).





3
LAGE-1
MLMAQEALAFL
Aarnoudse et al. Int J Cancer.




SLMMWITQC
82(3): 442-8 (1999).




LAAQERRVPR
Rimoldi et al. J Immunol.




ELVRRILSR
165(12): 7253-61 (2000).




APRGVRMAV
Wang et al. J Immunol. 161(7): 3598-




SLLMWITQCFLPVF
606 (1998).




QGAMLAAQERRVPRAAE
Sun et al. Cancer Immunol




VP-R
Immunother. 55(6): 644-52 (2006).




AADHRQLQLSISSCLQQL
Slager et al. Cancer Gene Ther.




CLSRRPWKRSWSAGSCP
11(3): 227-36 (2004).




G-MPHL
Zeng et al. Proc Natl Acad Sci USA.




ILSRDAAPLPRPG
98(7): 3964-9 (2001).




AGATGGRGPRGAGA
Slager et al. J Immunol.





172(8): 5095-102 (2004).





Jager et al. J Exp Med. 191(4): 625-





30 (2000).





Slager et al. J Immunol.





170(3): 1490-7 (2003).





Wang et al. Immunity. 20(1): 107-18





(2004).





Hasegawa et al. Clin Cancer Res.





12(6): 1921-7 (2006).





4
HERV-K-MEL
MLAVISCAV
Schiavetti et al. Cancer Res.





62(19): 5510-6 (2002).





5
KK-LC-1
RQKRILVNL
Fukuyama et al. Cancer Res.





66(9): 4922-8 (2006).





6
KM-HN-1
NYNNFYRFL
Fukuyama et al. Cancer Res.




EYSKECLKEF
66(9): 4922-8 (2006).




EYLSLSDKI
Monji et al. Clin Cancer Res. 10(18





Pt 1): 6047-57 (2004).





7
Sp17
ILDSSEEDK
Chiriva-Internati et al. Int J Cancer.





107(5): 863-5 (2003).
















TABLE 21







B-cell lymphoma











Tumor-
Reported 




associated
immunogenic



No.
antigen
epitopes
Sources





1
D393-CD20
KPLFRRMSSLELVIA
Vauchy et al. Int 





J Cancer. 137(1): 





116-26 (2015).
















TABLE 22







Bladder carcinoma











Tumor-





associated
Reported immunogenic



No.
antigen
epitopes
Sources













1
BAGE-1
AARAVFLAL
Boel et al. Immunity. 2(2): 167-





75 (1995).





2
GAGE-1, 2, 8
YRPRPRRY
Van den Eynde et al. J Exp Med.





182(3): 689-98 (1995).





3
GAGE-3, 4, 5, 6, 7
YYWPRPRRY
De Backer et al. Cancer Res.





59(13): 3157-65 (1999).





4
MAGE-A4
EVDPASNTY
Kobayashi et al. Tissue Antigens.



(transitional cell 
GVYDGREHTV
62(5): 426-32 (2003).



carcinoma of
NYKRCFPVI
Duffour et al. Eur J Immunol.



urinary bladder)
SESLKMIF
29(10): 3329-37 (1999).





Miyahara et al. Clin Cancer Res.





11(15): 5581-9 (2005).





Ottaviani et al. Cancer Immunol





Immunother. 55(7): 867-72 (2006).





Zhang et al. Tissue Antigens.





60(5): 365-71 (2002).





5
MAGE-A6
MVKISGGPR
Zorn et al. Eur J Immunol.




EVDPIGHVY
29(2): 602-7 (1999).




REPVTKAEML
Benlalam et al. J Immunol.




EGDCAPEEK
171(11): 6283-9 (2003).




ISGGPRISY
Tanzarella et al. Cancer Res.




LLKYRAREPVTKAE
59(11): 2668-74 (1999).





Breckpot et al. J Immunol.





172(4): 2232-7 (2004).





Vantomme et al. Cancer Immun.





3: 17 (2003).





Chaux et al. J Exp Med. 189(5): 767-





78 (1999).





6
SAGE
LYATVIHDI
Miyahara et al. Clin Cancer Res.





11(15): 5581-9 (2005).





7
NY-ESO-1
HLA-A2-restricted peptide
Jager et al. Proc. Natl. Acad. Scie.




p157-165 (SLLMWITQC),
U.S.A. 103(39): 14453-8 (2006).




HLA-
Gnjatic et al. PNAS




Cw3-restricted p92-100
Sep. 26, 2000 vol. 97 no. 20 p.




(LAMP-FATPM
10919




and HLA-Cw6-
Jager et al. J Exp Med. 187(2): 265-




restricted p80-88
70 (1998).




(ARGPESRLL)
Chen et al. J Immunol. 165(2): 948-




SLLMWITQC
55 (2000).




MLMAQEALAFL
Valmori et al. Cancer Res.




YLAMPFATPME
60(16): 4499-506 (2000).




ASGPGGGAPR
Aarnoudse et al. Int J Cancer.




LAAQERRVPR
82(3): 442-8 (1999).




TVSGNILTIR
Eikawa et al. Int J Cancer.




APRGPHGGAASGL
132(2): 345-54 (2013).




MPFATPMEAEL
Wang et al. J Immunol. 161(7): 3598-




KEFTVSGNILTI
606 (1998).




MPFATPMEA
Matusuzki et al. Cancer Immunol




FATPMEAEL
Immunother. 57(8)1185-95 (2008).




FATPMEAELAR
Ebert et al. Cancer Res. 69(3): 1046-




LAMPFATPM
54 (2009).




ARGPESRLL
Eikawa et al. Int J Cancer.




SLLMWITQCFLPVF
132(2): 345-54 (2013).




LLEFYLAMPFATPMEAEL
Knights et al. Cancer Immunol




-ARRSLAQ
Immunother. 58(3): 325-38 (2009).




EFYLAMPFATPM
Jäger et al. Cancer Immun. 2: 12




PGVLLKEFTVSGNILTIRL
(2002).




-TAADHR
Zeng et al. Proc Natl Acad Sci USA.




RLLEFYLAMPFA
98(7): 3964-9 (2001).




QGAMLAAQERRVPRAAE
Mandic et al. J Immunol.




-VPR
174(3): 1751-9 (2005).




PFATPMEAELARR
Chen et al. Proc Natl Acad Sci USA.




PGVLLKEFTVSGNILTIRLT
101(25): 9363-8 (2004).




VLLKEFTVSG
Ayyoub et al. Clin Cancer Res.




AADHRQLQLSISSCLQQL
16(18): 4607-15 (2010).




LKEFTVSGNILTIRL
Slager et al. J Immunol.




PGVLLKEFTVSGNILTIRL
172(8): 5095-102 (2004).




-TAADHR
Mizote et al. Vaccine. 28(32): 5338-




LLEFYLAMPFATPMEAEL
46 (2010).




-ARRSLAQ
Jager et al. J Exp Med. 191(4): 625-




KEFTVSGNILT
30 (2000).




LLEFYLAMPFATPM
Zarour et al. Cancer Res.




AGATGGRGPRGAGA
60(17): 4946-52 (2000).





Zeng et al. J Immunol. 165(2): 1153-





9 (2000).





Bioley et al. Clin Cancer Res.





15(13): 4467-74 (2009).





Zarour et al. Cancer Res. 62(1): 213-





8 (2002).





Hasegawa et al. Clin Cancer Res.





12(6): 1921-7 (2006).





8
LAGE-1
MLMAQEALAFL
Aarnoudse et al. Int J Cancer.




SLLMWITQC
82(3): 442-8 (1999).




LAAQERRVPR
Rimoldi et al. J Immunol.




ELVRRILSR
165(12): 7253-61 (2000).




APRGVRMAV
Wang et al. J Immunol. 161(7): 3598-




SLLMWITQCFLPVF
606 (1998).




QGAMLAAQERRVPRAAE
Sun et al. Cancer Immunol




VP-R
Immunother. 55(6): 644-52 (2006).




AADHRQLQLSISSCLQQL
Slager et al. Cancer Gene Ther.




CLSRRPWKRSWSAGSCP
11(3): 227-36 (2004).




G-MPHL
Zeng et al. Proc Natl Acad Sci USA.




ILSRDAAPLPRPG
98(7): 3964-9 (2001).




AGATGGRGPRGAGA
Slager et al. J Immunol.





172(8): 5095-102 (2004).





Jager et al. J Exp Med. 191(4): 625-





30 (2000).





Slager et al. J Immunol.





170(3): 1490-7 (2003).





Wang et al. Immunity. 20(1): 107-18





(2004).





Hasegawa et al. Clin Cancer Res.





12(6): 1921-7 (2006).





9
HERV-K-MEL
MLAVISCAV
Schiavetti et al. Cancer Res.





62(19): 5510-6 (2002).





10
KK-LC-1
RQKRILVNL
Fukuyama et al. Cancer Res.





66(9): 4922-8 (2006).





11
KM-HN-1
NYNNFYRFL
Fukuyama et al. Cancer Res.




EYSKECLKEF
66(9): 4922-8 (2006).




EYLSLSDKI
Monji et al. Clin Cancer Res. 10(18





Pt 1): 6047-57 (2004).





12
SP17
ILDSSEEDK
Chiriva-Internati et al. Int J Cancer.





107(5): 863-5 (2003).
















TABLE 23







Head and neck cancer











Tumor-





associated
Reported immunogenic



No.
antigen
epitopes
Sources





1
BAGE-1 (head and
AARAVFLAL
Boel et al. Immunity. 2(2): 167-



neck squamous cell

75 (1995).



carcinoma)







2
GAGE-1, 2, 8
YRPRPRRY
Van den Eynde et al. J Exp Med.





182(3): 689-98 (1995).





3
GAGE-3, 4, 5, 6, 7
YYWPRPRRY
De Backer et al. Cancer Res.





59(13): 3157-65 (1999).





4
LY6K
RYCNLEGPPI
Suda et al. Cancer Sci. 98(11): 1803-




KWTEPYCVIAAVKIFPRF
8 (2007).




FMV-AKQ
Tomita et al. Oncoimmunology.




KCCKIRYCNLEGPPINSSVF
3: e28100 (2014).





5
MAGE-A3 (head
EVDPIGHLY
Gaugler et al. J Exp Med.



and neck squamous
FLWGPRALV
179(3): 921-30 (1994).



cell carcinoma)
KVAELVHFL
van der Bruggen et al. Eur J




TFPDLESEF
Immunol. 24(12): 3038-43 (1994).




VAELVHFLL
Kawashima et al. Hum Immunol.




MEVDPIGHLY
59(1): 1-14 (1998).




EVDPIGHLY
Oiso et al. Int J Cancer. 81(3): 387-




REPVTKAEML
94 (1999).




AELVHFLLL
Miyagawa et al. Oncology. 70(1): 54-




MEVDPIGHLY
62 (2006).




WQYFFPVIF
Bilsborough et al. Tissue Antigens.




EGDCAPEEK
60(1): 16-24 (2002).




KKLLTQHFVQENYLEY
Schultz et al. Tissue Antigens.




RKVAELVHFLLLKYR
57(2): 103-9 (2001).




KKLLTQHFVQENYLEY
Tanzarella et al. Cancer Res.




ACYEFLWGPRALVETS
59(11): 2668-74 (1999).




RKVAELVHFLLLKYR
Schultz et al. J Exp Med.




VIFSKASSSLQL
195(4): 391-9 (2002).




VFGIELMEVDPIGHL
Herman et al. Immunogenetics.




GDNQIMPKAGLLIIV
43(6): 377-83 (1996).




TSYVKVLHHMVKISG
Russo et al. Proc Natl Acad Sci USA.




RKVAELVHFLLLKYRA
97(5): 2185-90 (2000).




FLLLKYRAREPVTKAE
Breckpot et al. J Immunol.





172(4): 2232-7 (2004).





Schultz et al. Cancer Res.





60(22): 6272-5 (2000).





Cesson et al. Cancer Immunol





Immunother. 60(1): 23-35 (2011).





Schultz et al. J Immunol.





172(2): 1304-10 (2004).





Zhang et al. J Immunol. 171(1): 219-





25 (2003).





Cesson et al. Cancer Immunol





Immunother. 60(1): 23-35 (2010).





Kobayashi et al. Cancer Res.





61(12): 4773-8 (2001).





Cesson et al. Cancer Immunol





Immunother. 60(1): 23-35 (2011).





Consogno et al. Blood. 101(3): 1038-





44 (2003).





Manici et al. J Exp Med. 189(5): 871-





6 (1999).





Chaux et al. J Exp Med. 189(5): 767-





78 (1999).





6
MAGE-A6
MVKISGGPR
Zorn et al. Eur J Immunol.




EVDPIGHVY
29(2): 602-7 (1999).




REPVTKAEML
Benlalam et al. J Immunol.




EGDCAPEEK
171(11): 6283-9 (2003).




ISGGPRISY
Tanzarella et al. Cancer Res.




LLKYRAREPVTKAE
59(11): 2668-74 (1999).





Breckpot et al. J Immunol.





172(4): 2232-7 (2004).





Vantomme et al. Cancer Immun.





3: 17 (2003).





Chaux et al. J Exp Med. 189(5): 767-





78 (1999).





7
SAGE
LYATVIHDI
Miyahara et al. Clin Cancer Res.





11(15): 5581-9 (2005).
















TABLE 24







Esophageal cancer











Tumor-





associated
Reported immunogenic



No.
antigen
epitopes
Sources





1
GAGE-3, 4, 5, 6, 7
YYWPRPRRY
De Backer et al. Cancer Res.



(Esophageal

59(13): 3157-65 (1999).



squamous cell





carcinoma and





esophageal





adenocarcinoma)







2
MAGE-A2
YLQLVFGIEV
Kawashima et al. Hum Immunol.




EYLQLVFGI
59(1): 1-14 (1998).




REPVTKAEML
Tahara et al. Clin Cancer Res.




EGDCAPEEK
5(8): 2236-41 (1999).




LLKYRAREPVTKAE
Tanzarella et al. Cancer Res.





59(11): 2668-74 (1999).





Breckpot et al. J Immunol.





172(4): 2232-7 (2004).





Chaux et al. J Exp Med. 189(5): 767-





78 (1999).





3
MAGE-A6
MVKISGGPR
Zorn et al. Eur J Immunol.




EVDPIGHVY
29(2): 602-7 (1999).




REPVTKAEML
Benlalam et al. J Immunol.




EGDCAPEEK
171(11): 6283-9 (2003).




ISGGPRISY
Tanzarella et al. Cancer Res.




LLKYRAREPVTKAE
59(11): 2668-74 (1999).





Breckpot et al. J Immunol.





172(4): 2232-7 (2004).





Vantomme et al. Cancer Immun.





3: 17 (2003).





Chaux et al. J Exp Med. 189(5): 767-





78 (1999).





4
NY-ESO-1
HLA-A2-restricted peptide
Jager et al. Proc. Natl. Acad. Scie.




p157-165 (SLLMWITQC),
U.S.A. 103(39): 14453-8 (2006).




HLA-
Gnjatic et al. PNAS




Cw3-restricted p92-100
Sep. 26, 2000 vol. 97 no. 20 p.




(LAMP-FATPM)
10919




and HLA-Cw6-
Jager et al. J Exp Med. 187(2): 265-




restricted p80-88
70 (1998).




(ARGPESRLL)
Chen et al. J Immunol. 165(2): 948-




SLLMWITQC
55 (2000).




MLMAQEALAFL
Valmori et al. Cancer Res.




YLAMPFATPME
60(16): 4499-506 (2000).




ASGPGGGAPR
Aarnoudse et al. Int. J Cancer.




LAAQERRVPR
82(3): 442-8 (1999).




TVSGNILTIR
Eikawa et al. Int J Cancer.




APRGPHGGAASGL
132(2): 345-54 (2013).




MPFATPMEAEL
Wang et al. J Immunol 161(7): 3598-




KEFTVSGNILTI
606 (1998).




MPFATPMEA
Matsuzaki et al. Cancer Immunol




FATPMEAEL
Immunother. 57(8)1185-95 (2008).




FATPMEAELAR
Ebert et al. Cancer Res. 69(3): 1046-




LAMPFATPM
54 (2009).




ARGPESRLL 
Eikawa et al. Int J Cancer.




SLLMWITQCFLPVF
132(2): 345-54 (2013).




LLEFYLAMPFATPMEAEL
Knights et al. Cancer Immunol




-ARRSLAQ
Immunother. 58(3): 325-38 (2009).




EFYLAMPFATPM
Jäger et al. Cancer Immun. 2: 12




PGVLLKEFTVSGNILTIRL
(2002).




-TAADHR
Zeng et al. Proc Natl Acad Sci USA.




RLLEFYLAMPFA
98(7): 3964-9 (2001).




QGAMLAAQERRVPRAAE
Mandic et al. J Immunol.




-VPR
174(3): 1751-9 (2005).




PFATPMEAELARR
Chen et al. Proc Natl Acad Sci USA.




PGVLLKEFTVSGNILTIRLT
101(25): 9363-8 (2004).




VLLKEFTVSG
Ayyoub et al. Clin Cancer Res.




AADHRQLQLSISSCLQQL
16(18): 4607-15 (2010).




LKEFTVSGNILTIRL
Slager et al. J Immunol.




PGVLLKEFTVSGNILTIRL
172(8): 5095-102 (2004).




-TAADHR
Mizote et al. Vaccine. 28(32): 5338-




LLEFYLAMPFATPMEAEL
46 (2010).




-ARRSLAQ
Jager et al. J Exp Med. 191(4): 625-




KEFTVSGNILT
30 (2000).




LLEFYLAMPFATPM
Zarour et al. Cancer Res.




AGATGGRGPRGAGA
60(17): 4946-52 (2000).





Zeng et al. J Immunol. 165(2): 1153-





9 (2000).





Bioley et al. Clin Cancer Res.





15(13): 4467-74 (2009).





Zarour et al. Cancer Res. 62(1): 213-





8 (2002).





Hasegawa et al. Clin Cancer Res.





12(6): 1921-7 (2006).





5
LAGE-1
MLMAQEALAFL
Aarnoudse et al. Int J Cancer.




SLLMWITQC
82(3): 442-8 (1999).




LAAQERRVPR
Rimoldi et al. J Immunol.




ELVRRILSR
165(12): 7253-61 (2000).




APRGVRMAV
Wang et al. J Immunol. 161(7): 3598-




SLLMWITQCFLPVF 
606 (1998).




QGAMLAAQERRVPRAAE
Sun et al. Cancer Immunol




VP-R
Immunother. 55(6): 644-52 (2006).




AADHRQLQLSISSCLQQL
Slager et al. Cancer Gene Ther.




CLSRRPWKRSWSAGSCP
11(3): 227-36 (2004).




G-MPHL
Zeng et al. Proc Natl Acad Sci USA.




ILSRDAAPLPRPG
98(7): 3964-9 (2001).




AGATGGRGPRGAGA
Slager et al. J Immunol.





172(8): 5095-102 (2004).





Jager et al. J Exp Med. 191(4): 625-





30 (2000).





Slager et al. J Immunol.





170(3): 1490-7 (2003).





Wang et al. Immunity. 20(1): 107-18





(2004).





Hasegawa et al. Clin Cancer Res.





12(6): 1921-7 (2006).





6
HERV-K-MEL
MLAVISCAV
Schiavetti et al. Cancer Res.





62(19): 5510-6 (2002).





7
KK-LC-1
RQKRILVNL
Fukuyama et al. Cancer Res.





66(9): 4922-8 (2006).





8
KM-HN-1
NYNNFYRFL
Fukuyama et al. Cancer Res.




EYSKECLKEF
66(9): 4922-8 (2006).




EYLSLSDKI
Monji et al. Clin Cancer Res. 10(18





Pt 1): 6047-57 (2004).





9
Sp17
ILDSSEEDK
Chiriva-Internati et al. Int J Cancer.





107(5): 863-5 (2003).
















TABLE 25







Brain cancer











Tumor-





associated
Reported immunogenic



No.
antigen
epitopes
Sources





1
TAG-1
SLGWLFLLL
Adair et al. J Immunother. 31(1): 7-




LSRLSNRLL
17 (2008).





2
TAG-2
LSRLSNRLL
Adair et al. J Immunother. 31(1): 7-





17 (2008).
















TABLE 26







Pharynx cancer











Tumor-





associated
Reported immunogenic



No.
antigen
epitopes
Sources





1
TAG-1
SLGWLFLLL
Adair et al. J Immunother. 31(1): 7-




LSRLSNRLL
17 (2008).





2
TAG-2
LSRLSNRLL
Adair et al. J Immunother. 31(1): 7-





17 (2008).
















TABLE 27







Tumors of the tongue











Tumor-





associated
Reported immunogenic



No.
antigen
epitopes
Sources





1
TAG-1
SLGWLFLLL
Adair et al. J Immunother. 31(1): 7-




LSRLSNRLL
17 (2008).





2
TAG-2
LSRLSNRLL
Adair et al. J Immunother. 31(1): 7-





17 (2008).
















TABLE 28







Synovial cell sarcoma











Tumor-





associated
Reported immunogenic



No.
antigen
epitopes
Sources





1
LAGE-1
MLMAQEALAFL
Aarnoudse et al. Int J Cancer.




SLLMWITQC
82(3): 442-8 (1999).




LAAQERRVPR
Rimoldi et al. J Immunol.




ELVRRILSR
165(12): 7253-61 (2000).




APRGVRMAV
Wang et al. J Immunol.




SLLMWITQCFLPVF
161(7): 3598-606 (1998).




QGAMLAAQERRVPRAAE
Sun et al. Cancer Immunol




VP-R
Immunother. 55(6): 644-52 (2006).




AADHRQLQLSISSCLQQL
Slager et al. Cancer Gene Ther.




CLSRRPWKRSWSAGSCP
11(3): 227-36 (2004).




G-MPHL
Zeng et al. Proc Natl Acad Sci USA.




ILSRDAAPLPRPG 
98(7): 3964-9 (2001).




AGATGGRGPRGAGA
Slager et al. J Immunol.





172(8): 5095-102 (2004).





Jager et al. J Exp Med. 191(4): 625-





30 (2000).





Slager et al. J Immunol.





170(3): 1490-7 (2003).





Wang et al. Immunity. 20(1): 107-18





(2004).





Hasegawa et al. Clin Cancer Res.





12(6): 1921-7 (2006).





2
NY-ESO-1
HLA-A2-restricted peptide
Jager et al. Proc. Natl. Acad. Scie.




p157-165 (SLLMWITQC),
U.S.A. 103(39): 14453-8 (2006).




HLA-
Gnjatic et al. PNAS




Cw3-restricted p92-100
Sep. 26, 2000 vol. 97 no. 20




(LAMP-FATPM)
p. 10919




and HLA-Cw6-
Jager et al. J Exp Med. 187(2): 265-




restricted p80-88
70 (1998).




(ARGPESRLL)
Chen et al. J Immunol. 165(2): 948-




SLLMWITQC
55 (2000).




MLMAQEALAFL
Valmori et al. Cancer Res.




YLAMPFATPME
60(16): 4499-506 (2000).




ASGPGGGAPR
Aarnoudse et al. Int J Cancer.




LAAQERRVPR
82(3): 442-8 (1999).




TVSGNILTIR
Eikawa et al. Int J Cancer.




APRGPHGGAASGL
132(2): 345-54 (2013).




MPFATPMEAEL
Wang et al. J Immunol.




KEFTVSGNILTI
161(7): 3598-606 (1998).




MPFATPMEA
Matsuzaki et al. Cancer Immunol




FATPMEAEL
Immunother. 57(8)1185-95 (2008).




FATPMEAELAR
Ebert et al. Cancer Res. 69(3): 1046-




LAMPFATPM
54 (2009).




ARGPESRLL
Eikawa et al. Int J Cancer.




SLLMWITQCFLPVF
132(2): 345-54 (2013).




LLEFYLAMPFATPMEAEL
Knights et al. Cancer Immunol




-ARRSLAQ
Immunother. 58(3): 325-38 (2009).




EFYLAMPFATPM
Jäger et al. Cancer Immun. 2: 12




PGVLLKEFTVSGNILTIRL
(2002).




-TAADHR
Zeng et al. Proc Natl Acad Sci USA.




RLLEFYLAMPFA
98(7): 3964-9 (2001).




QGAMLAAQERRVPRAAE
Mandic et al. J Immunol.




-VPR
174(3): 1751-9 (2005).




PFATPMEAELARR
Chen et al. Proc Natl Acad Sci USA.




PGVLLKEFTVSGNILTIRLT
101(25): 9363-8 (2004).




VLLKEFTVSG
Ayyoub et al. Clin Cancer Res.




AADHRQLQLSISSCLQQL
16(18): 4607-15 (2010).




LKEFTVSGNILTIRL
Slager et al. J Immunol.




PGVLLKEFTVSGNILTIRL
172(8): 5095-102 (2004).




-TAADHR
Mizote et al. Vaccine. 28(32): 5338-




LLEFYLAMPFATPMEAEL
46 (2010).




-ARRSLAQ
Jager et al. J Exp Med. 191(4): 625-




KEFTVSGNILT
30 (2000).




LLEFYLAMPFATPM
Zarour et al. Cancer Res.




AGATGGRGPRGAGA
60(17): 4946-52 (2000).





Zeng et al. J Immunol. 165(2): 1153-





9 (2000).





Bioley et al. Clin Cancer Res.





15(13): 4467-74 (2009).





Zarour et al. Cancer Res. 62(1): 213-





8 (2002).





Hasegawa et al. Clin Cancer Res.





12(6): 1921-7 (2006).





3
HERV-K-MEL
MLAVISCAV
Schiavetti et al. Cancer Res.





62(19): 5510-6 (2002).





4
KK-LC-1
RQKRILVNL
Fukuyama et al. Cancer Res.





66(9): 4922-8 (2006).





5
KM-HN-1
NYNNFYRFL
Fukuyama et al. Cancer Res.




EYSKECLKEF 
66(9): 4922-8 (2006).




EYLSLSDKI






6
Sp17
ILDSSEEDK
Chiriva-Internati et al. Int J Cancer.





107(5): 863-5 (2003).
















TABLE 29







Neuroblastoma











Tumor-





associated
Reported immunogenic



No.
antigen
epitopes
Sources





1
LAGE-1
MLMAQEALAFL
Aarnoudse et al. Int J Cancer.




SLLMWITQC
82(3): 442-8 (1999).




LAAQERRVPR
Rimoldi et al. J Immunol.




ELVRRILSR
165(12): 7253-61 (2000).




APRGVRMAV
Wang et al. J Immunol. 161(7): 3598-




SLLMWITQCFLPVF
606 (1998).




QGAMLAAQERRVPRAAE
Sun et al. Cancer Immunol




VP-R
Immunother. 55(6): 644-52 (2006).




AADHRQLQLSISSCLQQL
Slager et al. Cancer Gene Ther.




CLSRRPWKRSWSAGSCP
11(3): 227-36 (2004).




G-MPHL
Zeng et al. Proc Natl Acad Sci USA.




ILSRDAAPLPRPG
98(7): 3964-9 (2001).




AGATGGRGPRGAGA
Slager et al. J Immunol.





172(8): 5095-102 (2004).





Jager et al. J Exp Med. 191(4): 625-





30 (2000).





Slager et al. J Immunol.





170(3): 1490-7 (2003).





Wang et al. Immunity. 20(1): 107-18





(2004).





Hasegawa et al. Clin Cancer Res.





12(6): 1921-7 (2006).





2
NY-ESO-1
HLA-A2-restricted peptide
Jager et al. Proc. Natl. Acad. Scie.




p157-165 (SLLMWITQC),
U.S.A. 103(39): 14453-8 (2006).




HLA-
Gnjatic et al. PNAS




Cw3-restricted p92-100
Sep. 26, 2000 vol. 97 no. 20 p.




(LAMP-FATPM)
10919




and HLA-Cw6-
Jager et al. J Exp Med. 187(2): 265-




restricted p80-88
70 (1998).




(ARGPESRLL)
Chen et al. J Immunol. 165(2): 948-




SLLMWITQC
55 (2000).




MLMAQEALAFL
Valmori et al. Cancer Res.




YLAMPFATPME
60(16): 4499-506 (2000).




ASGPGGGAPR
Aarnoudse et al. Int J Cancer.




LAAQERRVPR
82(3): 442-8 (1999).




TVSGNILTIR
Eikawa et al. Int J Cancer.




APRGPHGGAASGL
132(2): 345-54 (2013).




MPFATPMEAEL
Wang et al. J Immunol. 161(7): 3598-




KEFTVSGNLLTI
606 (1998).




MPFATPMEA
Matsuzaki et al. Cancer Immunol




FATPMEAEL
Immunother. 57(8)1185-95 (2008).




FATPMEAELAR
Ebert et al. Cancer Res. 69(3): 1046-




LAMPFATPM
54 (2009).




ARGPESRLL
Eikawa et al. Int J Cancer.




SLLMWITQCFLPVF
132(2): 345-54 (2013).




LLEFYLAMPFATPMEAEL
Knights et al. Cancer Immunol




-ARRSLAQ
Imununother. 58(3): 325-38 (2009).




EFYLAMPFATPM
Jäger et al. Cancer Immun. 2: 12




PGVLLKEFTVSGNILTIRL
(2002).




-TAADHR
Zeng et al. Proc Natl Acad Sci USA.




RLLEFYLAMPFA
98(7): 3964-9 (2001).




QGAMLAAQERRVPRAAE
Mandic et al. J Immunol.




-VPR
174(3): 1751-9 (2005).




PFATPMEAELARR
Chen et al. Proc Natl Acad Sci USA.




PGVLLKEFTVSGNILTIRLT
101(25): 9363-8 (2004).




VLLKEFTVSG
Ayyoub et al. Clin Cancer Res.




AADHRQLQLSISSCLQQL
16(18): 4607-15 (2010).




LKEFTVSGNILTIRL
Slager et al. J Immunol.




PGVLLKEFTVSGNILTIRL
172(8): 5095-102 (2004).




-TAADHR
Mizote et al. Vaccine. 28(32): 5338-




LLEFYLAMPFATPMEAEL
46 (2010).




-ARRSLAQ
Jager et al. J Exp Med. 191(4): 625-




KEFTVSGNILT
30 (2000).




LLEFYLAMPFATPM
Zarour et al. Cancer Res.




AGATGGRGPRGAGA
60(17): 4946-52 (2000).





Zeng et al. J Immunol. 165(2): 1153-





9 (2000).





Bioley et al. Clin Cancer Res.





15(13): 4467-74 (2009).





Zarour et al. Cancer Res. 62(1): 213-





8 (2002).





Hasegawa et al. Clin Cancer Res.





12(6): 1921-7 (2006).





3
HERV-K-MEL
MLAVISCAV 
Schiavetti et al. Cancer Res.





62(19): 5510-6 (2002).





4
KK-LC-1
RQKRILVNL
Fukuyama et al. Cancer Res.





66(9): 4922-8 (2006).





5
KM-HN-1
NYNNFYRFL
Fukuyama et al. Cancer Res.




EYSKECLKEF
66(9): 4922-8 (2006).




EYLSLSDKI
Monji et al. Clin Cancer Res. 10(18





Pt 1): 6047-57 (2004).





6
Sp17
ILDSSEEDK
Chiriva-Internati et al. Int J Cancer.





107(5): 863-5 (2003).
















TABLE 30







Uterine cancer











Tumor-associated
Reported immunogenic



No. 
antigen
epitopes
Sources





1
LAGE-1
MLMAQEALAFL
Aarnoudse et al. Int J Cancer.




SLLMWITQC
82(3): 442-8 (1999).




LAAQERRVPR
Rimoldi et al. J Immunol.




ELVRRILSR
165(12): 7253-61 (2000).




APRGVRMAV
Wang et al. J Immunol. 161(7): 3598-




SLLMWITQCFLPVF
606 (1998).




QGAMLAAQERRVPRAAE
Sun et al. Cancer Immunol




VP-R
Immunother. 55(6):  644-52 (2006).




AADHRQLQLSISSCLQQL
Slager et al. Cancer Gene Ther.




CLSRRPWKRSWSAGSCP
11(3):  227-36 (2004).




G-MPHL
Zeng et al. Proc Natl Acad Sci USA.




ILSRDAAPLPRPG
98(7):  3964-9 (2001).




AGATGGRGPRGAGA
Slager et al. J Immunol.





172(8):  5095-102 (2004).





Jager et al. J Exp Med. 191(4):  625-





30 (2000).





Slager et al. J Immunol.





170(3):  1490-7 (2003).





Wang et al. Immunity. 20(1):  107-18





(2004).





Hasegawa et al. Clin Cancer Res.





12(6):  1921-7 (2006).





2
NY-ESO-1
HLA-A2-restricted peptide
Jager et at. Proc. Natl. Acad. Scie.




p157-165 (SLLMWITQC),
U.S.A. 103(39):  14453-8 (2006).




HLA-Cw3-restricted p92-
Gnjatic et al. PNAS




100 (LAMP-FATPM) and
Sep. 26, 2000 vol. 97 no. 20 p.




HLA-Cw6-restricted p80-88
10919




(ARGPESRLL)
Jager et al. J Exp Med. 187(2): 265-




SLLMWITQC
70 (1998).




MLMAQEALAFL
Chen et al. J Immunol. 165(2): 948-




YLAMPFATPME
55 (2000).




ASGPGGGAPR
Valmori et al. Cancer Res.




LAAQERRVPR
60(16): 4499-506 (2000).




TVSGNILTIR
Aarnoudse et al. Int J Cancer.




APRGPHGGAASGL
82(3): 442-8 (1999).




MPFATPMEAEL
Eikawa et al. Int J Cancer.




KEFTVSGNILTI
132(2): 345-54 (2013).




MPFATPMEA
Wang et al. J Immunol. 161(7): 3598-




FATPMEAEL
606 (1998).




FATPMEAELAR
Matsuzaki et al. Cancer Immunol




LAMPFATPM
Immunother. 57(8)1185-95 (2008).




ARGPESRLL
Ebert et al. Cancer Res. 69(3): 1046-




SLLMWITQCFLPVF
54 (2009).




LLEFYLAMPFATPMEAEL-
Eikawa et al. Int J Cancer.




ARRSLAQ
132(2): 345-54 (2013).




EFYLAMPFATPM
Knights et al. Cancer Immunol




PGVLLKEFTVSGNILTIRL-
Immunother. 58(3): 325-38 (2009).




TAADHR
Jäger et al. Cancer Immun. 2: 12




RLLEFYLAMPFA
(2002).




QGAMLAAQERRVPRAAE-
Zeng et al. Proc Natl Acad Sci USA.




VPR
98(7): 3964-9 (2001).




PFATPMEAELARR
Mandic et al. J Immunol.




PGVLLKEFTVSGNILTIRLT
174(3): 1751-9 (2005).




VLLKEFTVSG
Chen et al. Proc Natl Acad Sci USA.




AADHRQLQLSISSCLQQL
101(25): 9363-8 (2004).




LKEFTVSGNILTIRL
Ayyoub et al. Clin Cancer Res.




PGVLLKEFTVSGNILTIRL-
16(18): 4607-15 (2010).




TAADHR
Slager et al. J Immunol.




LLEFYLAMPFATPMEAEL-
172(8): 5095-102 (2004).




ARRSLAQ
Mizote et al. Vaccine. 28(32): 5338-




KEFTVSGNILT
46 (2010).




LLEFYLAMPFATPM
Jager et al. J Exp Med. 191(4): 625-




AGATGGRGPRGAGA
30 (2000).





Zarour et al. Cancer Res.





60(17): 4946-52 (2000).





Zeng et al. J Immunol. 165(2): 1153-





9 (2000).





Bioley et at. Clin Cancer Res.





15(13): 4467-74 (2009).





Zarour et al. Cancer Res. 62(1): 213-





8 (2002).





Hasegawa et al. Clin Cancer Res.





12(6): 1921-7 (2006).





3
HERV-K-MEL
MLAVISCAV
Schiavetti et al. Cancer Res.





62(19): 5510-6 (2002).





4
KK-LC-1
RQKRILVNL
Fukuyama et al. Cancer Res.





66(9): 4922-8 (2006).





5
KM-HN-1
NYNNFYRFL
Fukuyama et al. Cancer Res.




EYSKECLKEF
66(9): 4922-8 (2006).




EYLSLSDKI
Monji et al. Clin Cancer Res. 10(18





Pt 1): 6047-57 (2004).





6
Sp17
ILDSSEEDK (SEQ ID NO:
Chiriva-Internati et al. Int J Cancer.




299)
107(5): 863-5 (2003).









Gene Alignment

An exemplary alignment of select orthopoxvirus genes is shown below. Various genes of 5 vaccinia virus strains, Copenhagen (“cop”), Western Reserver (“WR”), Tian Tan (“Tian”), Wyeth, and Lister, align as follows:














C2L


 CLUSTAL O(1.2.4) multiple sequence alignment









cop
MESVIFSINGEIIQVNKEIITASPYNFFKRIQDHHLKDEAIILNGINYHAFESLLDYIRW
 60


WR
MESVIFSINGEIIQVNKEIITASPYNFFKRIQDHHLKDEAIILNGINYHAFESILDYIRW
 60


Tian
MESVIFSINGEIIQVNKEIITASPYNFFKRIQDHHLKDEAIILNGINYHAFESLLDYIRW
 60


Wyeth
MESVTFSINGEIIQVNKEIITASPYNFFKRIQEHHINDEVIILNGINYHAFESLLDYMRW
 60


Lister
MESVIFSINGEIIQVNKEIITASPYNFFKRIQDHHLKDEAIILNGINYHAFESLLDYMRW
 60



**** ***************************:**::**.*****************:**






cop
KKINITINNVEMILVAAIIIDVPPVVDLCVKTMIHNINSTNCIRMFNFSKRYGIKKLYNA
120


WR
KKINITINNVEMILVAAIIIDVPPVVDLCVKTMIHNINSTNCIRMFNFSKRYGIKKLYNA
120


Tian
KKINITINNVEMILVAAIIIDVPPVVDLCVKTMIHNINSTNCIRMFNFSKQYGIKKLYNA
120


Wyeth
KKINITINNVEMILVAAVIIDVTPVVDLCVKTMIHNINSTNCIRMFNESKRYGIKKLYNA
120


Lister
KKINITINNVEMILVAAIIIDVPPVVDLCVKTMIHNINFTNCIRMFNFSKRYGIKKLYNA
120



*****************:**** *************** ***********:*********






cop
SMSEIINNITAVTSDPEFGKLSKDELTTILSHENVNVNHEDVTAMILLKWIHKNPNDVDI
180


WR
SMSEIINNITAVTSDPEFGKLSKDELTTILSHENVNVNHEDVTAMILLKWIHKNPNDVDI
180


Tian
SMSEIINNITAVTSDPEFGKLSKDELTTILSHEDVNVNHEDVTAMILLKWIHKNPNDVDI
180


Wyeth
SMSEIINNITAVTSDPEFGKLSKDELTTILSHEDVNVNHEDVTAMILLKWIHKNPNDVDI
180


Lister
SMSEIINNITAVTSDPEFGKLSKDELTTILSHEDVNVNHEDVTAMILLKWIHKNPNDVDI
180



*********************************:**************************






cop
INILHPKFMTNTMRNAISLLGLTISKSTKPVTRNGIKHNIVVIKNSDYISTITHYSPRTE
240


WR
INILHPKFMTNTMRNAISLLGLTISKSTKPVTRNGIKHNIVVIKNSDYISTITHYSPRTE
240


Tian
INILHPKFMTNTMRNAISLLGLTISKSTKPVTRNGIKHNIVVIKNSDYISTITHYSPRTE
240


Wyeth
INILHPKFMTNTMRNAISLLGLTISKSTKPVTRNGIKHNIVVIKNSDYISTITHYSPRTE
240


Lister
INILHPKFMTNTMRNAISLLGLTISKSTKPVTRNGIKHNIVVIKNSDYISTITHYSPRTE
240



************************************************************






cop
YWTIVGNTDRQFYNANVLHNCLYIIGGMINNRHVYSVSRVDLETKKWKTVTNMSSLKSEV
300


WR
YWTIVGNTDRQFYNANVLHNCLYIIGGMINNRHVYSVSRVDLETKKWKTVTNMSSLKSEV
300


Tian
YWTIVGNTDRQFYNANVLHNCLYIIGGMINNRHVYSVSRVDLETKKWKTVTNMSSLKSEV
300


Wyeth
YWTIVGNTDRQFYNANVLHNCLYIIGGMINNRHVYSVSRVDLETKKWKTVTNMSSLKSEV
300


Lister
YWTIVGNTDRQFYNANVLHNCLYIIGGMINNRHVYSVSRVDLKTKKWKTVTNMSSLKSEV
300



******************************************:*****************






cop
STCVNDGKLYVIGGLEFSISTGVAEYLKHGTSKWIRLPNLITPRYSGASVFVNDDIYVMG
360


WR
STCVNDGKLYVIGGLEFSISTGVAEYLKHGTSKWIRLPNLITPRYSGASVFVNDDIYVMG
360


Tian
STCVNNGKLYVIGGLEFSISTGVAEYLKHGTSKWIRLPNLITPRYSGASVFVNDDIYVMG
360


Wyeth
STCVNNGKLYVIGGLEFSISTGVAEYLKHGTSKWIRLPNLITPRYSGASVFVNDDIYVMG
360


Lister
STCVNDGKLYVIGGLEFSISTGVAEYLKHGTSKWIRLPNLITPRYSGASVFVNDDIYVMG
360



*****:******************************************************






cop
GVYTTYEKYVVLNDVECFTKNRWIKKSPMPRHHSIVYAVEYDGDIYVITGITHETRNYLY
420


WR
GVYTTYEKYVVLNDVECFTKNRWIKKSPMPRHHSIVYAVEYDGDIYVITGITHETRNYLY
420


Tian
GVYTTYEKYVVLNDVECFTKNRWIKKSPMPRHHSIVYAVEYDGDIYVITGITHETRNYLY
420


Wyeth
GVYTTYEKYVVLNDVECFTKNRWIKKSPMPRHHSIVYAVEYDGDIYAITGITHETRNYLY
420


Lister
GVYTTYEKYVVLNDVECFTKNRWIKKSPMPRHHSIVYAVEYDGDIYVITGITHETRNYLY
420



**********************************************.*************






cop
KYIVKEDKWIELYMYFNHVGKMFVCSCGDYILIIADAKYEYYPKSNTWNLFDMSTRNIEY
480


WR
KYIVKEDKWIELYMYFNHVGKMFVCSCGDYILIIADAKYEYYPKSNTWNLFDMSTRNIEY
480


Tian
KYIVKEDKWIELYMYFNHVGKMFVCSCGDYILIIADAKYEYYPKSNTWNLFDMSTRNIEY
480


Wyeth
KYIVKEDKWIELYMYFNHVGKMFVCSCGDYILIIADAKYEYYPKSNTWNLFDMSTRNIEY
480


Lister
KYIVKEDKWIELYMYFNHVGKMFVCSCGDYILIIADAKYEYYPKSNTWNLFDMSTRNIEY
480



************************************************************






cop
YDMFTKDETPKCNVTHKSLPSFLSNCEKQFLQ
512


WR
YDMFTKDETPKCNVTHKSLPSFLSNCEKQFLQ
512


Tian
YDMFTKDETPKCNVTHKSLPSFLSNCEKQFLQ
512


Wyeth
YDMFTKDET------HKSLPSFLSNCEKQFLQ
506


Lister
YDMFTKDETPKCNVTHKSLPSFLSNCEKQFLQ
512



*********      *****************











C1L


CLUSTAL O(1.2.4) multiple sequence alignment









Cop
MVKNNKI-----SNSCRMIMSTNPNNILMRHLKNLTDDEFKCIIHRSSDFLYLSDSDYTS
 55


WR
MVKNNKIQKNKISNSCRMIMSTDPNNILMRHLKNLTDDEFKCIIHRSSDFLYLSDSDYTS
 60


Tian
MVKNNKI-----SNSCRMIMSTDPNNILMRHLKNLTDDEFKCIIHRSSDFLYLSDSDYTS
 55


Wyeth
MVKNNKI-----SNSCRMIMSTNPNNILMRHLKNLTDDEFKCIIHRSSDFLYLSDRDYTS
 55


Lister
MVKNNKI-----SNSCRMIMSTNPNNILMRHLKNLTDDEFKCIIHRSSDFLYLSDSDYTS
 55



*******     ************************************************






Cop
ITKETLVSEIVEEYPDDCNKILAIIFLVLDKDIDVDIETKLKPKPAVRFAILDKMTEDIK
115


WR
ITKETLVSEIVEEYPDDCNKILAIIFLVLDKDIDVDIKTKLKPKPAVRFAILDKMTEDIK
120


Tian
ITKETLVSEIVEEYPDDCNKILAIIFLVLDKDIDVDIKTKLKPKPAVRFAILDKMTEDIK
115


Wyeth
ITKETLVSEIVEEYPDDCNKILAIIFLVLDKDIDVDIKTKLKPKPAVRFAILDKMTEDIK
115


Lister
ITKETLVSEIVEEYPDDCNKILAIIFLVLDKDIDVDIETKLKPKPAVRFAILDKMTADIK
115



*************************************:****************** ***






Cop
LTDLVRHYFRYIEQDIPLGPLFKKIDSYRTRAINKYSKELGLATEYFNKYGHLMFYTLPI
175


WR
LTDLVRHYFRYIEQDIPLGPLFKKIDSYRTRAINKYSKELGLATEYFNKYGHLMFYTLPI
180


Tian
LTDLVRHYFRYIEQDIPLGPLFKKIDSYRTRAINKYSKELGLATEYFNKYGHLMFYTLPI
175


Wyeth
LTDLVRHYFRYIEQDIPLGPLFKKIDSYRTRAINKYSKELGLATEYFNKYGHLMFYTLPI
175


Lister
LTDLVRHYFRYIEQDIPLGPLFKKIDSYRTRAINRYSKELGLATEYFNKYGHLMFYTLPI
175



************************************************************






Cop
PYNRFFCRNSIGFLAVLSPTIGHVKAFYKFIEYVSIDDRRKFKKELMSK
224


WR
PYNRFFCRNSIGFLAVLSPTIGHVKAFYKFIEYVSIDDRRKFKKELMSK
229


Tian
PYNRFFCRNSIGFLAVLSPTIGHVKAFYKFIEYVSIDDRRKFKKELMSK
224


Wyeth
PYNRFFCRNSIGFLAVLSPTIGHVKAFYKFIEYVSIDDRRKFKKELMSK
224


Lister
PYNRFFCRNSIGFLAVLSPTIGHVKAFYRFIEYVSIDDRRKFKKELMSK
224



*************************************************











N1L


CLUSTAL O(1.2.4) multiple sequence alignment 









Cop
MRTLLIRYILWRNDNDQTYYNDDFKKLMLLDELVDDGDVCTLIKNMRMTLSDGPLLDRLN
 60


WR
MRTLLIRYILWRNDNDQTYYNDNFKKLMLLDELVDDGDVCTLIKNMRMTLSDGPLLDRLN
 60


Tian
MRTLLIRYILWRNDNDQTYYNDDFKKLMLLDELVDDGDVCTLIKNMRMTLSDGPLLDRLN
 60


Wyeth
MRTLLIRYILWRNDNDQTYYNDDFKKLMLLDELVDDGDVCTLIKNMRMTLSDGPLLDRLN
 60


Lister
MRTLLIRYILWRNDNDQTYYNDDFKKLMLLDELVDDGDVCTLIKNMRMTLSDGPLLDRLN
 60



**********************:*************************************






Cop
QPVNNIEDAKRMIAISAKVARDIGERSEIRWEESFTILFRMIETYFDDLMIDLYGEK
117


WR
QPVNNIEDAKRMIAISARVARDIGERSEIRWEESFTILFRMIETYFDDLMIDLYGEK
117


Tian
QPVNNIEDAKRMIAISAKVARDIGERSEIRWEESFTILFRMIETYFDDLMIDLYGEK
117


Wyeth
QPVNNIEDAKRMIAISARVARDIGERSEIRWEESFTILFRMIETYFDDLMIDLYGEK
117


Lister
QPVNNIEDAKRMIAISAKVARDIGERSEIRWEESFTILFRMIETYFDDLMIDLYGEK
117



*********************************************************











N2L


CLUSTAL O(1.2.4) multiple sequence alignment









Cop
MTSSAMDNNEPKVLEMVYDATILPEGSSMDPNIMDCINRHINMCIQRTYSSSIIAILNRF
 60


WR
MTSSANDNNEPKVLEMVYDATILPEGSSMDPNIMDCINRHINMCIQRTYSSSIIAILDRF
 60


Tian
MTSSAMDNNEPKVLEMVYDATILPEGSSMDPYIMDCINRHINMCIQRTYSSSIIAILDRF
 60


Wyeth
MTSSAMDNNEPKVLEMVYDATILPEGSSMDPNIIDCINRHINMCIQRTYSSSIIAILDRF
 60


Lister
MTSSAMDNNEPKVLEMVYDATILPEGSSMDPNIMDCINRHINMCIQRTYSSSIIAILDRF
 60



******************************* *:***********************:**






Cop
LTMNKDELNNTQCHIIKEFMTYEQMAIDHYGEYVNAILYQIRKRPNQHHTIDLFKKIKRT
120


WR
LMMNKDELNNTQCHIIKEFMTYEQMAIDHYGGYVNAILYQIRKRPNQHHTIDLFKRIKRT
120


Tian
LMMNKDELNNTQCHIIKNL-----------------------------------------
 79


Wyeth
LTMNKDELNNTQCHIIKEFMTYEQMAIDHYGGYVNAILYQIRKRPNQHHTIDLFKKIKRT
120


Lister
LTMNRDELNNTQCHIIKEFMTYEQMAIDHYGEYVNAILYQIRKRPNQHHTIDLFKKIKRT
120



* ***************::






Cop
PYDTFKVDPVEFVKKVIGFVSILNKYKPVYSYVLYENVLYDEFKCFINYVETKYF
175


WR
RYDTFKVDPVEFVKKVIGFVSILNKYKPVYSYVLYENVLYDEFKCFINYVETKYF
175


Tian
-------------------------------------------------------



Wyeth
RYDTFKVDPVEFVKKVIGFVSILNKYKPVYSYVLYENVLYDEFKCFIDYVETKYF
175


Lister
RYDTFKVDPVEFVKKVIGFVSILNKYKPVYSYVLYENVLYDEFKCFIDYVETKYF
175










M1L


CLUSTAL O(1.2.4) multiple sequence alignment









Cop
MIFVIESKLLQIYRNRNRNINFYTTMDNIMSAEYYLSLYAKYNSKNLDVFRNMLQAIEPS
 60


WR
MIFVIESKLLQIYRNRNRNINFYTTMDNIMSAEYYLSLYAKYNSKNLDVFRNMLQAIEPS
 60


Tian
MIFVIESKLLQIYRNRNRNINFYTTMDNIMSAEYYLSLYAKYNSKNLDVFRNMLQAIEPS
 60


Wyeth
MIFVIESKLLQIYRNRNRNINFYTTMDNIMSAEYYLSLYAKYNSKNLDVFRNMLQAIEPS
 60


Lister
MIFVIESKLLQIYRN--RNINFYTTMDNIMSAEYYLSLYAKYNSKNLDVFRNMLQAIEPS
 58



***************  *******************************************






Cop
GNNYHILHAYCGIKGLDERFVEELLHRGYSPNETDDDGNYPLHIASKINNNRIVAMLLTH
120


WR
GNNYHILHAYCGIKGLDERFVEELLHRGYSPNETDDDGNYPLHIASKINNNRIVAMLLTH
120


Tian
GNNYHILHAYCGIKGLDERFVEELLHRGYSPNETDDDGNYPLHIASKINNNRIVAMLLTH
120


Wyeth
GNNYHILHAYCGIKGLDERFVEELLHRGYSPNETDDDGNYPLHIASKINNNRIVAMLLTH
120


Lister
GNNYHILHAYCGIKGLDERFVEELLHRGYSPNETDDDGNYPLHIASKINNNRIVAMLLTH
118



************************************************************






Cop
GADPNACDKHNKTPLYYLSGTDDEVIERINLLVQYGAKINNSVDEEGCGPLLACTDPSER
180


WR
GADPNACDKHNKTPLYYLSGTDDEVIERINLLVQYGAKINNSVDEEGCGPLLACTDPSER
180


Tian
GADPNACDKHNKTPLYYLSGTDDEVIERINLLVQYGAKINNSVDEEGCGPLLACTDPSER
180


Wyeth
GADPNACDKHNKTPLYYLSGTDDEVIERINLLVQYGAKINN-------------------
161


Lister
GADPNACDKQHKTPLYYLSGTDDEVIERINLLVQYGAKINNSVDEEGCGPLLACTDPSER
178



*********::******************************






Cop
VFKKIMSIGFEARIVDKFGKNHIHRHLMSDNPKASTISWMMKLGISPSKPDHDGNTPLHI
240


WR
VFKKIMSIGFEARIVDKFGKNHIHRHLMSDNPKASTISWMMKLGISPSKPDHDGNTPLHI
240


Tian
VFKKIMSIGFEARIVDKFGKNHIHRHLMSDNPKASTISWMMKLGISPSKPDHDGNTPLHI
240


Wyeth
------------------------------------------------------------



Lister
VFKKIMSIGFEARIVDKFGKNHIHRHLMSDNPKASTISWMMKLGISPSKPDHDGNTPLHI
238





Cop
VCSKTVKNVDIIDLLLPSTDVNKQNKFGDSPLTLLIKTLSPAHLINKLLSTSNVITDQTV
300


WR
VCSKTVKNVDIIDLLLPSTDVNKQNKFGDSPLTLLIKTLSPAHLINKLLSTSNVITDQTV
300


Tian
VCSKTVKNVDIIDLLLPSTDVNKQNKFGDSPLTLLIKTLSPAHLINKLLSTSNVITDQTV
300


Wyeth
------------------------------------------------------------



Lister
VCSKTVKNVDIIDLLLPSTDVNKQNKFGDSPLTLLIKTLSPAHLINKLLSTSNVITDQTV
298





Cop
NICIFYDRDDVLEIINDKGKQYDSTDFKMAVEVGSIRCVKYLLDNDIICEDAMYYAVLSE
360


WR
NICIFYDRDDVLEIINDKGKQYDSTDFKMAVEVGSIRCVKYLLDNDIICEDAMYYAVLSE
360


Tian
NICIFYDRDDVLEIINDKGKQYDSTDFKMAVEVGSIRCVKYLLDNDIICEDAMYYAVLSE
360


Wyeth
------------------------------------------------------------



Lister
NICIFYDRDDVLEIINDKGKQYDSTDFKMAVEVGSIRCVKYLLDNDIICEDAMYYAVLSE
358





Cop
YETMVDYLLFNHFSVDSVVNGHTCMSECVRLNNPVILSKLMLHNPTSETMYLTMKAIEKD
420


WR
YETMVDYLLFNHFSVDFVVNGHTCMSECVRLNNPVILSKLMLHNPTSETMYLTMKAIEKD
420


Tian
YETMVDYLLFNHFSVDFVVNGHTCMSECVRLNNPVILSKLMLHNLTSETMYLTMKAIEKD
420


Wyeth
------------------------------------------------------------



Lister
YETMVDYLLENHFSVDSVVNGHTCMSECVRLNNPVILSKLMLHNPTSETMYLTMKAIEKD
418





Cop
KLDKSIIIPFIAYFVLMHPDFCKNRRYFTSYKRFVTDYVHEGVSYEVFDDYF
472


WR
RLDKSIIIPFIAYFVLMHPDFCKNRRYFTSYKRFVTDYVHEGVSYEVFDDYF
472


Tian
RLDKSIIIPFIAYFVLMHPDFCKNRRYFTSYKRFVTDYVHEGVSYEVFDDYF
472


Wyeth
----------------------------------------------------



Lister
RLDKSIIIPFIAYFVLMHPDFCKNRRYFTSYKRFVTDYVHEGVSYEVFDDYF
470










M2L


CLUSTAL O(1.2.4) multiple sequence alignment









Cop
MVYKLVLLFCIASLGYSVEYKNTICPPRQDYRYWYFAAELTIGVNYDINSTIIGECHMSE
 60


WR
MVYKLVLLFCIASLGYSVEYKNTICPPRQDYRYWYFAAELTIGVNYDINSTIIGECHMSE
 60


Tian
------------------------MSSSTRLPVLVLAAELTIGVNYDINSTIIGECHMSE
 36


Wyeth
MVYKLVLLFCIASLGYSVEYKNTICPPRQDYRYWYFAAELTIGVNYDINSTIIGECHMSE
 60


Lister
MVYKLVLLFCIASLGYSVEYKNTICPPRQDYRYWYFAAELTIGVNYDINSTIIGECHMSE
 60



                :************************






Cop
SYIDRNANIVLIGYGLEINMTIMDTDQREVAAAEGVGKDNKLSVLLFTTQRLDKVHHNIS
120


WR
SYIDRNANIVLTGYGLEINNTIMDTDQRFVAAAEGVGKDNKLSVLLFTTQRLDKVHHNIS
120


Tian
SYIDRNANIVLTGYGLEINMTIMDTDQRFVAAAEGVGKDNKLSVLLFTTQRLDKVHHNIS
 96


Wyeth
SYIDRNANIVLTGYGLEINMTIMDTDQRFVAAAEGVGKDNKLSVLLFTTQRLDKVHHNIS
120


Lister
SYIDRNANIVLTGYGLEINMTIMDTDQRFVAAAEGVGKDNKLSVLLFTTQRLDKVHHNIS
120



************************************************************






Cop
VTITCMEMNCGTTKYDSDLPESIHKSSSCDITINGSCVTCVNLETDPTKINPHYLHPKDK
180


WR
VTITCMEMNCGTTKYDSDLPESIHKSSSCDITINGSCVTCVNLETDPTKINPHYLHPKDK
180


Tian
VTITCMEMNCGTTKYDSDLPESIHKSSSCDITINGSCVTCVNLETDPTKINPHYLHPKDK
156


Wyeth
VTITCMEMNCGTTKYDSDLPESIHKSSSCDITINGSCVTCVNLETDPTKINPHYLHPKDK
180


Lister
VTITCMEMNCGTTKYDSDLPESIHKSSSCDITINGSCVTCVNLETDPTKINPHYLHPKDK
180



************************************************************






Cop
YLYHNSEYGMRGSYGVTFIDELNQCLLDIKELSYDICYRE
220


WR
YLYHNSEYSMRGSYGVTFIDELNQCLLDIKELSYDICYRE
220


Tian
YLYHNSEYGMRGSYGVTFIDELNQCLLDIKELSYDICYRE
196


Wyeth
YLYHNSEYGMRGSYGVTFIDELNQCLLDIKELSYDICYRE
220


Lister
YLYHNSEYGMRGSYGVTFIDELNQCLLDIKELSYDICYRE
220



********.*******************************











K1L


CLUSTAL O(1.2.4) multiple sequence alignment









Cop
MDLSRINTWKSKQLKSFLSSKDTFKADVHGHSALYYAIADNNVRLVCTLLNAGALKNLLE
 60


WR
MDLSRINTWKSKQLKSFLSSKDAFKADVHGHSALYYAIADNNVRLVCTLLNAGALKNLLE
 60


Tian
MDLSRINTWKSKQLKSFLSSKDTFKADVHGHSALYYAIADNNVRLVCTLLNSGALKNLLE
 60


Wyeth
MDLSRINTWKSKQLKSFLSSKDTFKADVHGHSALYYAIADNNVRLVCTLLNAGALKNLLE
 60


Lister
MDLSRINTWKSKQLKSFLSSKDAFKADINGHSALYYAIADNNVRLVCTLLNAGALKNLLE
 60



**********************:****::**********************:********






Cop
NEFPLHQAATLEDTKIVKILLFSGMDDSQFDDKGNTALYYAVDSGNMQTVKLFVKKNWRL
120


WR
NEFPLHQAATLEDTKIVKILLFSGLDDSQFDDKGNTALYYAVDSGNMQTVKLFVKKNWRL
120


Tian
NEFPLHQAATLEDTKIVKILLFSGLDDSQFDDKGNTALYYAVDSGNMQTVKLFVKKNWRL
120


Wyeth
NEFPLHQAATLEDTKIVKILLFSGLDDSQFDDKGNTALYYAVDSGNMQTVKLFVKKNWRL
120


Lister
NEFPLHQAATLEDTKIVKILLFSGLDDSQFDDKGNTALYYAVDSGNMQTVKLFVKKNWRL
120



************************:***********************************






Cop
MFYGKTGWKTSFYHAVMLNDVSIVSYFLSEIPSTFDLAILLSCIHTTIKNGHVDMMILLL
180


WR
MFYGKTGWETSFYHAVMLNDVSIVSYFLSEIPSTFDLAILLSCIHITIKNGHVDMMILLL
180


Tian
MFYGKTGWKTSFYHAVMLNDVSIVSYFLSEIPSTFDLAILLSCIHITIKNGHVDMMILLL
180


Wyeth
MFYGKTGWKTSFYHAVMLNDVSIVSYFLSEIPSTFDLAILLSCIHITIKNGHVDMMILLL
180


Lister
MFYGKTGWKTSFYHAVMLNDVSIVSYFLSEIPSTFDLAILLSCIHITIKNGHVDMMILLL
180



********************************************* **************






Cop
DYMTSTNTNNSLLFIPDIKLAIDNKDIEMLQALFKYDINIYSVNLENVLLDDAEITKMII
240


WR
DYMTSTNTNNSLLFIPDIKLAIDNKDIEMLQALFKYDINIYSANLENVLLDDAEIAKMII
240


Tian
DYMTVDKHQ---------------------------------------------------
189


Wyeth
DYMTSTNTNNSLLFIPDIKLAIDNKDIEMLQALFKYDINIYSANLENVLLDDAEIAKMII
240


Lister
DYMTSTNTNNSLLFIPDIKLAIDNKDIEMIQALFKYDINIYSANLENVLLDDAEIAKMII
240



**** : :






Cop
EKHVEYKSDSYTKDLDIVKNNKLDEIISKNKELRLMYVNCVKKN
284


WR
EKHVEYKSDSYTKDLDIVKNNKLDEIISKNKELRLMYVNCVKKN
284


Tian
--------------------------------------------



Wyeth
EKHVEYKSDSYTKDLDIVKNNKLDEIISKNKELRLMYVNCVKKN
284


Lister
EKHVEYKSDSYTKDLDIVKNNKLDEIISKNKELKLMYVNCVKKN
284










K2L


CLUSTAL O(1.2.4) multiple sequence alignment









Cop
MIALLILSLTCSVSTYRLQGFTNAGIVAYKNIQDDNIVFSPFGYSFSMFMSLLPASGNTR
 60


WR
MIALLILSLTCSVSTYRLQGFTNAGIVAYKNIQDDNIVFSPFGYSFSMFMSLLPASGNTR
 60


Tian
MIALLILSLACSASAYRLQGFTNAGIVAYKNIQDDNIVFSPFGYSFSMFMSLLPASGNTR
 60


Wyeth
MIALLILSLTCSVSTYRLQGFTNAGIVAYKNIQDDNIVFSPFGYSFSMFMSLLPASGNTR
 60


Lister
------------------------------------------------------------






Cop
IELLKTMDLRKRDLGPAFTELISGLAKLKTSKYTYTDLTYQSFVDNTVCIKPLYYQQYHR
120


WR
IELLKTMDLRKRDLGPAFTELISGLAKLKTSKYTYTDLTYQSFVDNTVCIKPSYYQQYHR
120


Tian
IELLKTMDLRKRDLGPAFTELISGLAKLKTSKYTYTDLTYQSFVDNTVCIKPSYYQQYHR
120


Wyeth
IELLKTMDLRKRDLGPAFTELISGLAKLKTSKYTYTDLTYQSFVDNTVCIKPSYYQQYHR
120


Lister
IELLKTMDLRKRDLGPAFTELISGLAKLKTSKYTYTDLTYQSFVDNTVCIKPSYYQQYHR
 60



**************************************************** *******






Cop
FGLYRLNFRRDAVNKINSIVERRSGMSNVVDSNMLDNNTLWAIINTIYFKGTWQYPFDIT
180


WR
FGLYRLNFRRDAVNKINSIVERRSGMSNVVDSNMLDNNTLWAIINTIYFKGIWQYPFDIT
180


Tian
FGLYRLNFRRDAVNKINSIVERRSGMSNVVDSNMLDNNTLWAIINTIYFKGTWQYPFDIT
180


Wyeth
-----LNFRRDAVNKINSIVERRSGMSNVVDSNMLDNNTLWAIINTIYFKGIWQYPFDIT
175


Lister
FGLYRLNFRRDAVNKINSIVERRSGMSNVVDSNMLDNNTLWAIINTIYFKGIWQYPFDIT
120



 ********************************************** ********






Cop
KTRNASFTNKYGTKTVPMMNVVTKLQGNTITIDDEEYDMVRLPYKDANISMYLAIGDNMT
240


WR
KTRNASFTNKYGTKTVPMMNVVTKLQGNTITIDDEEYDMVRLPYKDANISMYLAIGDNMT
240


Tian
KTRNASFTNKYGTKTVPMMNVVTKLQGNTITIDDEEYDMVRLPYKDANISMYLAIGDNMT
240


Wyeth
KTRNASFTNKYGTKTVPMMNVVTKLQGNTITIDDKEYDMVRLPYKDANISMYLAIGDNMT
235


Lister
KTRNASFTNKYGTKTVPMMNVVTKLQGNTITIDDEEYDMVRLPYKDANISMYLAIGDNMT
180



**********************************:*************************






Cop
HFTDSITAAKLDYWSFQLGNKVYNLKLPKFSIENKRDIKSIAEMMAPSMFNPDNASFKHM
300


WR
HFTDSITAAKLDYWSFQLGNKVYNLKLPKFSIENKRDIKSIAEMMAPSMENPDNASFKHM
300


Tian
HFTDSITAA-KDYWSFQLGNKVYNLKLPKFSIENKRDIKSIAEMMAPSMFNPDNASFKHM
299


Wyeth
HFTDSITAAKLDYWSFQLGNKVYNLKLPKFSIENKRDIKSIAEMMAPSMFNPDNASFKHM
295


Lister
HFTDSITAAKLDYWSSQLGNKVYNLKLPKFSIENKRDIKSIAEMMAPSMFNPDNASFKHM
240



*********  **** ********************************************






Cop
TRDPLYIYKMFQNAKIDVDEQGTVAEASTIMVATARSSPEKLEFNTPFVFIIRHDITGFI
360


WR
TRDPLYIYKMFQNAKIDVDEQGTVARASTIMVATARSSPEKLEFNTPFVFIIRHDITGFI
360


Tian
TRDPLYIYKMFQNAKIDVDEQGTVAEASTIMVATARSSPEELEFNTPFVFIIRHDITGFI
359


Wyeth
TRDPLYIYKMFQNAKIDVDEQGTVAEASTIMVATARSSPEKLEFNTPFVFIIRHDITGFI
355


Lister
TRDPLYIYKMFQNAKIDVDEQGTVAEASTIMVATARSSPEKLEFNTPFVFIIRHDITGFI
300



****************************************:*******************






Cop
LFMGKVESP
369


WR
LFMGKVESP
369


Tian
LFMGKVESP
368


Wyeth
LFMGKVESP
364


Lister
LFMGKVESP
309



*********











K ORF A


CLUSTAL O(1.2.4) multiple sequence alignment









Cop
MGHIITYCQVHTNISILIRKAHHIIFFVIDCDCISLQFSNYVHHGNRFRTVLISKTSIAC
 60


Tian
MGHIITYCQVHTNISILIRKAYHIIFFVIDCDCISLQFSNYVHHGNRFRTVLISKTSIAC
 60



*********************:**************************************






Cop
FSDIKRILPCTFKIYSINDCP
 81


Tian
FSDIKRILPCTFKIYSINDCP
 81



*********************











K3L


CLUSTAL O(1.2.4) multiple sequence alignment









Cop
MLAFCYSLPNAGDVIKGRVYEKDYALYIYLFDYPHSEAILAESVKMHMDRYVEYRDKLVG
 60


WR
MLAFCYSLPNAGDVIKGRVYEKDYALYIYLFDYPHFEAILAESVKMHMDRYVEYRDKLVG
 60


Tian
MLAFCYSLPNAGDVIKGRVYEKDYALYIYLFDYPHSEAILAESVKMHMDRYVEYRDKLVG
 60


Wyeth
MLAFCYSLPNAGDVIKGRVYENDYALYIYLFDYPHFEAILAESVKMHMDRYVEYRDKLVG
 60


Lister
MLAFCYSLPNAGDVIKGRVYENDYALYIYLFDYPHSEAILAESVKMHMDRYVEYRDKLVG
 60



*********************:************* ************************






Cop
KTVKVKVIRVDYTKGYIDVNYKRMCRHQ
 88


WR
KTVKVKVIRVDYTKGYIDVNYKRMCRHQ
 88


Tian
KTVKVKVIRVDYTKGYIDVNYKRMCRHQ
 88


Wyeth
KTVKVKVIRVDYTKGYIDVNYKRMCRHQ
 88


Lister
KTVKVKVIRVDYTKGYIDVNYKRMCRHQ
 88



****************************











K4L


CLUSTAL O(1.2.4) multiple sequence alignment









Cop
MNPDNTIAVITETIPIGMQFDKVYLSTFNMWREILSNTTKTLDISSFYWSLSDEVGTNFG
 60


WR
MNPDNTIAVITETIPIGMQFDKVYLSTFNMWREILSNTTKTLDISSFYWSLSDEVGTNFG
 60


Wyeth
MNPDNTIAVITETIPIGMQFDKVYLSTFNMWREILSNTTKTLDISSFYWSLSDEVGTNFG
 60


Lister
MNPDNTIAVITETIPIGMQFDKVYLSTFNMWREILSNTTKTLDISSFYWSLSDEVGTNFG
 60



************************************************************






Cop
TIILNEIVQLPKRGVRVRVAVNKSNKPLKDVERLQMAGVEVRYIDITNILGGVLHTKFWI
120


WR
TIILNKIVQLPKRGVRVRVAVNKSNKPLKDVERLQMAGVEVRYIDITNILGGVLHTKFWI
120


Wyeth
TIILNEIVQLPKRGVRVRVAVNKSNKPLKDVERLQMAGVEVRYIDITNILGGVLHTKFWI
120


Lister
TIILNEIVQLPKRGVRVRVAVNKSNKPLKDVERLQMAGVEVRYIDITNILGGVLHTKFWI
120



*****:******************************************************






Cop
SDNTHIYLGSANMDWRSLTQVKELGIAIFNNRNLAADLTQIFEVYWYLGVNNLPYNWKNF
180


WR
SDNTHIYLGSANMDWRSLTQVKELGIAIFNNRNLAADLTQIFEVYWYLGVNNLPYNWKNF
180


Wyeth
SDNTHIYLGSANMDWRSLTQVKELGIAIFNNRNLAADLIQIFEVYWYLGVNNLPYNWKNF
180


Lister
SDNTHIYLGSANMDWRSLTQVKELGIAIFNNRNLAADLIQIFEVYWYLGVNNLPYNWKNF
180



************************************************************






Cop
YPSYYNTDHPLSINVSGVPHSVFIASAPQQLCTMERTNDLTALLSCIRNASKFVYVSVMN
240


WR
YPSYYNTDHPLSINVSGVPHSVFIASAPQQLCTMERTNDLTALLSCIRNASKFVYVSVMN
240


Wyeth
YPSYYNTDHPLSINVSGVPHSVFIASAPQQLCTMERTNDLTALLSCIRNASKFVYVSVMN
240


Lister
YPSYYNTDHPLSINVSGVPHSVFIASAPQQLCTMERTNDLTALLSCIRNASKFVYVSVMN
240



************************************************************






Cop
FIPIIYSKAGKILFWPYIEDELRRSAIDRQVSVKLLISCWQRSSFIMRNFLRSIAMLKSK
300


WR
FIPIIYSKAGNILFWPYIEDELRRAAIDRQVSVKLLISCWQRSSFIMRNFLRSIAMLKSK
300


Wyeth
FIPIIYSKAGKILFWPYIEDELRRSAIDRQVSVKLLISCWQRSSFIMRNFLRSIAMLKSK
300


Lister
FIPIIYSKAGKILFWPYIEDELRRSAIDRQVSVKLLISCWQRSSFIMRNFLRSIAMLKSK
300



**********:*************:***********************************






Cop
NIDIEVKLFIVPDADPPIPYSRVNHAKYMVTDKTAYIGTSNWTGNYFTDTCGASINITPD
360


WR
NINIEVKLFIVPDADPPIPYSRVNEAKYMVTDKTAYIGTSNWTGNYFTDTCGASINITPD
360


Wyeth
NINIEVKLFIVPDADPPIPYSRVNHAKYMVTDKTAYIGTSNWTGNYFTDTCGASINITPD
360


Lister
NINIEVKLFIVPDADPPIPYSRVNHAKYMVTDKTAYIGTSNWTGNYFTDTCGASINITPD
360



**:*********************************************************






Cop
DGLGLRQQLEDIFMRDWNSKYSYELYDTSPTKRCKLLKNMKQCTNDIYCDEIQPEKEIPE
420


WR
DGLGLRQQLEDIFMRDWNSKYSYELYDTSPTKRCRLLKNMKQCTNDIYCDEIQPEKEIPE
420


Wyeth
DGLGLRQQLEDIFMRDWNSKYSYELYDTSPTKRCKLLKNMKQCTNDIYCDEIQPEKEIPE
420


Lister
DGLGLRQQLEDIFMRDWNSKYSYELYDTSPTKRCKLLKNMKQCTNDIYCDEIQPEKEIPE
420



**********************************:*************************
420





Cop
YSLE
424


WR
YSLE
424


Wyeth
YSLE
424


Lister
YSLE
424



****











K5L


CLUSTAL O(1.2.4) multiple sequence alignment









Cop
-------------MGATISILASYDNPNLFTAMILMSPLVNADAVSRLNLLAAKLMGTIT
 47


WR
MTLVQHVVTIKSTYWVIPWELASYDNPNLFTAMILMSPLVNADAVSKLNLLAAKINGTIT
 60


Tian
MTLVQHVVTIKSTYWVIPWELASYDNPNLFTAMILMSPLVNADAVSKLNLLAAKLMGTIT
 60


Wyeth
-------------MGATISILASYDNPNLFTAMILMSPLVNADAVSKLNLLAAKLMGTIT
 47


Lister
---------MGHSMGATISILASYDNPNLFTAMILMSPLVNADAVSRINLLAAKLMGTIT
 51



         .          **************************:*************






Cop
PNAPVGKLCPESVSRDMDKVYKYQYDPLINHEKIKAGFASQVLKATNKVRKIISKINTPR
107


WR
LNAPVGKLCPESVSRDMDKVYKYQYDPLINHEKIKAGFASQVLKATNKVRKIISKINTPR
120


Tian
LNAPVGKLCPESVSRDMDKVYKYQYDPLINHEKIKAGFASQVLKATNKVRKIISKINTPR
120


Wyeth
PNAPVGKLCPESVSRDMDKVYKYQYDPLINHEKIKAGFASQVLKATNKVRKIISKINTPP
107


Lister
PNAPVGKLCPESVSRDMDKVYKYQYDPLINHEKIKAGFASQVLKATNKVRKIISKINTPP
111



**********************************************************






Cop
LSYSREQTMRL-----VMFQVHIISCNMQIVIE---------------------------
135


WR
LSYSREQTIRL-----AMF-----------------------------------------
134


Tian
LSYSREQTIRL-----AMF-----------------------------------------
134


Wyeth
TLILQGTNNEISDVLGAYYFMQHANCNREIKIYEGAKHHLHKETDEVKKSVMKEIETWIF
167


Lister
TLILQGTNNKISDVLGAYYFMQHANCNREIKIYEGAKHHLHKETDEVKKSVMKEIETWIF
171



:..: .:






Cop
----



WR
----



Tian
----



Wyeth
NRVK
171


Lister
NRVK
175










K6L


CLUSTAL O(1.2.4) multiple sequence alignment









Cop
MSANCMFNLDNDYIYWKPITYPKALVFISHGAGKHSGRYDELAENISSLGILVFSHDHIG
 60


WR
MSANCMFNIDNDYIYWKPITYPKALVFISHGAGKHSGRYDELAENISSLGILVFSHDHIG
 60


Wyeth
MSANCMFNLDNDYIYWKPITYPKALVFISHGAGKHSGRYDELAENISSLGILVFSHDHIG
 60


Lister
MSANCMFNLDNDYIYWKPITYPKALVFISHGAGKHSGRYDELAENISSLGILVFSHDHIG
 60



************************************************************






Cop
HGRSNGEKMMIDDFGTARGNY
 81


WR
HGRSNGEKMMIDDFGTARGNY
 81


Wyeth
HGRSNGEKMMIDDFGTARGNY
 81


Lister
HGRSNGEKMMIDDFGTARGNY
 81



*********************











K7R


CLUSTAL O(1.2.4) multiple sequence alignment









Cop
MATKLDYEDAVFYFVDDDKICSRDSIIDLIDEYITWRNHVIVFNKDITSCGRLYKELMKF
 60


WR
MATKLDYEDAVFYFVDDDKICSRDSIIDLIDEYITWRNHVIVFNKDITSCGRLYKELMKF
 60


Tian
MATKLDYEDAVFYFVDDDKICSRDSIIDLIDEYITWRNHVIVFNKDITSCGRLYKELMKF
 60


Wyeth
MATKLDYEDAVFYFVDDDKICSRDSIIDLIDEYITWRNHVIVFNKDITSCGRLYKELMKF
 60


Lister
MATKLDYEDAVFYFVDDDKICSRDSIIDLIDEYITWRNHVIVFNKDITSCGRLYKELMKF
 60



************************************************************






Cop
DDVAIRYYGIDKINEIVEAMSEGDHYINFTKVHDQESLFATIGICAKITEHWGYKKISES
120


WR
DDVAIRYYGIDKINEIVEAMSEGDHYINFTKVHDQESLFATIGICAKITEHWGYKKISES
120


Tian
DDVAIRYYGIDKINEIVEAMSEGDHYINFTKVHDQESLFATIGICAKITEHWGYKKISES
120


Wyeth
DDVAIRYYGIDKINEIVEAMSEGDHYINFTKVHDQESLFATIGICAKITEHWGYKKISES
120


Lister
DDVAIRYYGIDKINEIVEAMSEGDHYINFTKVHDQESLFATIGICAKITEHWGYKKISES
120



************************************************************






Cop
RFQSLGNITDLMTDDNINILILFLEKKLN
149


WR
RFQSLGNITDLMTDDNINILILFLEKKLN
149


Tian
RFQSLGNITDLMTDDNINILILFLEKKLN
149


Wyeth
RFQSLGNITDLMTDDNINILILFLEKKLN
149


Lister
RFQSLGNITDLMTDDNINILILFLEKKLN
149



*****************************











F1L


CLUSTAL O(1.2.4) multiple sequence alignment









Cop
MLSMFMCNNIVDYVDDIDNGIVQDIEDEASNNVDHDYVYPLPENMVYRFDKSTNILDYLS
 60


WR
MLSMFMCNNIVDYVDDIDNGIVQDIEDEASNNVDHDYVYPLPENMVYRFDKSTNILDYLS
 60


Tian
MLSMFMCNNIVDYVDDIDNGIVQDIEDEASNNVDRDYVYPLPENMVYRFDKSTNILDYLS
 60


Wyeth
MLSMFMCNNIVDYVDDIDNGIVQDIEDEASNNVDHDYVYPLPENMVYRFDKSTNILDYLS
 60


Lister
MLSMFMCNNIVDYVDDIDNGIVQDIEDEASNNVDHDYVYPLPENMVYRFDKSTNILDYLS
 60



**********************************:*************************






Cop
TERDHVMMAVRYYMSKQRLDDLYRQLPTKTRSYIDIINIYCDKVSNDYNRDMNIMYDMAS
120


WR
TERDHVMMAVRYYMSKQRLDDLYRQLPTKTRSYIDIINIYCDKVSNDYNRDMNIMYDMAS
120


Tian
TERDHVMMAVRYYMSKQRLDDLYRQLPTKTRSYIDIINIYCDKVSNDYNRDMNIMYDMAS
120


Wyeth
TERDHVMMAVRYYMSKQRLDDLYRQLPTKTRSYIDIINIYCDKVSNDYNRDMNIMYDMAS
120


Lister
TERDHVMMAVRYYMSKQRLDDLYRQLPTKTRSYIDIINIYCDKVSNDYNRDMNIMYDMAS
120



************************************************************






Cop
TKSFTVYDINNEVNTILMDNKGLGVRLATISFITELGRRCMNPVKTIKMFTLLSHTICDD
180


WR
TKSFTVYDINNEVNTILMDNKGLGVRLATISFITELGRRCMNPVETIKMFTLLSHTICDD
180


Tian
TKSFTVYDINNEVNTILMDNKGLGVRLATISFITELGRRUMNPVKTIKMFTLLSHTICDD
180


Wyeth
TKSFTVYDINNEVNTILMDNKGLGVRLATISFITKLGRRCMNPVKTIKMFTLLSHTICDD
180


Lister
TKSFTVYDINNEVNTILMDNKGLGVRLATISFITELGRRCMNPVKTIKMFTLLSHTICDD
180



**********************************:*********:***************






Cop
CFVDYITDISPPDNTIPNTSTREYLKLIGITAIMFATYKTLKYMIG
226


WR
YFVDYITDISPPDNTIPNTSTREYLKLIGITAIMFATYKTLKYMIG
226


Tian
CFVDYITDISPPDNTIPNTSTREYLKLIGITAIMFATYKTLKYMIG
226


Wyeth
CFVDYITDISPPDNTIPNTSTREYLKLIGITAIMFATYKTLKYMIG
226


Lister
CFVDYITDISPPDNTIPNTSTREYLKLIGITAIMFATYKTLKYMIG
226



**********************************************











F2L


CLUSTAL O(1.2.4) multiple sequence alignment









Cop
MFNMNINSPVRFVKETNRAKSPTRQSPGAAGYDLYSAYDYTIPPGERQLIKTDISMSMPK
 60


WR
MFNMNINSPVRFVKETNRAKSPTRQSPYAAGYDLYSAYDYTIPPGERQLIKTDISMSMPK
 60


Tian
MFNMNINSPVRFVKETNRAKSPTRQSPGAAGYDLYSAYDYTIPPGERQLIKTDISMSMPK
 60


Wyeth
MFNMNINSPVRFVKETNRAKSPTRQSPGAAGYDLYSAYDYTIPPGERQLIKTDISMSMPK
 60


Lister
MFNMNINSPVRFVKETNRAKSPTRQSPGAAGYDLYSAYDYTIPPGERQLIKTDISMSMPK
 60



************************************************************






Cop
ICYGRIAPRSGLSLKGIDIGGGVIDEDYRGNIGVILINNGKCTFNVNTGDRIAQLIYQRI
120


WR
FCYGRIAPRSGLSLKGIDIGGGVIDEDYRGNIGVILINNGKCTFNVNTGDRIAQLIYQRI
120


Tian
ICYGRIAPRSGLSLKGIDIGGGVIDEDYRGNIGVILINNGKCTFNVNTGDRIAQLIYQRI
120


Wyeth
ICYGRIAPRSGLSLKGIDIGGGVIDEDYRGNIGVILINNGKCTFNVNTGDRIAQLIYQRI
120


Lister
FCYGRIAPRSGLSLKGIDIGGGVIDEDYRGNIGVILINNGKCTFNVNTGDRIAQLIYQRI
120



:***********************************************************






Cop
YYPELEEVQSLDSTNRGDQGFGSTGLR
147


WR
YYPELEEVQSLDSTNRGDQGFGSTGLR
147


Tian
YYPELEEVQSLDSTDRGDQGFGSTGLR
147


Wyeth
YYPELEEVQSLDSTNRGDQGFGSTGLR
147


Lister
YYPELEEVQSLDSTNRGDQGFGSTGLR
147



**************:************











F3L


CLUSTAL O(1.2.4) multiple sequence alignment









Cop
MPIFVNTVYCKNILALSMTKKFKTIIDAIGGNIIVNSTILKKLSPYFRTHLRQKYTKNKD
 60


WR
MPIFTNTVYCKNILALSMTKKFKTIIDAIGGNIIVNSTILKKLSPYFRTHLRQKYTKNKD
 60


Tian
MPIFVNTVYCKNILALSMTKKFKTIIDAIGGNIIVNSTILKKLSPYFRTHLRQKYTKNKD
 60


Wyeth
MPIFVNTVYCKNILALSMTKKFKTIIDAIGGNIIVNSTILKKLSPYFRTHLRQKYTKNKD
 60


Lister
MPIFVNTVYCKNILALSMTKKFRTIIDAIGGNSIVNSTILKKLSPYFRTHLRQKYTKNKD
 60



************************************************************






Cop
PVTRVCLDLDIHSLTSIVIYSYTGKVYIDSHNVVNLLRASILTSVEFIIYTCINFILRDF
120


WR
PVTWVCLDLDIHSLTSIVIYSYTGKVYIDSHNVVNLLRASILTSVEFIIYTCINFILRDF
120


Tian
PVTRVCLDLDIHSLTSIVIYSYTGKVYIDSHNVVNLLRASILTSVEFIIYTCINFILRDF
120


Wyeth
PVTRVCLDLDIHSLTSIVIYSYTGKVYIDSHNVVNLLRASILTSVEFIIYTCINFILRDF
120


Lister
PVTRVCLDLDIHSLTSIVIYSYTGKVYIDSHNVVNLLRASILTSVEFIIYTCINFILRDF
120



*** ********************************************************






Cop
RKEYCVECYMMGIEYGLSNLLCHTKNFIAKHFLELEDDIIDNFDYLSMKLILESDELNVP
180


WR
RKEYCVECYMMGIEYGLSNLLCHTKNFIAKHFLELEDDIIDNFDYLSMKLILESDELNVP
180


Tian
RKEYCVECYMMGIEYGLSNLLCHTKNFIAKHFLELEDDIIDNFDYLSMELILESDELNVP
180


Wyeth
RKEYCVECYMMGIEYGLSNLLCHTKNFIAKHFLELEDDIIDNFDYLSMKLILESDELNVP
180


Lister
RKEYCVECYMMGIEYGLSNLLCHTKNFIAKHFLELEDDIIDNFDYLSIKLILESDELNVP
180



***********************************************:************






Cop
DEDYVVDFVIKWYIKRRNKLGNLLLLIKNVIRSNYLSPRGINNVKWILDCTKIFHCDKQP
240


WR
DEDYVVDFVIKWYIKRRNKLGNLLLLIKNVIRSNYLSPRGINNVKWILDCTKIFHCDKQP
240


Tian
DEDYVVDFVIKWYIKRRNKLGNLLLLIKNVIRSNYLSPRGINNVKWILDCTKIFHCDKQP
240


Wyeth
DEDYVVDFVIKWYIKRRNKLGNLLLLIKNVIRSNYLSPRGINNVKWILDCTKIFHCDKQP
240


Lister
DEDYVVDFVIKWYIKRRNKLGNLLLLIKNVIRSNYLSPRGINNVKWILDCTKIFHCDKQP
240



************************************************************






Cop
RKSYKYPFIEYPMNMDQIIDIFHMCTSTHVGEVVYLIGGWMNNEIHNNAIAVNYISNNWI
300


WR
RKSYKYPFIEYPMNMDQIIDIFHMCTSTHVGEVVYLIGGWMNNEIHNNAIAVNYISNNWI
300


Tian
RKSYKYPFIEYPMNMDQIIDIFHMCTSTHVGEVVYLIGGWMNNEIHNNAIAVNYISNNWI
300


Wyeth
RKSYKYPFIEYPMNMDQIIDIFHMCTSTHVGEVVYLIGGWMNNEIHNNAIAVNYISNNWI
300


Lister
RKSYKYPFIEYPMNMDQIIDIFHMCTSTHVGEVVYLIGGWMNNEIHNNAIAVNYISNNWI
300



************************************************************






Cop
PIPPMNSPRLYATGIPANNKLYVVGGLPNPTSVERWFHGDAAWVNMPSLLKPRCNPAVAS
360


WR
PIPPMNSPRLYASGIPANNKLYVVGGLPNPTSVERWFHGDAAWVNMPSLLKPRCNPAVAS
360


Tian
PIPPMNSPRLYASGIPANNKLYVVGGLPNPTSVERWFHGDAAWVNMPSLLKPRCNPAVAS
360


Wyeth
PIPPMNSPRLYASGIPANNKLYVVGGLPNPTSVERWFHGDAAWVNMPSLLKPRCNPAVAS
360


Lister
PIPPMNSPRLYASGIPANNKLYVVGGLPNPTSVERWFHGDAAWVNMPSLLKPRCNPAVAS
360



************:***********************************************






Cop
INNVIYVMGGHSETDTTTEYLLPNHDQWQFGPSTYYPHYKSCALVFGRRLFLVGRNAEFY
420


WR
INNVIYVMGGHSETDTTTEYLLPNHDQWQFGPSTYYPHYKSCALVFGRRLFLVGRNAEFY
420


Tian
INNVIYVMGGHSETDTTTEYLLPNHDQWQFGPSTYYPHYKSCALVFGRRLFLVGRNAEFY
420


Wyeth
INNVIYVMGGHSETDTTTEYLLPNHDQWQFGPSTYYPHYKSCALVFGRRLFLVGRNAEFY
420


Lister
INNVIYVMGGHSETDTTTEYLLPNHDQWQFGPSTYYPHYKSCALVFGRRLFLVGRNAEFY
420



************************************************************






Cop
CESSNTWTLIDDPIYPRDNPELIIVDNKLLLIGGFYRGSYIDTIEVYNHHTYSWNIWDGK
480


WR
CESSNTWTLIDDPIYPRDNPELIIVDNKLLLIGGFYRESYIDTIEVYNHHTYSWNINDGK
480


Tian
CESSNTWTLIDDPIYPRDNPELIIVDNKLLLIGGFYRESYIDTIEVYNHHTYSWNINDGK
480


Wyeth
CESSNTWTLIDDPIYPRDNPELIIVDNKLLLIGGFYRESYIDTIEVYNHHTYSWNIWDGK
480


Lister
CESSNTWTLIDDPIYPRDNPELIIVDNKLLLIGGFYRESYIDTIEVYNHHTYSWNIWDGK
480



************************************* **********************











B14R


CLUSTAL O(1.2.4) multiple sequence alignment









Cop
------------------------------------------------------------



WR
MDIFREIASSMKGENVFISPASISSVLTILYYGANGSTAEQLSKYVEKEENMDKVSAQNI
 60


Tian
------------------------------------------------------------



Wyeth
------------------------------------------------------------






Cop
------------------------------------------------------------



WR
SFKSINKVYGRYSAVFKDSFLRKIGDKFQTVDFTDCRTIDAINKCVDIFTEGKINPLLDE
120


Tian
------------------------------------------------------------



Wyeth
------------------------------------------------------------






Cop
---MNHCLLAISAVYFKAKWLTPFEKEFTSDYPFYVSPTEMVDVSMMSMYGELFNHASVK
 57


WR
PLSPDTCLLAISAVYFKAKNLTPFEKEFTSDYPFYVSPTEMVDVSMNSMYGKAFNHASVK
180


Tian
---MNHCLLAISAVYFKAKWLTPFEKEFTSDYPFYVSPTEMVDVSMMSMYGKAFNHASVK
 57


Wyeth
---MNHCLLAISAVYFKAKWLTPFEKEFTSDYPFYVSPTEMVDVSMMSMYGKAFNHASVK
 57



: *********************************************: *******






Cop
ESFGNFSIIELPYVGDTSMMVILPDKIDGLESIEQNLTDTNFKKWCNSLDAMFIDVHIPK
117


WR
ESFGNFSIIELPYVGDTSMMVILPDKIDGLESIEQNLTDTNFKKWCNSLEATFIDVHIPK
240


Tian
ESFGNFSIIELPYVGDTSMMVILPDKIDGLESIEQNLTDTNFKKWCDFMDAMFIDVHIPK
117


Wyeth
ESFGNFSIIELPYVGDTSMMVILPDKIDGLESIEQNLTDTNFKKWCDFMDAMFIDVHIPK
117



**********************************************: ::* ********






Cop
FKVTGSYNLVDTLVKSGLTEVFGSTGDYSNMCNLDVSVDAMIHKTYIDVNEEYTEAAAAT
177


WR
FKVTGSYNLVDTLVKSGLTEVFGSTGDYSNMCNSDVSVDAMIHKTYIDVNEEYTEAAAAT
300


Tian
FKVTGSYNLVDTLVKSGLTEVFGSTGDYSNMCNLDVSVDAMIHKTYIDVNEEYTEAAAAT
177


Wyeth
FKVTGSYNLVDTLVKSGLTEVFGSTGDYSNMCNLDVSVDAMIHKTYIDVNEEYTFAAAAT
177



********************************* **************************






Cop
CALVSDCASTITNEFCVDHPFIYVIRHVDGKILFVGRYCSPTTNC
222


WR
CALVSDCASTITNEFCVDHPFIYVIRHVDGKILFVGRYCSPTTNC
345


Tian
CALVSDCASTITNEFCVDHPFIYVIRHVDGKILFVGRYCSPTTNC
222


Wyeth
CALVSDCASTVTNEFCADHPFIYVIRHVDGKILFVGRYCSPTTNC
222



**********:*****.****************************











B15R


CLUSTAL O(1.2.4) multiple sequence alignment









Cop
MTANFSTHVFSPQHCGCDRLTSIDDVKQCLTEYIYWSSYAYRNRQCAGQLYSTLLSFRDD
 60


WR
MTANFSTHVFSPQHCGCDRLTSIDDVKQCLTEYIYWSSYAYANRQCAGQLYSTLLSFRDD
 60


Tian
MTANFSTHVFSPQHCGCDRLTSIDDVKQCLTEYIYWSSYAYRNRQCAGQLYSTLLSFRDD
 60


Wyeth
MTANFSTHVFSPQHCGCDRLTSIDDVKQCLTEYIYWSSYAYRNRQCAGQLYSTLLSFRDD
 60


Lister
MTANFSTHVFSPQHCGCDRLTSIDDVKQCLTEYIYWSSYAYRNRQCAGQLYSTLLSFRDD
 60



**************************:*********************************






Cop
AELVFIDIRELVKNMPWDDVKDCTEIIRCYIPDEQKTIREISAIIGLCAYAATYWGGEDH
120


WR
AELVFIDIRELVKNMPWDDVKDCAEIIRCYIPDEQKTIREISAIIGLCAYAATYWGGEDH
120


Tian
AELVFIDIRELVKNMEWDDVKDCTEIIRCYIPDEQKTIREISAIIGLCAYAATYWGGEDH
120


Wyeth
AELVFIDIRELVKHMPWDDVKDCAEIIRCYIPDEQKTIREISAIIGLCAYAATYWGGEDH
120


Lister
AELVFIDIRELVKNMPWDDVKDCTEIIRCYIPDEQKTIREISAIIGLCAYAATYWGGEDH
120



*************:*********:************************************






Cop
PTSNSLNALFVMLEMLNYVDYNIIFRRMN
149


WR
PTSNSLNALFVMLEMLNYVDYNIIFRRMN
149


Tian
PTSNSLNALFVMLEMLNYVDYNIIFRRMN
149


Wyeth
PTSNSLNALFVMLEMLNYVDYNIIFRRMN
149


Lister
PTSNSLNALFVMLEMLNYVDYNIIFRRMN
149



*****************************











B ORF E


CLUSTAL O(1.2.4) multiple sequence alignment









Cop
MYNSSIHTPEYDVIIHVIEHLKHHKQCVQTVTSGMVFTSPVSSSICTKSDDGRNLSDGFL
 60


Tian
MYNSSIHTPEYDVIIHVIEHLKHHKQCVQTVTSGMVFTSPVSSSICTKSDDGRNLSDGFL
 60



************************************************************






Cop
LIRYITTDDFCTIFDIIPRHIFYQLANVDEH
 91


Tian
LIRYITTDDFCTIFDIIPRHIFYQLANVDEH
 91



*******************************











B16R


CLUSTAL O(1.2.4) multiple sequence alignment









Cop
MSILPVIFLPIFFYSSFVQTFNASECIDKGXYFASFMELENEPVILPCPQINTISSGYNI
 60


WR
MSILPVIFLSIFFYSSFVQTFNAPECIDKGQYFASFMELENEPVILPCPQINTLSSGYNI
 60


Tian
------------------------------------MELENEPVILPCPQINTLSSGYNI
 24


Wyeth
MSILPVIFLSIFFYSSFVQTFNASECIDKGQYFASFMELENEPVILPCPQINTLSSGYNI
 60


Lister
MSILPVIFLPIFFYSSFVQTFNAPECIDKGQYFASFMELENEPVILPCPQINTLSSGYNI
 60



                  ************************






Cop
LDILWEKRGADNDRIIPIDNGSNMLILNPTQSDSGIYICITTNETYCDMMSLNLTIVSVS
120


WR
LDILWEKRGADNDRIIPIDNGSNMLILNPTQSDSGIYICITTNETYCDMMSLNLTIVSVS
120


Tian
LDILWEKAGADNDRIIPIDNGSNMLILNPTQSDSGIYICITTNETYCDMMSLNLTIVSVL
 84


Wyeth
LDILWEKRGADNDRIIPIDNGSNMLILNPTQSDSGIYICITTNETYCDMMSLNLTIVSVS
120


Lister
LDILWEKRGADNDRIIPIDNGSNMLILNPTQSDSGIYICITTNETYCDMMSLNLTIVSVS
120



************************************************************






Cop
ESNIDFISYPQIVNERSTGEMVCPNINAFIASNVNADIIWSGHRRLRNKRLKQRTPGIIT
180


WR
ESNIDLISYPQIVNERSTGEMVCPNINAFIASNVNADIIWSGHRRLRNKRLKQRTPGIIT
180


Tian
ESNIDLISYPQIVNERSTGEMVCPNINAFIASNVNADIIWSGHRRLRNKRLKQRTPGIIT
144


Wyeth
ESNIDLISYPQIVNERSTGEMVCPNINAFIASNVNADIIWSGHRRLRNKRLKQRTPGIIT
180


Lister
ESNIDLISYPQIVNERSTGEMVCPNINAFIASNVNADIIWSGHRRLRNKRLKQRTPGIIT
180



*****:******************************************************






Cop
IEDVRKNDAGYYTCVLEYIYGGKTYNVTRIVKLEVRDKIIHPTMQLPEGVVTSIGSNLTI
240


WR
IEDVRKNDAGYYTCVLEYIYGGKTYNVTRIVKLEVRDKIIPSTMQLPDGIVTSIGSNLTI
240


Tian
IEDVRKNDAGYYTCVLEYIYRGKTYNVTRIVKLEVRDKIIPSTMQLPDGIVTSIGSNLTI
204


Wyeth
IEDVRKNDAGYYTCVLEYIYGGKTYNVTRIVKLEVRDKIIPSTMQLPDGIVTSIGSNLTI
240


Lister
IEDVRKNDAGYYTCVLEYIYRGKTYNVTRIVKLEVRDKIIPSTMQLPDGIVTSIGSNLTI
240



******************** *******************  *****:*:**********






Cop
ACRVSLRPPTTDADVFWISNGMYYEEDDGDGDGRISVANKIYMTDKRRVITSRLNINPVK
300


WR
ACRVSLRPPTTDADVFWISNGMYYEEDDGDGNGRISVANKIYMTDKRRVITSRLNINPVK
300


Tian
ACRVSLRPPTTDADVFWISNGMYYEEDDGDGNGRISVANKIYMTDKRRVITSRLNINPVK
264


Wyeth
ACRVSLRPPTTDTDVFWISNGMYYEEDDGDGDGRISVANKIYMIDKRRVITSRLNINPVK
300


Lister
ACRVSLRPPTTDADVFWISNGMYYEEDDGDGNGRISVANKIYMTDKRRVITSRLNINPVK
300



************:******************:****************************






Cop
EEDATTFTCMAFTIPSISKTVTVSIT
326


WR
EEDATTFTCMAFTIPSISKTVTVSIT
326


Tian
EEDATTFTCMAFTIPSISKTVTVSI-
289


Wyeth
EEDATTFTCMAFTIPSISKTVTVSIT
326


Lister
EEDATTFTCMAFTIPSISKTVTVSIT
326



*************************











B ORF F


CLUSTAL O(1.2.4) multiple sequence alignment









Cop
MVIIPGVRCLSLLFLRRRCPLHIISAFTLLAINALILGHTISPVDLSFTICGYEIKSIFD
 60


Tian
MVIIPGVRCLSLLFLAARCPLHIISAFTLLAINALILGHTISPVDLSFTICGYEIRSIFD
 60



*******************************************************:****






Cop
SETDTIVKFNDIMSQ
 75


Tian
SKTDTIVKFNDIMSQ
 75



*:*************











B17L


CLUSTAL O(1.2.4) multiple sequence alignment









Cop
MSRKFMQVYEYDREQYLDEFIEDRYNDSFITSPEYYSAEKYMCRYTTLNHNCVNVRRCAL
 60


WR
MSRKFMQVYEYDREQYLDEFIEDRYNDSFITSPEYYSAEKYMCRYTTLNHNCINVRRCAL
 60


Tian
MSRKFMQVYEYDREQYLDEFIEDRYNDSFITSPEYYSAEKYMCRYTTLNHNCVNVRRCAL
 60


Wyeth
MSRKFMQVYEYDREQYLDEFIEDRYNDSFITSPEYYSAEKYMCRYTTLNHNCVNVRRCAL
 60


Lister
MSRKFMQVYEYDREQYLDEFIEDRYNDSFITSPEYYSAEKYMCRYTTLNHNCINVRRCAL
 60



****************************************************:*******






Cop
DSKLLHDIITNCKIYNNIELVRATKFVYYLDLIKCNWVSKVGDSVLYPVIFITHTSTRNL
120


WR
DSKLLHDIITNCKIYNNIELVRATKFVYYLDLIKCNWVSKVGDSVLYPVIFITHTSTRNL
120


Tian
DSKLLHDIITNCKIYNNIELVRATKFVYYLDLIKCNWVSKVGDSVLYPVIFITHTSTRNL
120


Wyeth
DSKLLHDIITNCKIYNNIELVRATKFVYYLDLIKCNWVSKVGDSVLYPVIFITHTSTRNL
120


Lister
DSKLLHDIITNCKIYNNIELVRATKFVYYLDLIKCNWVSKVGDSVLYPVIFITHTSTRNL
120



************************************************************






Cop
DKVSVKTYKGVKVKKLNRCADHAIVINPFVKFKLTLPNKTSHAKVLVTFCKLRTDITPVE
180


WR
DKVSVKTYKGVKVKKLNRCADHAIVINPFVKFKLTLPNKTSHAKVLVTFCKLKTDITPVE
180


Tian
DKVSVKTYKGVKVKKLNRCADHAIVINPFVKFKLTLPNKTSHAKVLVTFCKLRTDITQIE
180


Wyeth
DKVSVKTYKGVKVKKLNRCADHAIVINPFVKFKLTLPNKTSHAKVLVTFCKLRTDITQIE
180


Lister
DKVSVKTYKGVKVKKLNRCADHAIVINPFVKFKLTLPNKTSHAKVLVTFCKLRTDITQIE
180



****************************************************:**** :*






Cop
APLPGNVLVYTFPDINKRIPGYIHVNIEGCIDGMIYINSSKFACVLKLHRSMYRIPPFPI
240


WR
APLPGNVLVYTFPDINKRIPGYIHVNIEGCIDGMIYINSSKFACVLKLHRSMYRIPPFPI
240


Tian
APLSGNVLVYTFPNINKRIPGYIHVNIEGCIDGMIYINSSKFACVLKLHRSMYRIPPFPI
240


Wyeth
AFISGNVLVYTFPDINKRIPGYIHVNIEGCIDGMIYINSSKFACVLKLHRSMYRIPPFPI
240


Lister
APLSGNVLVYTFPDINKRIPGYIHVNIEGCIDGMIYINSSKFACVLKLHRSMYRIPPFPI
240



*** *********:**********:***********************************






Cop
DICSCCSQYTNDDIEIPIHDLIKDVAIFKNKETVYYLKLNNKTIARFTYFNNIDTAITQE
300


WR
DICSCCSQYINYDIEIPIHDLIKDVAIFKNKETVYYLKLNNKTIARFTYFNNIDTAITQE
300


Tian
DICSCCSQYTNGDIEIPIHDLIKDVAIFKNKETVYYLKLNNKTIARFTYFNNIDTAITQE
300


Wyeth
DICSCCSQYTNDDIEIPIHDLIKDVAIFKNKETVYYLKLNNKTIARFTYFNNIDTAITQE
300


Lister
DICSCCSQYTNDDIEIPIHDLIKDVAIFKNKETVYYLKLNNKTIARFTYFNNIDTAITQE
300



********* * ************************************************






Cop
HEYVKIALGIVCKLMINNMHSIVGVNHSNTFVNCLLEDNV
340


WR
HEYVKIALGIVCKLMINNMHSIVGVNHSNTFVNCLLEDNV
340


Tian
HEYVKIALGIVCKLMINNMHSIVGVNRSNTFVNCLLEDNV
340


Wyeth
HEYVKIALGIVCKLMINNMHSIVGVNHSNTFVNCLLEDNV
340


Lister
HEYVKIALGIVCKLMINNMHSIVGVNHSNTFVNCLLEDNV
340



****************************************











B18R


CLUSTAL O(1.2.4) multiple sequence alignment









Cop
MSRRLIYVLNINRKSTHKIQENEIYTYFSHCNIDHTSTELDFVVKNYDLNRRQHVTGYTA
 60


WR
MSRRLIYVLNINRESTHKIQENEIYTYFSHCNIDHTSTELDFVVKNYDLNRRQPVTGYTA
 60


Tian
MSRRLIYVLNINRESTHKIQENEIYTYFSHCNIDHTSTELDFVVKNYDLNRRHPVTGYTA
 60


Wyeth
MSRRLIYVLNINRESTHKIQENEIYTYFSHCNIDHTSTELDFVVKNYDLNRRQPVTGYTA
 60



*************:**************************************: ******






Cop
LHCYLYNNYFTNDVLKILLNHDVNVTMKTSSGRMPVYILLTRCCNISHDVVIDMIDKDKN
120


WR
LHCYLYNNYFTNDVLKILLNHGVDVTMKTSSGRMPVYILLTRCCNISHDVVIDMIDKDKN
120


Tian
LHCYLYNNYFTNDVLKILLNHGVDVTMKTSSGRMPVYILLTRCCNISHDVVIDMIDKDKN
120


Wyeth
LHCYLYNNYFTNDVLKILLNHGVDVTMKTSSGRMPVYILLTRCCNISHDVVIDMIDKDKN
120



*********************.*:************************************






Cop
HLSHRDYSNLLLEYIKSRYMLLKEEDIDENIVSTLLDKGIDPNETQDGYTALHYYYLCLA
180


WR
HLLHRDYSNLLLEYIKSRYMLLKEEDIDENIVSTLLDKGIDPNFKQDGYTALHYYYLCLA
180


Tian
HLLHRDYSNLLLEYIKSRYMLLKEEDIDENIVSTLLDKGIDPNFKQDGYTALHYYYLCLA
180


Wyeth
HLSHRDYSNLLLEYIKSRYMLLKEEDIDENIVSTLLDKGIDPNFKQDGYTALHYYYLCLA
180



** *********************************************************






Cop
HVYKPGECRKPITIKKAKRIISLFIQHGANLNALDNCGNTPFHLYLSIEMCNNIHMTKML
240


WR
HVYKPGECRKPITIKKAKRIISLFIQHGANLNALDNCGNTPFHLYLSIEMCNNIHMTKML
240


Tian
HVYKPGECRKPITIKKAKRIISLFIQHGANLNALDNCGNTPFHLYLSIEMCNNIHMTKML
240


Wyeth
HVYKPGECRKPITIKKAKRIISLFIQHGANLNALDNCGNTPFHLYLSIEMCNNIHMTKML
240



************************************************************






Cop
LTFNPNFKICNNHGLTPILCYITSDYIQHDILVMLIHHYETNVGEMPIDERRMIVFEFIK
300


WR
LTFNPNFEICNNHGLTPILCYITSDYIQHDILVMLIHHYETNVGEMPIDERRIIVFEFIK
300


Tian
LTFNPNFKICNNHGLTPILCYITSDYIQHDILVMLIHHYETNVGEMPIDERRIIVFEFIK
300


Wyeth
LTFNPNFKICNNHGLTPILCYITSDYIQHDILVMLIHHYETNVGEMPIDERRIIVFEFIK
300



*******:********************************************:*******






Cop
TYSTRPADSITYLMNRFKNINIYTRYEGKTLLHVACEYNNTQVIDYLIRINGDINALTDN
360


WR
TYSTRPADSITYLMNRFKNIDIYTRYEGKTLLHVACEYNNTHVIDYLIRINGDINALTDN
360


Tian
TYSTRPADSITYLMNRFKNINIYTRYEGKTLLHVACEYNNTQVIDYLIRINGDINALTDN
360


Wyeth
TYSTRPADSITYLMNRFKNINIYTRYEGKTLLHVACEYNNTHVIDYLIRINGDINALTDN
360



********************:********************:******************






Cop
NKHATQLIIDNKENSPYTINCLLYILRYIVDKNVIRSLVDQLPSLPIFDIKSFEKFISYC
420


WR
NKHATQLIIDNKENSPYTINCLLYILRYIVDKNVIRSLVDQLPSLPIFDIKSFEKFISYC
420


Tian
NKHATQLIIDNKENSPYTINCLLYILRYIVDKNVIRSLVDOLPSLPIFDIKSFEKFISYC
420


Wyeth
NKHAIQLIIDNKENSPYTIDCLLYILRYIVDKNVIRSLVDQLPSLPIFDIKSFEKFISYC
420



**** **************:****************************************






Cop
ILLDDTFYDRHVKNRDSKTYRYAFSKYMSFDKYDGIITKCHDETMLLKLSTVLDTTLYAV
480


WR
ILIDDTFYNRHVRNRDSKTYRYAFSKYMSFDKYDGIITKCHKETILLKLSTVLDTTLYAV
480


Tian
ILLDDTFYDRHVKNRNSKTYRYAFSKYMSFDKYDGIITKCHDETMLLKLSTVLDTTLYAV
480


Wyeth
ILLDDTFYNRHVRNRNSKTYRYAFSKYMSFDKYDGIITKCHDETMLLKLSTVLDTTLYAV
480



********:***:**:*************************.**:***************






Cop
LRCHNSRKLRRYLTELKKYNNDKSFKIYSNIMNERYLNVYYKDMYVSKVYDKLFPVFTDK
540


WR
LRCHNSKKLRRYLTELKKYNNDKSFKIYSNIMNERYLNVYYKDMYVSKVYDKLFPVFTDK
540


Tian
LRCHNSRKLRRYLTELKKYNNDKSFKIYSNIMNERYLNVYYKDMYVSKVYDKLFPVFTDK
540


Wyeth
LRCHNSKKLRRYLNELKKYNNDKSFKIYSNIMNERYLNVYYKDMYVSKVYDKLFPVFTDK
540



******:******.**********************************************






Cop
NCLLTLLPSEIIYEILYMLTINDLYNISYPPTKV
574


WR
NCLLTILPSEIIYEILYMLTINDLYNISYPPTKV
574


Tian
NCLLTLLPSEIIYEILYMLTINDLYNISYPPTKV
574


Wyeth
NCLLTLLPSEIIYEILYMLTINDLYNISYPPTKV
574



**********************************











B19R


CLUSTAL O(1.2.4) multiple sequence alignment









Cop
MTMKMMVHIYFVSLSLLLLLFHSYAIDIENEITEFFNKMRDTLPAKDSKWLNPACMFGGT
 60


WR
MTMKMMVHIYFVSL--LLLLFHSYAIDIENEITEFFNKMRDTIPAKDSKWLNPACMFGGT
 58


Tian
MTMKMMVHIYFVSLSLLLLLFHSYAIDIENEITEFFNKMRDTLPAKDSKWLNPACMFGGT
 60


Wyeth
MTMKMMVHIYFVSLSLLLLLFHSYAIDIENEITEFFNKMRDTLPAKDSKWLNPACMFGGT
 60



**************  ********************************************






Cop
MNDMATLGEPFSAKCPPIEDSLLSHRYKDYVVKWERLEKNRRRQVSNKRVKHGDLWIANY
120


WR
MNDIAALGEPFSAKCPPIEDSLLSHRYKDYVVKWERLEKNRRRQVSNKRVKHGDLWIANY
118


Tian
MNDIAALGEPFSAKCPPIEDSLLSHRYKDYVVKWERLEKNRRRQVSNKRVKHGDLWIANY
120


Wyeth
MNDIATLGEPFSAKCPPIEDSLLSHRYKDYVVKWERLEKNRRRQVSNKRVKHGDLWIANY
120



***:*:******************************************************






Cop
TSKFSNRRYLCTVTTKNGDCVQGIVRSHIKKPPSCIPKTYELGTHDKYGIDLYCGILYAK
180


WR
TSKFSNRRYLCTVTTKNGDCVQGIVRSHIRKPPSCIPKTYELGTHDKYGIDLYCGILYAK
178


Tian
TSKFSNRRYLCTVTTKNGDCVQGIVRSHIKKPPSCIPKTYELGTHDKYGIDLYCGILYAK
180


Wyeth
TSKFSNRRYLCTVTTKNGDCVQGIVRSHIRKPPSCIPKTYELGTHDKYGIDLYCGILYAK
180



*****************************:******************************






Cop
HYNNITWYKDNKEINIDDIKYSQTGKELIIHNPELEDSGRYDCYVHYDDVRIKNDIVVSR
240


WR
HYNNITWYKDNKEINIDDIKYSQTGKELIIHNPELEDSGRYDCYVHYDDVRIKNDIVVSR
238


Tian
HYNNITWYKDNKEINIDDIKYSQTGKELIIHNPELEDSGRYDCYVHYDDVRIKNDIVVSR
240


Wyeth
HYNNITWYKDNKEINIDDIKYSQTGKKLIIHNPELEDSGRYDCYVHYDDVRIKNDIVVSR
240



**************************:*********************************






Cop
CKILTVIPSQDHRFKLILDPKINVTIGEPANITCTAVSTSLLIDDVLIEWENPSGWLIGF
300


WR
CKILTVIPSQDHRFKLILDPKINVTIGEPANITCTAVSTSLLIDDVLIEWENPSGWLIGF
298


Tian
CKILTVIPSQDHRFKLILDPKINVTIGEPANITCTAVSTSLLIDDVLIEWENPSGWLIGF
300


Wyeth
CKILVTIPSQDHRFKLKRNCGYASN----------------------------------
265



**************** :  .






Cop
DFDVYSVLTSRGGITEATLYFENVTEEYIGNTYKCRGHNYYFEKTLTTTVVLE
353


WR
DFDVYSVLTSRGGITEATLYFENVTEEYIGNTYKCRGHNYYFEKTLTTTVVLE
351


Tian
DFDVYSVLTSRGGITEATLYFENVTEEYIGNTYKCRGHNYYFEKTLTTTVVLE
353


Wyeth
-----------------------------------------------------











B21R


CLUSTAL O(1.2.4) multiple sequence alignment









Cop
MSLESFIITTFNNNSSTNIDNMCHLYVKVCPSSLLFRLFVECCDINKLVEGTTPLHCYLM
 60


Wyeth
MSLESFIITTFNNNSSTNIDNMCHLYVKVCPSSLLFRLFVECCDINKLVEGTTPLHCYLM
 60



************************************************************






Cop
NEGFESSVLKNLLKEYVMNTFNVHDIHYTNI
 91


Wyeth
NEGFESSVLKNLLKEYVMTSITQIFNS----
 87



******************.::. 











B22R


CLUSTAL O(1.2.4) multiple sequence alignment









Cop
MISLSFLIHNPLKKWKLKPSISINGYRSTFTMAFPCAQFRPCHCHATKDSLNTVADVRHC
 60


Wyeth
MISLSFLIHNPLKKWKLKPSISINGYRSTFTMAFPCAQFRPCHCHATKDSLNTVADVRHC
 60


Lister
-------------------------------MASPCAKFRPCHCHATKDSLNTVADVRHC
 29



                       ** ***:**********************






Cop
LTEYILWVSHRWTHRESAGSLYRLLISFRTDATELFGGELKDSLPWDNIDNCVEIIKCFI
120


Wyeth
LTEYILWVSHRWTHRETAGPLYRLLISFRTDATELEGGELKDSLPWDNIDNCVEIIKCFI
120


Lister
LTEYILWVSHRWTHRESAGSLYRLLISFRTDATELFGGELKDSLPWD---NCVEIIKCFI
 86



****************:** ***************************   **********






Cop
RNDSMKTAEELRAIIGLCTQSAIVSGRVFNDKYIDILLMLRKILNENDYLTLLDHIRTAK
180


Wyeth
RNDSMKTAEELRAIIGLCTQSAIVSGRVFNDKYIDILLMLRKILNENDYLTLLDHIRTAK
180


Lister
RNDSMKTAEELRAIIGLCTQSAIVSGRVFNDKYIDILLMLRKILNENDYLTLLDHIRTAK
146



************************************************************






Cop
Y
181


Wyeth
Y
181


Lister 
Y
147



*











B23R


CLUSTAL O(1.2.4) multiple sequence alignment









Cop
MIAFIIFREIGIISTRIAMDYCGRECTILCRLLDEDVTYKKIKLEIETCHNLSKHIDRRG
 60


Wyeth
MIAFIIFREIGIISTRIAMDCT----CILCRLLDEDVTYKKIKLEIETCHNLSKHIDRRG
 56



********************      *********************************






Cop
NNALHCYVSNKCDTDIKIVRLLLSRGVERLCRNNEGLTPLGAYSKHRYVKSQIVHLLISS
120


Wyeth
NNALHCYVFNKCDTDIKIVRLLLSRGVERLCRNNEGLTPLGVYSKHRYVKSQIVHLLISS
116



******** ********************************.******************






Cop
YSNSSNELKSNINDFDLSSDNIDLRLLKYLIVDKRIRPSKNTNYAINGLGLVDIYVTTPN
180


Wyeth
YSNSSNELKSNINDFDLSSDNIDLRLLKYLIVDKRIRPSKRTNYAINSLGLVDIYVTTPN
176



***********************************************.************






Cop
PRPEVLLWLLKSECYSTGYVFRTCMYNSDMCKNSLHYYISSHRESQSLSKDVIKCLINNN
240


Wyeth
PRPEVLLWLLKSECYSTGYVFRTCMYNSDMCKNSLHYYISSHRESQSLSKDVIKCLINNN
236



************************************************************






Cop
VSIHGRDEGGSLPIQYYWSFSTIDIEIVKLLLIKDVDTCRVYDVSPILEAYYLNKRFRVT
300


Wyeth
VSIHGRDEGGSLPIQYYWSFSTIDIEIVKLLLIKDVDTCRVYDVSPILEAYYLNKRFRVT
296



************************************************************






Cop
PYNVDMEIVNLLIERRHTLVDVMRSITSYDSREYNHYIIDNILKRFRQQDESIVQAMLIN
360


Wyeth
PYNVDMEIVNLLIERRHTLVDVMRSITSYDSREYNHYIIDNILKRFRQQDESIVQAMLIN
356



************************************************************






Cop
YLHYGDMVVRCMLDNGQQLSSARLLC
386


Wyeth
YLHYGDMVVRCMLDNGQQLSSARLLC
382



**************************











B24R


CLUSTAL O(1.2.4) multiple sequence alignment









Cop
MYGLILSRFNNCGYHCYETILIDVFDILSKYMDDIDMIDNENKTLLYYAVDVNNIQFAKR
 60


Wyeth
MYGLILSRFNNCGYHCYETILIDVFDILSKYMDNIDMIDNENKTLLYYAVDVNNIQFAKR
 60



*********************************:**************************






Cop
LLEYGASVTTSRSIINTAIQKSSYQRENKTRIVDLLLSYHPTLETMIDAFNRDIRYLYPE
120


Wyeth
LLEYGASVTTSRSIINTAIQKSSYRRENKTKLVDLLLSYHPTLETMIDAFNRDIRYLYPE
120



************************:*****::****************************






Cop
PLFACIRYALILDDDFPSKVSMISPVIIRN------------------------------
150


Wyeth
PLFACIRYALILDDDFPSKVKYDISGRHKELKRYRVDINRMKNAYISGVSMFDILFKRSK
180



********************.   ::






Cop
------------------



Wyeth
RHRLRYAKNPTSNGTKKN
198










B25R


CLUSTAL O(1.2.4) multiple sequence alignment









Cop
MBRINITKKIYCSVFLFLFLFLSYISNYEKVNDEMYEMGEMDEIVSIVRDSMWYIPNVFM
 60


WR
----------------------------------------MDEIVRIVRDSMWYIPNVFM
 20


Wyeth
MBRINITKKIYCSVFLF--LFLSYISNYEKVNDEMYEMGEMDEIVSIVRDSMWYIPNVFM
 58



              ***** **************






Cop
DDGKNEGHVSVNNVCHMYFTFFDVDTSSHLFKLVIKHCDLNKRGNSPLHCYTMNTRFNPS
120


WR
DDGKNEGHVSVNNVCHMYFTFFDVDTSSHLFKLVIKHCDLNKRGNSPLHCYTMNTRFNPS
 80


Wyeth
DDGKNEGHVSVNNVCMMYFTFFDVDTSSHLFKLVIKHCDLNKRGNSPLHCYTMNTRFNPS
118



************************************************************






Cop
VLKILLHHGMRNFDSKDEKGHHYLIHSLSIDNKIFDILTDTIDDFSKSSDLLLCYLRYKF
180


WR
VLKILLHHGMRNFDSKDEKGHHYQSITRSLIY----------------------------
112


Wyeth
VLKILLHHGMRNFDSKD---DHYQSITRSLIY----------------------------
147



*****************   .**   : *: 






Cop
NGSLNYYVLYKGSDPNCADEDELTSLHYYCKHISTFYKSNYYKLSHTKMRAEKRFIYAII
240


WR
------------------------------------------------------------



Wyeth
------------------------------------------------------------






Cop
DYGANINAVTHLPSTVYQT
259


WR
-------------------



Wyeth 
-------------------











B26R


CLUSTAL O(1.2.4) multiple sequence alignment









Cop
MEQTLTRLHTYLQQYTKHSPRVVYALLSRGYVIILIVHPSWNDCATGHILIMLLNWHEQK
 60


WR
-------------------MLFYLEEPIRGYVIILIVHPSWNDCATGHILIMLLNWHEQK
 41


Wyeth
MEQTLTRLHTYLQQYTKHSPRVVYALLSRGYVIILIVHPSWNDCATGHILIMLLNWHEQK
 60


Lister
MEQTLTRLHTYLQQYTKHSPRVVYALLSRGYVIILIVHPSWNDCATGHILIMLLNWHEQK
 60



      .  ********************************






Cop
EEGQHLLYLFIKHNQGYTLNILRYLLDRFDIQKDEYIYRLSKL-----------------
103


WR
EEGQHLLYLFIKHNQGYTLNILRYLLDRFDIQKDEYYNTAFQNCNNNVASYIGYDINLPT
101


Wyeth
EEGQHLLYLFIKHNQGYTLNILRYLLDRFDIQKDEYYNTAFQNCNNNVASYIGYDINLPT
120


Lister
EEGQHLLYLFIKHNQGYTLNILRYLLDRFDIQKDEYYNTAFQNCNNNVASYIGYDINLPT
120



************************************  :






Cop
--------



WR
KDGIRLGV
109


Wyeth
KDGIRLGV
128


Lister
KDGIRLGV
128










B27R


CLUSTAL O(1.2.4) multiple sequence alignment









Cop
MLPHTSDTTSTFRLKTVFDLVFENRNIIYKADVVNDIIKHRLKVSLPMIKSLFYKMSEFS
 60


WR
MLPHTSDTTSTFRLKTVFDLVFENRNIIYKADVVNDIIHHRLKVSLPMIKSLFYKMSLPT
 60


Wyeth
MLPHTSDTTSTFRLKTVFDLVFENRNIIYKADVVNDIIHHRLK--VPMIKSLFYKMSEFS
 58


Lister
MLPHTSDTTSTFRLKTVFDLVFENRNIIYKADVVNDIIHHRLKVSLPMIKSLFYKMSLPT
 60



*******************************************  :***********  :






Cop
PYDDYYVKKILAYCLLRDESFAELHSKFCLNEDYKSVFMKNISFDKIDSIIVT
113


WR
TITT-------------------------------------------------
 64


Wyeth
PYDDYYVKKILAYCLLRDESFAELHSKFCLNEDYKSVFMKNISFDKIDSIIVT
111


Lister
TITT-------------------------------------------------
 64










B28R


CLUSTAL O(1.2.4) multiple sequence alignment









Cop
MKSVLYSYILFLSCIIINGRDIAPHAPSDGKCKDNEYKRHNLCPGTYASALCDSKTNTQC
 60


WR
MKSVLYSYILELSCIIINGRDIAPHAPSDGKCKDNEYKRHNLCPGTYASRLCDSKTNTQC
 60


Wyeth
-----------------------MHHPMESVKTTN--TNAIICV---REHTLPDYANTQC
 32



              * * :. . * .. :*   .:  . :****






Cop
TPCGSGTFTSRNNHLPACLSCNGRRDRVTLLTIESVNALPDIIVFSKDHPDARHVFPKQN
120


WR
TPCGSGTFTSRNNHLPACLSCNGRRDRVTRLTIESVNALPDIIVFSKDHPDARHVFPKQN
120


Wyeth
TPCGSGTFTSRNNHLPACLSCNGRRDRVTLLTIESVNALPDIIVFSKDHPDARHVFPKQN
 92



***************************** ******************************






Cop
VE
122


WR
VE
122


Wyeth
V-
 93



*











C23L/B29R


CLUSTAL O(1.2.4) multiple sequence alignment









Cop
--------------MHVPASLQQSSSSSSSCTEEENKHHMGIDVIIKVTKQDQTPTNDKI
 46


WR
--------------MHVPASLQQSSSSSSSCTEEENKHHMGIDVIIKVTKQDQTPTNDKI
 46


Tian
--------------MHVPASLQQSSSSSSSCTEEENKHHMGIDVIIKVTKQDQTPTNDKI
 46


Wyeth
--------------MHVPASLQQ---SSSSCTEEENKHHMGIDVIIKVTKQDQTPTNDKI
 43


Lister
MKQYIVLACMCLAAAAMPASLQQSSSSSSSCTEEENKHHMGIDVIIKVTKQDQTPTNDKI
 60


                     
    :******  **********************************






Cop
CQSVTEITESESDPDPEVESEDDSTSVEDVDPPTTYYSIIGGGLRMNFGFTKCPQIKSIS
106


WR
CQSVTEITESESDPDPEVESEDDSTSVEDVDPPTTYYSIIGGGLRMNFGFTKCPQIKSIS
106


Tian
CQSVTEITESESDPDPEVESEDDSTSVEDVDPPTTYYSIIGGGLRMNFGFTKCPQIKSIS
106


Wyeth
CQSVTEITESESDPDPEVESEDDSTSVEDVDIPTTYYSIIGGGLRMNFGFTKCPQIKSIS
103


Lister
CQSVTEITESESDPDPEVESEDDSTSVEDVDPPTTYYSIIGGGLRMNFGFTKCPQIKSIS
120



******************************* ****************************






Cop
ESADGNTVNARLSSVSPGQGKDSPAITREEALAMIKDCEVSIDIRCSEEEKDSDIKTHPV
166


WR
ESADGNTVNARLSSVSPGQGKDSPAITHEEALAMIKDCEVSIDIRCSEEEKDSDIKTHPV
166


Tian
ESADGNTVNARLSSVSPGQGKDSPAITHEEALAMIKDCEVSIDIRCSEEEKDSDIKTHPV
166


Wyeth
ESADGNTVNARLSSVSPGQGKDSPAITHEEALAMIKDCEVSIDIRCSEEEKDSDIKTHPV
163


Lister
ESADGNTVNARLSSVSPGQGKDSPAITHEEALAMIKDCEVSIDIRCSEEEKDSDIKTHPV
180



***************************:********************************






Cop
LGSNISHKKVSYEDIIGSTIVDTKCVKNLEFSVRIGDMCKESSELEVKDGFKYVDGSASE
226


WR
LGSNISHKKVSYEDIIGSTIVDTKCVKNLEFSVRIGDMCKESSELEVKDGFKYVDGSASE
226


Tian
LGSNISHKKVSYEDIIGSTIVDTKCVENLEFSVRIGDMCKESSELEVKDGFKYVDGSASE
226


Wyeth
LGSNISHKKVSYEDIIGSTIVDTKCVKNLEFSVRIGDMCKESSELEVKDGFKYVDGSASE
223


Lister
LGSNISHKKVSYEDIIGSTIVDTKCVKNLEFSVRIGDMCKESSELEVKDGFKYVDGSASE
240



************************************************************






Cop
GATDDTSLIDSTKLKACV
244


WR
GATDDTSLIDSTKLKACV
244


Tian
GATDDTSLIDSTKLKACV
244


Wyeth
GATDDTSLIDSTKLKACV
241


Lister
GATDDTSLIDSTKLKACV
258



******************









Assays for Measuring Virus Characteristics

Assays known in the art to measure the tumor spreading and virulence of a virus include but are not limited to measuring plaque size, syncytia formation, and/or comet assays (EEVs). Assays known in the art to measure the immunostimulatory activity of a virus include but are not limited to NK activation (measured in % CD69 expression), NK degranulation (measured in fold increase of CD107a), and/or T-cell priming assays. Assays known in the art to measure the selectivity of a virus include, but are not limited to, tail pox lesions, biodistribution, and/or body mass measurements.


Examples of Proteins Encoded by Orthopoxvirus Genes

Exemplary proteins encoded by orthopoxvirus genes described in this disclosure are reproduced below in Tables 31-40. As used below, the term “location” refers to the location of the gene with respect to the deleted nucleic acids in exemplary orthopoxvirus vectors described herein. For various genes, amino acid sequence information and protein accession ID numbers are provided.









TABLE 31







Examples of proteins encoded by Copenhagen Vaccinia genes deleted in CopMD5p vector











SEQ ID

Protein




NO.
Gene
Accession ID
Amino Acid Sequence
Location





SEQ ID
C2L
AAA47999.1
MESVIFSINGEIIQVNKEIITASPYNFFKRIQDHHLKD
Inside


NO: 23
(26% 5′) 

EAIILNGINYHAFESLLDYIRWKKINITINNVEMILVA
Deletion





AIIIDVPPVVDLCVKTMIHNINSTNCIRMFNFSKRYGI






KKLYNASMSEIINNITAVTSDPEFGKLSKDELTTILS






HENVNVNHEDVTAMILLKWIHKNPNDVDIINILHPK






FMTNTMRNAISLLGLTISKSTKPVTRNGIKHNIVVIK






NSDYISTITHYSPRTEYWTIVGNTDRQFYNANVLHN






CLYIIGGMINNRHVYSVSRVDLETICKWKTVTNMSS






LKSEVSTCVNDGKLYVIGGLEFSISTGVAEYLKHGT






SKWIRLPNLITPRYSGASVFVNDDIYVMGGVYTTYE






KYVVLNDVECFTKNRWIKKSPMPRHHSIVYAVEYD






GDIYVITGITHETRNYLYKYIVKEDKWIELYMYFNH






VGKMFVCSCGDYILIIADAKYEYYPKSNTWNLFDM






STRNIEYYDMFTKDETPKCNVTHKSLPSFLSNCEKQ






FLQ






SEQ ID
C1L
AAA48000.1
MVKNNKISNSCRMIMSTNPNNILMRHLKNLTDDEF
Inside


NO: 24


KCIIHRSSDFLYLSDSDYTSITKETLVSEIVEEYPDDC
Deletion





NKILAIIFLVLDKDIDVDIETKLKPKPAVRFAILDKM






TEDIKLTDLVRHYFRYIEQDIPLGPLFKKIDSYRTRAI






NKYSKELGLATEYFNKYGHLMFYTLPIPYNRFFCRN






SIGFLAVLSPTIGHVKAFYKFIEYVSIDDRRKFKKEL






MSK






SEQ ID
N1L
AAA48001.1
MRTLLIRYILWRNDNDQTYYNDDFKKLMLLDELVD
Inside


NO: 25


DGDVCTLIKNMRMTLSDGPLLDRLNQPVNNIEDAK
Deletion





RMIAISAKVARDIGERSEIRWEESFTILFRMIETYFDD






LMIDLYGEK






SEQ ID
N2L
AAA48002.1
MTSSAMDNNEPKVLEMVYDATILPEGSSMDPNIMD
Inside


NO: 26


CINRHINMCIQRTYSSSIIAILNRFLTMNKDELNNTQ
Deletion





CHIIKEFMTYEQMAIDHYGEYVNAILYQIRKRPNQH






HTIDLFKKIKRTPYDTFKVDPVEFVKKVIGFVSILNK






YKPVYSYVLYENVLYDEFKCFINYVETKYF






SEQ ID
M1L
AAA48003.1
MIFVIESKLLQIYRNRNRNINFYTTMDNIMSAEYYLS
Inside


NO: 27


LYAKYNSKNLDVFRNMLQAIEPSGNNYHILHAYCG
Deletion





IKGLDERFVEELLHRGYSPNETDDDGNYPLHIASKIN






NNRIVAMLLTHGADPNACDKHNKSVDTPLYYLSGTDDE






VIERINLLVQYGAKINNSVDEEGCGPLLACTDPSER






VFKKIMSIGFEARIVDKFGKNHIHRHLMSDNPKASTI






SWMMKLGISPSKPDHDGNTPLHIVCSKTVKNVDIID 






LLLPSTDVNKQNKFGDSPLTLLIKTLSPAHLINKLLS






TSNVITDQTVNICIFYDRDDVLEIINDKGKQYDSTDF






KMAVEVGSIRCVKYLLDNDIICEDAMYYAVLSEYE






TMVDYLLFNHFSVDSVVNGHTCMSECVRLNNPVIL






SKLMLHNPTSETMYLTMKAIEKDKLDKSIIIPFIAYF






VLMHPDFCKNRRYFTSYKRFVTDYVHEGVSYEVFD






DYF






SEQ ID
M2L
AAA48004.1
MVYKLVLLFCIASLGYSVEYKNTICPPRQDYRYWY
Inside


NO: 28


FAAELTIGVNYDINSTIIGECHMSESYIDRNANIVLTG
Deletion





YGLEINMTIMDTDQRFVAAAEGVGKDNICLSVLLFT






TQRLDKVHHNISVTITCMEMNCGTTKYDSDLPESIH






KSSSCDITINGSCVTCVNLETDPTKINPHYLHPKDKY






LYHNSEYGMRGSYGVTFIDELNQCLLDIKELSYDIC






YRE






SEQ ID
HR/K1L
AAA48005.1
MDLSRINTWKSKQLKSFLSSKDTFKADVHGHSALY
Inside


NO: 29


YAIADNNVRLVCTLLNAGALKNLLENEFPLHQAAT
Deletion





LEDTKIVKILLFSGMDDSQFDDKGNTALYYAVDSG






NMQTVKLFVKKNWRLMFYGKTGWKTSFYHAVML






NDVSIVSYFLSEIPSTFDLAILLSCIHTTIKNGHVDMM






ILLLDYMTSTNTNNSLLFIPDIKLAIDNKDIEMLQAL






FKYDINIYSVNLENVLLDDAEITKMIIEKHVEYKSDS






YTKDLDIVKNNKLDEIISKNKELRLMYVNCVKKN






SEQ ID
SPI-
AAA48006.1
MIALLILSLTCSVSTYRLQGFTNAGIVAYKNIQDDNI
Inside


NO: 30
3/K2L

VFSPFGYSFSMFMSLLPASGNTRIELLKTMDLRKRD
Deletion





LGPAFTELISGLAKLKTSKYTYTDLTYQSFVDNTVCI






KPLYYQQYHRFGLYRLNFRRDAVNKINSIVERRSG






MSNVVDSNMLDNNTLWAIINTIYFKGTWQYPFDIT






KTRNASFTNKYGTKTVPMMNVVTKLQGNTITIDDE






EYDMVRLPYKDANISMYLAIGDNMTHFIDSITAAK






LDYWSFQLGNKVYNLKLPKFSIENKRDIKSIAEMM






APSMFNPDNASFKHMTRDPLYIYKMFQNAKIDVDE






QGTVAEASTIMVATARSSPEKLEFNTPFVFIIRHDITG






FILFMGKVESP






SEQ ID
K ORF A
AAA48007.1
MGHIITYCQVHTNISILIRKAHHIIFFVIDCDCISLQFS
Inside


NO: 31


NYVHHGNRFRTVLISKTSIACFSDIKRILPCTFKIYSI
Deletion





NDCP






SEQ ID
K ORF B
AAA48008.1
MGTVFVPYLLVKLALRVLVISNGYCHVPLKYIVLMI
Inside


NO: 32


AHRVLLSSILESTTLDIPDLRSTIELILLTASRLICFNLY
Deletion





RPNL






SEQ ID
K ORF B
AAA48009.1
MLAFCYSLPNAGDVIKGRVYEKDYALYIYLFDYPH
Inside


NO: 33


SEAILAESVICMHMDRYVEYRDKLVGKTVKVKVIR
Deletion





VDYTKGYIDVNYKRMCRHQ






SEQ ID
K4L
AAA48010.1
MNPDNTIAVITETIPIGMQFDKVYLSTFNMWREILSN 
Inside


NO: 34


TTKTLDISSFYWSLSDEVGTNFGTIILNEIVQLPKRG
Deletion





VRVRVAVNKSNKPLKDVERLQMAGVEVRYIDITNI






LGGVLHTKFWISDNTHIYLGSANMDWRSLTQVKEL






GIAIFNNRNLAADLTQIFEVYWYLGVNNLPYNWKN






FYPSYYNTDHPLSINVSGVPHSVFIASAPQQLCTME






RTNDLTALLSCIRNASKFVYVSVMNFIPIIYSKAGKI






LFWPYIEDELRRSAIDRQVSVKLLISCWQRSSFIMRN






FLRSIAMLKSKNIDIEVKLFIVPDADPPIPYSRVNHAK






YMVTDKTAYIGTSNWTGNYFTDTCGASINITPDDGL






GLRQQLEDIFMRDWNSKYSYELYDTSPTKRCKLLK






NMKQCTNDIYCDEIQPEKEIPEYSLE






SEQ ID
K5L
AAA48011.1
MGATISILASYDNPNLFTAMILMSPLVNADAVSRLN
Inside


NO: 35


LLAAKLMGTITPNAPVGKLCPESVSRDMDKVYKYQ
Deletion





YDPLINHEKIKAGFASQVLKATNKVRKIISKINTPRL






SYSREQTMRLVMFQVHIISCNMQIVIE






SEQ ID
K6L
AAA48012.1
MSANCMFNLDNDYIYWKPITYPKALVFISHGAGKH
Inside


NO: 36


SGRYDELAENISSLGILVFSHDHIGHGRSNGEKMMI
Deletion





DDFGTARGNY






SEQ ID
K7R
AAA48013.1
MATKLDYEDAVFYFVDDDKICSRDSIIDLIDEYITW
Inside


NO: 37


RNHVIVFNKDITSCGRLYKELMKFDDVAIRYYGIDK
Deletion





INEIVEAMSEGDHYINFTKVHDQESLFATIGICAKITE






HWGYKKISESRFQSLGNITDLMTDDNINILILFLEKK






LN






SEQ ID
F1L
AAA48014.1
MLSMFMCNNIVDYVDDIDNGIVQDIEDEASNNVDH
Inside


NO: 38


DYVYPLPENMVYRFDKSTNILDYLSTERDHVMMA
Deletion





VRYYMSKQRLDDLYRQLPTKTRSYIDIINIYCDKVS






NDYNRDMNIMYDMASTKSFTVYDINNEVNTILMD






NKGLGVRLATISFITELGRRCMNPVKTIKMFTLLSHT






ICDDCFVDYITDISPPDNTIPNTSTREYLKLIGITAIMF






ATYKTLKYMIG






SEQ ID
DUT/F2L
AAA48015.1
MFNMNINSPVRFVKETNRAKSPTRQSPGAAGYDLY
Inside


NO: 39


SAYDYTIPPGERQLIKTDISMSMPKICYGRIAPRSGLS
Deletion





LKGIDIGGGVIDEDYRGNIGVILINNGKCTFNVNTGD






RIAQLIYQRIYYPELEEVQSLDSTNRGDQGFSTGLR






SEQ ID
F3L
AAA48016.1
MPIFVNTVYCKNILALSMTKKFKTIIDAIGGNIIVNST
Inside


NO: 40
(75% 3′)

ILKKLSPYFRTHLRQKYTKNKDPVTRVCLDLDIHSL
Deletion





TSIVIYSYTGKVYIDSHNVVNLLRASILTSVEFITYTCI






NFILRDFRKEYCVECYMMGIEYGLSNLLCHTKNFIA






KHFLELEDDIIDNFDYLSMKLILESDELNVPDEDYV






VDFVIKWYIKRRNKLGNLLLLIKNVIRSNYLSPRGIN






NVKWILDCTKIFHCDKQPRKSYKYPFIEYPMNMDQI






IDIFHMCTSTHVGEVVVYLIGGWMNNEIHNNAIAVN






YISNNWIPIPPMNSPRLYATGIPANNKLYVVGGLPNP






TSVERWFHGDAAWVNMPSLLKPRCNPAVASINNVI






YVMGGHSETDTTTEYLLPNHDQWQFGPSTYYPHY






KSCALVFGRRLFLVGRNAEFYCESSNTWTLIDDPIY






PRDNPELIIVDNKLLLIGGFYRGSYIDTIEVYNHHTY






SWNIWDGK
















TABLE 32







Examples of proteins encoded by Western Reserve Vaccinia genes equivalent


to those deleted in CopMD5p vector











SEQ ID

Protein




NO.
Gene
Accession ID
AA Sequence
Location





SEQ ID
VACWR026
AAO89305.1
MESVIFSINGEIIQVNKEIITASPYNFFKRIQDHHLKD
Inside


NO: 41
(26% 5′)

EAIILNGINYHAFESLLDYIRWKKINITINNVEMILVA
Deletion





AIIIDVPPVVDLCVKTMIHNINSTNCIRMFNFSKRYGI






KKLYNASMSEIINNITAVTSDPEFGKLSKDELTTILS






HENVNVNHEDVTAMILLKWIHKNPNDVDIINILHPK






FMTNTMRNAISLLGLTISKSTKPVTRNGIKHNIVVIK






NSDYISTITHYSPRTEYWTIVGNTDRQFYNANVLHN






CLYIIGGMINNRHVYSVSRVDLETKKWKTVTNMSS






LKSEVSTCVNDGKLYVIGGLEFSISTGVAEYLKHGT






SKWIRLPNLITPRYSGASVFVNDDIYVMGGVYTTYE






KYVVLNDVECFTKNRWIKKSPMPRHHSIVYAVEYD






GDIYVITGITHETRNYLYKYIVKEDKWIELYMYFNH






VGKMFVCSCGDYILIIADAKYEYYPKSNTWNLFDM






STRNIEYYDMFTKDETPKCNVTHKSLPSFLSNCEKQ






FLQ






SEQ ID
VACWR027
AAO89306.1
MVKNNKIQKNKISNSCRMIMSTDPNNILMRHLKNL
Inside


NO: 42


TDDEFKCIIHRSSDFLYLSDSDYTSITKETLVSEIVEE
Deletion





YPDDCNKILAIIFLVLDKDIDVDIKTKLKPKPAVRFAI






LDKMTEDIKLTDLVRHYFRYIEQDIPLGPLFKKIDSY






RTRAINKYSKELGLATEYFNKYGHLMFYTLPIPYNR






FFCRNSIGFLAVLSPTIGHVKAFYKFIEYVSIDDRRKF






KKELMSK






SEQ ID
VACWR028
AAO89307.1
MRTLLIRYILWRNDNDQTYYNDNFKKLMLLDELVD
Inside


NO: 43


DGDVCTLIKNMRMTLSDGPLLDRLNQPVNNIEDAK
Deletion





RMIAISAKVARDIGERSEIRWEESFTILFRMIETYFDD






LMIDLYGEK






SEQ ID
VACWR029
AAO89308.1
MTSSAMDNNEPKVLEMVYDATILPEGSSMDPNIMD
Inside


NO: 44


CINRHINMCIQRTYSSSIIAILDRFLMMNKDELNNTQ
Deletion





CHIIKEFMTYEQMAIDHYGGYVNAILYQIRKRPNQH






HTIDLFKRIKRTRYDTFKVDPVEFVKKVIGFVSILNK






YKPVYSYVLYENVLYDEFKCFINYVETKYF






SEQ ID
VACWR030
AAO89309.1
MIFVIESKLLQIYRNRNRNINFYTTNIDNIMSAEYYLS
Inside


NO: 45


LYAKYNSKNLDVFRNMLQAIEPSGNNYHILHAYCG
Deletion





IKGLDERFVEELLHRGYSPNETDDDGNYPLHIASKIN






NNRIVAMLLTHGADPNACDKHNKTPLYYLSGTDDE






VIERINLLVQYGAKINNSVDEEGCGPLLACTDPSER






VFKKIMSIGFEARIVDKFGKNHIHRHLMSDNPKASTI






SWMMKLGISPSKPDHDGNTPLHIVCSKTVKNVDIID






LLLPSTDVNKQNKFGDSPLTLLIKTLSPAHLINKLLS






TSNVITDQTVNICIFYDRDDVLEIINDKGKQYDSTDF






KMAVEVGSIRCVKYLLDNDIICEDAMYYAVLSEYE






TMVDYLLFNHFSVDFVVNGHTCMSECVRLNNPVIL






SKLMLHNPTSETMYLTMKAIEKDRLDKSIIIPFIAYF






VLMHPDFCKNRRYFTSYKRFVTDYVHEGVSYEVFD






DYF






SEQ ID
VACWR031
AAO89310.1
MVYKLVLLFCIASLGYSVEYKNTICPPRQDYRYWY
Inside


NO: 46


FAAELTIGVNYDINSTIIGECHMSESYIDRNANIVLTG
Deletion





YGLEINMTIMDTDQRFVAAAEGVGKDNKLSVLLFT






TQRLDKVHHNISVTITCMEMNCGTTKYDSDLPESIH






KSSSCDITINGSCVTCVNLETDPTKINPHYLHPKDKY






LYHNSEYSMRGSYGVTFIDELNQCLLDIKELSYDIC






YRE






SEQ ID
VACWR032
AAO89311.1
MDLSRINTWKSKQLKSFLSSKDAFKADVHGHSALY
Inside


NO: 47


YAIADNNVRLVCTLLNAGALKNLLENEFPLHQAAT
Deletion





LEDTKIVKILLFSGLDDSQFDDKGNTALYYAVDSGN






MQTVKLFVKKNWRLMFYGKTGWKTSFYHAVMLN






DVSIVSYFLSEIPSTFDLAILLSCIHITIKNGHVDMMIL






LLDYMTSTNTNNSLLFIPDIKLAIDNICDIEMLQALFK






YDINIYSANLENVLLDDAEIAKMIIEKHVEYKSDSYT






KDLDIVKNNKLDEIISKNKELRLMYVNCVKKN






SEQ ID
SPI-3
AAO89312.1
MIALLILSLTCSVSTYRLQGFTNAGIVAYKNIQDDNI
Inside


NO: 48


VFSPFGYSFSMFMSLLPASGNTRIELLKTMDLRKRD
Deletion





LGPAFTELISGLAKLKTSKYTYTDLTYQSFVDNTVCI






KPSYYQQYHRFGLYRLNFRRDAVNKINSIVERRSG






MSNVVDSNMLDNNTLWAIINTIYFKGIWQYPFDITK






TRNASFTNKYGTKTVPMMNVVTKLQGNTITIDDEE






YDMVRLPYKDANISMYLAIGDNMTHFTDSITAAKL






DYWSFQLGNKVYNLKLPKFSIENKRDIKSIAEMMAP






SMFNPDNASFKHMTRDPLYIYKMFQNAKIDVDEQG






TVAEASTIMVATARSSPEKLEFNTPFVFIIRHDITGFI






LFMGKVESP






SEQ ID
VACWR034
AAO89313.1
MLAFCYSLPNAGDVIKGRVYEKDYALYIYLFDYPH
Inside


NO: 49


FEAILAESVKMHMDRYVEYRDKLVGKTVKVKVIR
Deletion





VDYTKGYIDVNYKRMCRHQ






SEQ ID
VACWR035
AAO89314.1
MNPDNTIAVITETIPIGMQFDKVYLSTFNMWREILSN
Inside


NO: 50


TTKTLDISSFYWSLSDEVGTNFGTIILNKIVQLPKRG
Deletion





VRVRVAVNKSNKPLKDVERLQMAGVEVRYIDITNI






LGGVLHTKFWISDNTHIYLGSANMDWRSLTQVKEL






GIAIFNNRNLAADLTQIFEVYWYLGVNNLPYNWKN






FYPSYYNTDHPLSINVSGVPHSVFIASAPQQLCTME






RTNDLTALLSCIRNASKFVYVSVMNFIPIIYSKAGNI






LFWPYIEDELRRAAIDRQVSVKLLISCWQRSSFIMRN






FLRSIAMLKSKNINIEVKLFIVPDADPPIPYSRVNHAK






YMVTDKTAYIGTSNWTGNYFTDTCGASINITPDDGL






GLRQQLEDIFMRDWNSKYSYELYDTSPTKRCRLLK






NMKQCINDIYCDEIQPEKEIPEYSLE






SEQ ID
VACWR036
AAO89315.1
MQHANCNREIKIYEGAKHHLHKETDEVKKSVMKEI
Outside


NO: 51


ETWIFNRVK
Deletion





SEQ ID
VACWR037
AAO89316.1
MTLVQHVVTIKSTYWVIPWELASYDNPNLFTAMIL
Inside


NO: 52


MSPLVNADAVSKLNLLAAKLMGTITLNAPVGKLCP
Deletion





ESVSRDMDKVYKYQYDPLINHEKIKAGFASQVLKA






TNKVRKIISKINTPRLSYSREQTIRLAMF






SEQ ID
VACWR038
AAO89317.1
MSANCMFNLDNDYIYWKPITYPKALVFISHGAGKH
Inside


NO: 53


SGRYDELAENISSLGILVFSHDHIGHGRSNGEKMMI
Deletion





DDFGTARGNY






SEQ ID
VACWR039
AAO89318.1
MATKLDYEDAVFYFVDDDKICSRDSIIDLIDEYITW
Inside


NO: 54


RNHVIVFNKDITSCGRLYKELMKFDDVAIRYYGIDK
Deletion





INEIVEAMSEGDHYINFTKVHDQESLFATIGICAKITE






HWGYKKISESRFQSLGNITDLMTDDNINILILFLEKK






LN






SEQ ID
VACWR040
AAO89319.1
MLSMFMCNNIVDYVDDIDNGIVQDIEDEASNNVDH
Inside


NO: 55


DYVYPLPENMVYRFDKSTNILDYLSTERDHVMMA
Deletion





VRYYMSKQRLDDLYRQLPTKTRSYIDIINIYCDKVS






NDYNRDMNIMYDMASTKSFTVYDINNEVNTILMD






NKGLGVRLATISFITELGRRCMNPVETIKMFTLLSHT






ICDDYFVDYITDISPPDNTIPNTSTREYLKLIGITAIMF






ATYKTLKYMIG






SEQ ID 
DUT
AAO89320.1
MFNMNINSPVRFVKETNRAKSPTROQSPYAAGYDLY
Inside


NO: 56


SAYDYTIPPGERQLIKTDISMSMPKFCYGRIAPRSGL
Deletion





SLKGIDIGGGVIDEDYRGNIGVILINNGKCTFNVNTG






DRIAQLIYQRIYYPELEEVQSLDSTNRGDQGFGSTGLR






SEQ ID
VACWR042
AAO89321.1
MPIFVNTVYCKNILALSMTKKFKTIIDAIGGNIIVNST
Inside


NO: 57
(75% 3′)

ILKKLSPYFRTHLRQKYTKNKDPVTWVCLDLDIHSL
Deletion





TSIVIYSYTGKVYIDSHNVVNLLRASILTSVEFIIYTCI






NFILRDFRKEYCVECYMMGIEYGLSNLLCHTKNFIA






KHFLELEDDIIDNFDYLSMKLILESDELNVPDEDYV






VDFVIKWYIKRRNKLGNLLLLIKNVIRSNYLSPRGIN






NVKWILDCTKIFHCDKQPRKSYKYPFIEYPMNMDQI






IDIFHMCTSTHVGEVVYLIGGWMNNEIHNNAIAVN






YISNNWIPIPPMNSPRLYASGIPANNKLYVVGGLPNP






TSVERWFHGDAAWVNMPSLLKPRCNPAVASINNVI






YVMGGHSETDTTTEYLLPNHDQWQFGPSTYYPHY






KSCALVFGRRLFLVGRNAEFYCESSNTWTLIDDPIY






PRDNPELIIVDNKLLLIGGFYRESYIDTIEVYNHHTYS






WNIWDGK
















TABLE 33







Examples of proteins encoded by Tian Tan Vaccinia genes 


equivalent to those deleted in CopMD5p vector











SEQ ID

Protein




NO
Gene
Accession ID
AA Sequence
Location





SEQ ID
TC2L
AAF33878.1
MESVIFSINGEIIQVNKEIITASPYNFFKRIQDHHLKD
Inside


NO: 58
(26% 5′)

EAIILNGINYHAFESLLDYIRWKKINITINNVEMILVA
Deletion





AIIIDVPPVVDLCVKTMIHNINSTNCIRMFNFSKQYGI






KKLYNASMSEIINNITAVTSDPEFGKLSKDELTTILS






HEDVNVNHEDVTAMILLKWIHKNPNDVDIINILHPK






FMTNTMRNAISLLGLTISKSTKPVTRNGIKHNIVVIK






NSDYISTITHYSPRTEYWTIVGNTDRQFYNANVLHN






CLYIIGGMINNRHVYSVSRVDLETKKWKTVTNMSS






LKSEVSTCVNNGKLYVIGGLEFSISTGVAEYLKHGT






SKWIRLPNLITPRYSGASVFVNDDIYVMGGVYTTYE






KYVVLNDVECFTKNRWIKKSPMPRHHSIVYAVEYD






GDIYVITGITHETRNYLYKYIVKEDKWIELYMYFNH






VGKMFVCSCGDYILIIADAKYEYYPKSNTWNLFDM






STRNIEYYDMFTKDETPKCNVTHKSLPSFLSNCEKQ






FLQ






SEQ ID
TC1L
AAF33879.1
MVKNNKISNSCRMIMSTDPNNILMRHLKNLTDDEF
Inside


NO: 59


KCIIHRSSDFLYLSDSDYTSITKETLVSEIVEEYPDDC
Deletion





NKILAIIFLVLDKDIDVDIKTKLKPKPAVRFAILDKM






TEDIKLTDLVRHYFRYIEQDIPLGPLFKKIDSYRTRAI






NKYSKELGLATEYFNKYGHLMFYTLPIPYNRFFCRN






SIGFLAVLSPTIGHVKAFYKFIEYVSIDDRRKFKKEL






MSK






SEQ ID
TN1L
AAF33880.1
MRTLLIRYILWRNDNDQTYYNDDFKKLMLLDELVD
Inside


NO: 60


DGDVCTLIKNMRMTLSDGPLLDRLNQPVNNIEDAK
Deletion





RMIAISAKVARDIGERSEIRWEESFTILFRMIETYFDD






LMIDLYGEK






SEQ ID
TN2L
AAF33881.1
MTSSAMDNNEPKVLEMVYDATILPEGSSMDPYIMD
Inside


NO: 61


CINRHINMCIQRTYSSSIIAILDRFLMMNKDELNNTQ
Deletion





CHIIKNL






SEQ ID
TM1L
AAF33882.1
MIFVIESKLLQIYRNRNRNINFYTTMDNIMSAEYYLS
Inside


NO: 62


LYAKYNSKNLDVFRNMLQAIEPSGNNYHILHAYCG
Deletion





IKGLDERFVEELLHRGYSPNETDDDGNYPLHIASKIN






NNRIVAMLLTHGADPNACDKHNKTPLYYLSGTDDE






VIERINLLVQYGAKINNSVDEEGCGPLLACTDPSER






VFKKIMSIGFEARIVDKFGKNHIHRHLMSDNPKASTI






SWMMKLGISPSKPDHDGNTPLHIVCSKTVKNVDIID






LLLPSTDVNKQNKFGDSPLTLLIKTLSPAHLINKLLS






TSNVITDQTVNICIFYDRDDVLEIINDKGKQYDSTDF






KMAVEVGSIRCVKYLLDNDIICEDAMYYAVLSEYE






TMVDYLLFNHFSVDFVVNGHTCMSECVRLNNPVIL






SKLMLHNLTSETMYLTMKAIEKDRLDKSIIIPFIAYF






VLMHPDFCKNRRYFTSYKRFVTDYVHEGVSYEVFD






DYF






SEQ ID
TM2L
AAF33883.1
MSSSTRLPVLVLAAELTIGVNYDINSTIIGECHMSES
Inside


NO: 63


YIDRNANIVLTGYGLEINMTIMDTDQRFVAAAEGV
Deletion





GKDNKLSVLLFTTQRLDKVHHNISVTITCMEMNCG






TTKYDSDLPESIHKSSSCDITINGSCVTCVNLETDPT






KINPHYLHPKDKYLYHNSEYGMRGSYGVTFIDELN






QCLLDIKELSYDICYRE






SEQ ID
TK1L
AAF33884.1
MLQALFKYDINIYSANLENVLLDDAEIAKMIIEKHV
Inside


NO: 64


EYKSDSYTKDLDIVKNNKLDEIISKNKELRLMYVNC
Deletion





VKKN






SEQ ID
TK2L
AAF33885.1
MDLSRINTWKSKQLKSFLSSKDTFKADVHGHSALY
Inside


NO: 65


YAIADNNVRLVCTLLNSGALKNLLENEFPLHQAAT
Deletion





LEDTKIVKILLFSGLDDSQFDDKGNTALYYAVDSGN






MQTVKLFVKKNWRLMFYGKTGWKTSFYHAVMLN






DVSIVSYFLSEIPSTFDLAILLSCIHITIKNGHVDMMIL






LLDYMTVDKHQ






SEQ ID
TK3L
AAF33886.1
MIALLILSLACSASAYRLQGFTNAGIVAYKNIQDDNI
Inside


NO: 66


VFSPFGYSFSMFMSLLPASGNTRIELLKTMDLRKRD
Deletion





LGPAFTELISGLAKLKTSKYTYTDLTYQSFVDNTVCI






KPSYYQQYHRFGLYRLNFRRDAVNKINSIVERRSG






MSNVVDSNMLDNNTLWAIINTIYFKGTWQYPFDIT






KTRNASFTNKYGTKTVPMMNVVTKLQGNTITIDDE






EYDMVRLPYKDANISMYLAIGDNMTHFTDSITAAK






DYWSFQLGNKVYNLKLPKFSIENKRDIKSIAEMMAP






SMFNPDNASFKHMTRDPLYIYKMFQNAKIDVDEQG






TVAEASTIMVATARSSPEELEFNTPFVFIIRHDITGFIL






FMGKVESP






SEQ ID
ORFR
AAF33887.1
MGHIITYCQVHTNISILIRKAYHIIFFVIDCDCISLQFS



NO: 67


NYVHHGNRFRTVLISKTSIACFSDIKRILPCTFKIYSI






NDCP






SEQ ID
TK4L
AAF33888.1
MLAFCYSLPNAGDVIKGRVYEKDYALYIYLFDYPH
Inside


NO: 68


SEAILAESVKMHMDRYVEYRDKLVGKTVKVKVIR
Deletion





VDYTKGYIDVNYKRMCRHQ






SEQ ID
TK6L
AAF33889.1
MTLVQHVVTIKSTYWVIPWELASYDNPNLFTAMIL
Inside


NO: 69


MSPLVNADAVSKLNLLAAKLMGTITLNAPVGKLCP
Deletion





ESVSRDMDKVYKYQYDPLINHEKIKAGFASQVLKA






TNKVRKIISKINTPRLSYSREQTIRLAMF






SEQ ID
TK8R
AAF33890.1 
MATKLDYEDAVFYFVDDDKICSRDSIIDLIDEYITW
Inside


NO: 70


RNHVIVFNKDITSCGRLYKELMKFDDVAIRYYGIDK
Deletion





INEIVEAMSEGDHYINFTKVHDQESLFATIGICAKITE






HWGYKKISESRFQSLGNITDLMTDDNINILILFLEKK






LN






SEQ ID
TF1L
AAF33891.1 
MLSMFMCNNIVDYVDDIDNGIVQDIEDEASNNVDR
Inside


NO: 71


DYVYPLPENMVYRFDKSTNILDYLSTERDHVMMA
Deletion





VRYYMSKQRLDDLYRQLPTKTRSYIDIINIYCDKVS






NDYNRDMNIMYDMASTKSFTVYDINNEVNTILMD






NKGLGVRLATISFITELGRRCMNPVKTIKMFTLLSHT






ICDDCFVDYITDISPPDNTIPNTSTREYLKLIGITAIMF






ATYKTLKYMIG






SEQ ID
TF2L
AAF33892.1 
MFNMNINSPVRFVKETNRAKSPTRQSPGAAGYDLY
Inside


NO: 72


SAYDYTIPPGERQLIKTDISMSMPKICYGRIAPRSGLS
Deletion





LKGIDIGGGVIDEDYRGNIGVILINNGKCTFNVNTGD






RIAQLIYQRIYYPELEEVQSLDSTDRGDQGFGSTGLR






SEQ ID
TF3L
AAF33893.1 
MPIFVNTVYCKNILALSMTKKFKTIIDAIGGNIIVNST
Inside


NO: 73
(75% 3′) 

ILKKLSPYFRTHLRQKYTKNKDPVTRVCLDLDIHSL
Deletion





TSIVIYSYTGKVYIDSHNVVNLLRASILTSVEFIIYTCI






NFILRDFRKEYCVECYMMGIEYGLSNLLCHTKNFIA






KHFLELEDDIIDNFDYLSMKLILESDELNVPDEDYV






VDFVIKWYIKRRNKLGNLLLLIKNVIRSNYLSPRGIN






NVKWILDCTKIFHCDKQPRKSYKYPFIEYPMNMDQI






IDIFHMCTSTHVGEVVYLIGGWMNNEIHNNAIAVN






YISNNWIPIPPMNSPRLYASGIPANNKLYVVGGLPNP






TSVERWFHGDAAWVNMPSLLKPRCNPAVASINNVI






YVMGGHSETDTTTEYLLPNHDQWQFGPSTYYPHY






KSCALVFGRRLFLVGRNAEFYCESSNTWTLIDDPIY






PRDNPELIIVDNKLLLIGGFYRESYIDTIEVYNHHTYS






WNIWDGK







TK5L






ORFR






TK7L
















TABLE 34







Examples of proteins encoded by Wyeth Vaccinia genes 


equivalent to those deleted in CopMD5p vector













Protein




SEQ ID

Accession 




NO
Gene
ID
Amino Acid Sequence
Location





SEQ ID
VAC_DPP20_035
AEY74729.1
MESVTFSINGEIIQVNKEIITASPYNFFKRIQEHHINDE
Inside


NO: 74
(26% 5′)

VIILNGINYHAFESLLDYMRWKKINITINNVEMILVA
Deletion





AVIIDVTPVVDLCVKTMIHNINSTNCIRMFNFSKRYG






IKKLYNASMSEIINNITAVTSDPEFGKLSKDELTTILS






HEDVNVNHEDVTAMILLKWIHKNPNDVDIINILHPK






FMTNTMRNAISLLGLTISKSTKPVTRNGIKHNIVVIK






NSDYISTITHYSPRTEYWTIVGNTDRQFYNANVLHN






CLYIIGGMINNRHVYSVSRVDLETKKWKTVTNMSS






LKSEVSTCVNNGKLYVIGGLEFSISTGVAEYLKHGT






SKWIRLPNLITPRYSGASVFVNDDIYVMGGVYTTYE






KYVVLNDVECFTKNRWIKKSPMPRHHSIVYAVEYD






GDIYAITGITHETRNYLYKYIVKEDKWIELYMYFNH






VGKMFVCSCGDYILIIADAKYEYYPKSNTWNLFDM






STRNIEYYDMFTKDETHKSLPSFLSNCEKQFLQ






SEQ ID
VAC_DPP10_036
AEY74730.1
MVKNNKISNSCRMIMSTNPNNILMRHLKNLTDDEF
Inside


NO: 75


KCIIHRSSDFLYLSDRDYTSITKETLVSEIVEEYPDDC
Deletion





NKILAIIFLVLDKDIDVDIKTKLKPKPAVRFAILDKM






TEDIKLTDLVRHYFRYIEQDIPLGPLFKKIDSYRTRAI






NKYSKELGLATEYFNKYGHLMFYTLPIPYNRFFCRN






SIGFLAVLSPTIGHVKAFYKFIEYVSIDDRRKFKKEL






MSK






SEQ ID
N1L
AEY74731.1
MRTLLIRYILWRNDNDQTYYNDDFKKLMLLDELVD
Inside


NO: 76


DGDVCTLIKNMRMTLSDGPLLDRLNQPVNNIEDAK
Deletion





RMIAISAKVARDIGERSEIRWEESFTILFRMIETYFDD






LMIDLYGEK






SEQ ID
VAC_DPP11_038
AEY74732.1
MTSSAMDNNEPKVLEMVYDATILPEGSSMDPNIIDC
Inside


NO: 77


INRHINMCIQRTYSSSIIAILDRFLTMNKDELNNTQC
Deletion





HIIKEFMTYEQMAIDHYGGYVNAILYQIRKRPNQHH






TIDLFKKIKRTRYDTFKVDPVEFVKKVIGFVSILNKY






KPVYSYVLYENVLYDEFKCFIDYVETKYF






SEQ ID
VAC_DPP11_039
AEY74733.1
MLHNPTSETMYLTMNAIKKDKLDKSIIIPFIAYFVLM
Not


NO: 78


HPDFCKNRRYFTSYKRFVTDYVHEGVSYEVFDDYF
Present





SEQ ID
VAC_DPP12_040
AEY74734.1
MSIGFEARIVDKFGKNHIHRHLMSDNPKASTISWM
Inside


NO: 79


MKLGISPSKPDHDGNTPLHIVCSKTVKYVDIIDLLLP
Deletion





STDVNKQNKFGDSPLTLLIKTLSLAHINKLLSTSNV






ITDQTVNICIFYDRDDVLEIINDKGKQYDFKMAVEV






GSIKCVKYLLDNDIICEDAMYYAVLSEYKTMVDYL






LFNHFSVDSVVNGHTCMSECVKLNNRHFIEADVT






SEQ ID
VAC_DPP12_041
AEY74735.1
MIFVLESKLLQIYRNRNRNINFYTTMDNIMSAEYYLS
Not


NO: 80


LYAKYNSKNLDVFRNMLQAIEPSGNNYHILHAYCG
Present





IKGLDERFVEELLHRGYSPNETDDDGNYPLHIASKIN






NNRIVAMLLTHGADPNACDKHNKTPLYYLSGTDDE






VIERINLLVQYGAKINN






SEQ ID
VAC_DPP12_042
AEY74736.1
MVYKLVLLFCIASLGYSVEYKNTICPPRQDYRYWY
Inside


NO: 81


FAAELTIGVNYDINSTIIGECHMSESYIDRNANIVLTG
Deletion





YGLEINMTIMDTDQRFVAAAEGVGKDNKLSVLLFT






TQRLDKVHHNISVTITCMEMNCGTTKYDSDLPESIH






KSSSCDITINGSCVTCVNLETDPTKINPHYLHPKDKY






LYHNSEYGMRGSYGVTFIDELNQCLLDIKELSYDIC






YRE






SEQ ID
VAC_DPP10_043
AEY74737.1
MDLSRINTWKSKQLKSFLSSKDTFKADVHGHSALY
Inside


NO: 82


YAIADNNVRLVCTLLNAGALKNLLENEFPLHQAAT
Deletion





LEDTKIVKILLFSGLDDSQFDDKGNTALYYAVDSGN






MQTVKLFVKKNWRLMFYGKTGWKTSFYHAVMLN






DVSIVSYFLSEIPSTFDLAILLSCIHITIKNGHVDMMIL






LLDYMTSTNTNNSLLFIPDIKLAIDNKDIEMLQALFK






YDINIYSANLENVLLDDAEIAKMIIEKHVEYKSDSYT






KDLDIVKNNKLDEIISKNKELRLMYVNCVKKN






SEQ ID
VAC_DPP20_044
AEY74738.1
MIALLILSLTCSVSTYRLQGFTNAGIVAYKNIQDDNI
Inside


NO: 83


VFSPFGYSFSMFMSLLPASGNTRIELLKTMDLRKRD
Deletion





LGPAFTELISGLAKLKTSKYTYTDLTYQSFVDNTVCI






KPSYYQQYHRLNFRRDAVNKINSIVERRSGMSNVV






DSNMLDNNTLWAIINTIYFKGIWQYPFDITKTRNAS






FTNKYGTKTVPMMNVVTKLQGNTITIDDKEYDMV






RLPYKDANISMYLAIGDNMTHFTDSITAAKLDYWS






FQLGNKVYNLKLPKFSIENKRDIKSIAEMMAPSMFN






PDNASFKHMTRDPLYIYKMFQNAKIDVDEQGTVAE






ASTIMVATARSSPEKLEFNTPFVFIIRHDITGFILFMG






KVESP






SEQ ID
VAC_DPP10_045
AEY74739.1
MLAFCYSLPNAGDVIKGRVYENDYALYIYLFDYPH
Inside


NO: 84


FEAILAESVKMHMDRYVEYRDKLVGKTVKVKVIR
Deletion





VDYTKGYIDVNYKRMCRHQ






SEQ ID
K4L
AEY74740.1
MNPDNTIAVITETIPIGMQFDKVYLSTFNMWREILSN
Inside


NO: 85


TTKTLDISSFYWSLSDEVGTNFGTIILNEIVQLPKRG
Deletion





VRVRVAVNKSNKPLKDVERLQMAGVEVRYIDITNI






LGGVLHTKFWISDNTHIYLGSANMDWRSLTQVKEL






GIAIFNNRNLAADLTQIFEVYWYLGVNNLPYNWKN






FYPSYYNTDHPLSINVSGVPHSVFIASAPQQLCTME






RTNDLTALLSCIRNASKFVYVSVMNFIPIIYSKAGKI






LFWPYIEDELRRSAIDRQVSVKLLISCWQRSSFIMRN






FLRSIAMLKSKNINIEVKLFIVPDADPPIPYSRVNHAK






YMVTDKTAYIGTSNWTGNYFTDTCGASINITPDDGL






GLRQQLEDIFMRDWNSKYSYELYDTSPTKRCKLLK






NMKQCTNDIYCDEIQPEKEIPEYSLE






SEQ ID
VAC_DPP20_047
AEY74741.1
MGATISILASYDNPNLFTAMILMSPLVNADAVSKLN
Inside


NO: 86


LLAAKLMGTITPNAPVGKLCPESVSRDMDKVYKYQ
Deletion





YDPLINHEKIKAGFASQVLKATNKVRKIISKINTPPT






LILQGTNNEISDVLGAYYFMQHANCNREIKIYEGAK






HHLHKETDEVKKSVMKEIETWIFNRVK






SEQ ID
List034/
AEY74742.1
MSANCMFNLDNDYIYWKPITYPKALVFISHGAGKH
Inside


NO: 87 
VAC_DPP20_048

SGRYDELAENISSLGILVFSHDHIGHGRSNGEKMMI
Deletion





DDFGTARGNY






SEQ ID
K7R/
AEY74743.1
MATKLDYEDAVFYFVDDDKICSRDSIIDLIDEYITW
Inside


NO: 88
VAC_DPP20-49

RNHVIVFNKDITSCGRLYKELMKFDDVAIRYYGIDK
Deletion





INEIVEAMSEGDHYINFTKVHDQESLFATIGICAKITE






HWGYKKISESRFQSLGNITDLMTDDNINILILFLEKK






LN






SEQ ID
LIVPclone14_046/
AEY74744.1
MLSMFMCNNIVDYVDDIDNGIVQDIEDEASNNVDH
Inside


NO: 89
VAC_DPP20_047

DYVYPLPENMVYRFDKSTNILDYLSTERDHVMMA
Deletion





VRYYMSKQRLDDLYRQLPTKTRSYIDIINIYCDKVS






NDYNRDMNIMYDMASTKSFTVYDINNEVNTILMD






NKGLGVRLATISFITKLGRRCMNPVKTIKMFTLLSH






TICDDCFVDYITDISPPDNTIPNTSTREYLKLIGITAIM






FATYKTLKYMIG






SEQ ID
F2L/
AEY74745.1
MFNMNINSPVRFVKETNRAKSPTRQSPGAAGYDLY
Inside


NO: 90
VAC_DPP20_051

SAYDYTIPPGERQLIKTDISMSMPKICYGRIAPRSGLS
Deletion





LKGIDIGGGVIDEDYRGNIGVILINNGKCTFNVNTGD






RIAQLIYQRIYYPELEEVQSLDSTNRGDQGFGSTGLR






SEQ ID
F3L
AEY74746.1
MPIFVNTVYCKNILALSMTKKFKTIIDAIGGNIIVNST
Inside


NO: 91 
(75% 3′)

ILKKLSPYFRTHLRQKYTKNKDPVTRVCLDLDIHSL
Deletion





TSIVIYSYTGKVYIDSHNVVNLLRASILTSVEFIIYTCI






NFILRDFRKEYCVECYMMGIEYGLSNLLCHTKNFIA






KHFLELEDDIIDNFDYLSMKLILESDELNVPDEDYV






VDFVIKWYIKRRNKLGNLLLLIKNVIRSNYLSPRGIN






NVKWILDCTKIFHCDKQPRKSYKYPFIEYPMNMDQI






IDIFHMCTSTHVGEVVYLIGGWMNNEIHNNAIAVN






YISNNWIPIPPMNSPRLYASGIPANNKLYVVGGLPNP






TSVERWFHGDAAWVNMPSLLKPRCNPAVASINNVI






YVMGGHSETDTTTEYLLPNHDQWQFGPSTYYPHY






KSCALVFGRRLFLVGRNAEFYCESSNTWTLIDDPIY






PRDNPELIIVDNKILLIGGFYRESYIDTIEVYNHHTYS






WNIWDGK
















TABLE 35







 Examples of proteins encoded by Lister Vaccinia genes equivalent to 


those deleted in CopMD5p vector













Protein




SEQ ID

Accession 




NO
Gene
ID
Amino Acid Sequence
Location





SEQ ID
List023
ABD52473.1
MESVIFSINGEIIQVNKEIITASPYNFFKRIQDHHLKD
Inside


NO: 92
(26% 5′)

EAIILNGINYHAFESLLDYMRWKKINITINNVEMILV
Deletion





AAIIIDVPPVVDLCVKTMIHNINFTNCIRMFNFSKRY






GIKKLYNASMSEIINNITAVTSDPEFGKLSKDELTTIL






SHEDVNVNHEDVTAMILLKWIHKNPNDVDIINILHP






KFMTNTMRNAISLLGLTISKSTKPVTRNGIKHNIVVI






KNSDYISTITHYSPRTEYWTIVGNTDRQFYNANVLH






NCLYIIGGMINNRHVYSVSRVDLKTKKWKTVTNMS






SLKSEVSTCVNDGKLYVIGGLEFSISTGVAEYLKHG






TSKWIRLPNLITPRYSGASVFVNDDIYVMGGVYTTY






EKYVVLNDVECFTKNRWIKKSPMPRHHSIVYAVEY






DGDIYVITGITHETRNYLYKYIVKEDKWIELYMYFN






HVGKMFVCSCGDYILIIADAKYEYYPKSNTWNLFD






MSTRNIEYYDMFTKDETPKCNVTHKSLPSFLSNCEK






QFLQ






SEQ ID
C1L/List024
ABD52474.1
MVKNNKISNSCRMIMSTNPNNILMRHLKNLTDDEF
Inside


NO: 93


KCIIHRSSDFLYLSDSDYTSITKETLVSEIVEEYPDDC
Deletion





NKILAIIFLVLDKDIDVDIETKLKPKPAVRFAILDKM






TADIKLTDLVRHYFRYIEQDIPLGPLFKKIDSYRTRAI






NKYSKELGLATEYFNKYGHLMFYTLPIPYNRFFCRN






SIGFLAVLSPTIGHVKAFYKFIEYVSIDDRRKFKKEL






MSK






SEQ ID
N1L/List025 
ABD52475.1
MRTLLIRYILWRNDNDQTYYNDDFKKLMLLDELVD
Inside


NO: 94


DGDVCTLIKNMRMTLSDGPLLDRLNQPVNNIEDAK
Deletion





RMIAISAKVARDIGERSEIRWEESFTILFRMIETYFDD






LMIDLYGEK






SEQ ID
List026
ABD52476.1
MTSSAMDNNEPKVLEMVYDATILPEGSSMDPNIMD
Inside


NO: 95


CINRHINMCIQRTYSSSIIAILDRFLTMNKDELNNTQ
Deletion





CHIIKEFMTYEQMAIDHYGEYVNAILYQIRKRPNQH






HTIDLFKKIKRTRYDTFKVDPVEFVKKVIGFVSILNK






YKPVYSYVLYENVLYDEFKCFIDYVETKYF






SEQ ID
List027
ABD52477.1
MIFVIESKLLQIYRNRNINFYTTMDNIMSAEYYLSLY
Inside


NO: 96


AKYNSKNLDVFRNMLQAIEPSGNNYHILHAYCGIK
Deletion





GLDERFVEELLHRGYSPNETDDDGNYPLHIASKINN






NRIVAMLLTHGADPNACDKQHKTPLYYLSGTDDEV






IERINLLVQYGAKINNSVDEEGCGPLLACTDPSERVF






KKIMSIGFEARIVDKFGKNHIHRHLMSDNPKASTIS






WMMKLGISPSKPDHDGNTPLHIVCSKTVKNVDIIDL






LLPSTDVNKQNKFGDSPLTLLIKTLSPAHLINKLLST






SNVITDQTVNICIFYDRDDVLEIINDKGKQYDSTDFK






MAVEVGSIRCVKYLLDNDIICEDAMYYAVLSEYET






MVDYLLFNHFSVDSVVNGHTCMSECVRLNNPVILS






KLMLHNPTSETMYLTMKAIEKDRLDKSIIIPFIAYFV






LMHPDFCKNRRYFTSYKRFVTDYVHEGVSYEVFDD






YF






SEQ ID
List028
ABD52478.1
MVYKLVLLFCIASLGYSVEYKNTICPPRQDYRYWY
Inside


NO: 97


FAAELTIGVNYDINSTIIGECHMSESYIDRNANIVLTG
Deletion





YGLEINMTIMDTDQRFVAAAEGVGKDNKLSVLLFT






TQRLDKVHHNISVTITCMEMNCGTTKYDSDLPESIH






KSSSCDITINGSCVTCVNLETDPTKINPHYLHPKDKY






LYHNSEYGMRGSYGVTFIDELNQCLLDIKELSYDIC






YRE






SEQ ID
K1L/List029
ABD52479.1
MDLSRINTWKSKQLKSFLSSKDAFKADINGHSALY
Inside


NO: 98


YAIADNNVRLVCTLLNAGALKNLLENEFPLHQAAT
Deletion





LEDTKIVKILLFSGLDDSQFDDKGNTALYYAVDSGN






MQTVKLFVKKNWRLMFYGKTGWKTSFYHAVMLN






DVSIVSYFLSEIPSTFDLAILLSCIHITIKNGHVDMMIL






LLDYMTSTNTNNSLLFIPDIKLAIDNKDIEMLQALFK






YDINIYSANLENVLLDDAEIAKMIIEKHVEYKSDSYT






KDLDIVKNNKLDEIISKNKELKLMYVNCVKKN






SEQ ID
List030
ABD52480.1
IELLKTMDLRKRDLGPAFTELISGLAKLKTSKYTYT
Inside


NO: 99


DLTYQSFVDNTVCIKPSYYQQYHRFGLYRLNFRRD
Deletion





AVNKINSIVERRSGMSNVVDSNMLDNNTLWAIINTI






YFKGIWQYPFDITKTRNASFTNKYGTKTVPMMNVV






TKLQGNTITIDDEEYDMVRLPYKDANISMYLAIGDN






MTHFTDSITAAKLDYWSSQLGNKVYNLKLPKFSIEN






KRDIKSIAEMMAPSMFNPDNASFKHMTRDPLYIYK






MFQNAKIDVDEQGTVAEASTIMVATARSSPEKLEFN






TPFVFIIRHDITGFILFMGKVESP






SEQ ID
K3L/List031
ABD52483.1
MLAFCYSLPNAGDVIKGRVYENDYALYIYLFDYPH
Inside


NO: 100


SEAILAESVKMHMDRYVEYRDKLVGKTVKVKVIR
Deletion





VDYTKGYIDVNYKRMCRHQ






SEQ ID
K4L/List032
ABD52484.1
MNPDNTIAVITETIPIGMQFDKVYLSTFNMWREILSN
Inside


NO: 101


TTKTLDISSFYWSLSDEVGTNFGTIILNEIVQLPKRG
Deletion





VRVRVAVNKSNKPLKDVERLQMAGVEVRYIDITNI






LGGVLHTKFWISDNTHIYLGSANMDWRSLTQVKEL






GIAIFNNRNLAADLTQIFEVYWYLGVNNLPYNWKN






FYPSYYNTDHPLSINVSGVPHSVFIASAPQQLCTME






RTNDLTALLSCIRNASKFVYVSVMNFIPIIYSKAGKI






LFWPYIEDELRRSAIDRQVSVKLLISCWQRSSFIMRN






FLRSIAMLKSKNINIEVKLFIVPDADPPIPYSRVNHAK






YMVTDKTAYIGTSNWTGNYFTDTCGASINITPDDGL






GLRQQLEDIFMRDWNSKYSYELYDTSPTKRCKLLK






NMKQCTNDIYCDEIQPEKEIPEYSLE






SEQ ID
List033
ABD52485.1
MGHSMGATISILASYDNPNLFTAMILMSPLVNADA
Outside


NO: 102


VSRLNLLAAKLMGTITPNAPVGKLCPESVSRDMDK
Deletion





VYKYQYDPLINHEKIKAGFASQVLKATNKVRKIISKI






NTPPTLILQGTNNKISDVLGAYYFMQHANCNREIKI






YEGAKHHLHKETDEVKKSVMKEIETWIFNRVK






SEQ ID
List034
ABD52486.1
MSANCMFNLDNDYIYWKPITYPKALVFISHGAGKH
Inside


NO: 103


SGRYDELAENISSLGILVFSHDHIGHGRSNGEKMMI
Deletion





DDFGTARGNY






SEQ ID
K7R/List035
ABD52487.1
MATKLDYEDAVFYFVDDDKICSRDSIIDLIDEYITW
Inside


NO: 104


RNHVIVFNKDITSCGRLYKELMKFDDVAIRYYGIDK
Deletion





INEIVEAMSEGDHYINFTKVHDQESLFATIGICAKITE






HWGYKKISESRFQSLGNITDLMTDDNINILILFLEKK






LN






SEQ ID
F1L/List036
ABD52489.1
MLSMFMCNNIVDYVDDIDNGIVQDIEDEASNNVDH
Inside


NO: 105


DYVYPLPENMVYRFDKSTNILDYLSTERDHVMMA
Deletion





VRYYMSKQRLDDLYRQLPTKTRSYIDIINIYCDKVS






NDYNRDMNIMYDMASTKSFTVYDINNEVNTILMD






NKGLGVRLATISFITELGRRCMNPVKTIKMFTLLSHT






ICDDCFVDYITDISPPDNTIPNTSTREYLKLIGITAIMF






ATYKTLKYMIG






SEQ ID
List037
ABD52490.1
MFNMNINSPVRFVKETNRAKSPTRQSPGAAGYDLY
Inside


NO: 106


SAYDYTIPPGERQLIKTDISMSMPKFCYGRIAPRSGL
Deletion





SLKGIDIGGGV1DEDYRGNIGVILINNGKCTFNVNTG






DRIAQLIYQRIYYPELEEVQSLDSTNRGDQGFGSTGLR






SEQ ID
List038
ABD52491.1
MPIFVNTVYCKNILALSMTKKFKTIIDAIGGNIIVNST
Inside


NO: 107
(75% 3′)

ILKKLSPYFRTHLRQKYTKNKDPVTRVCLDLDIHSL
Deletion





TSIVIYSTGKVYIDSHNVVNLLRASILTSVEFIIYTCI






NFILRDFRKEYCVECYMMGIEYGLSNLLCHTKNFIA






KHFLELEDDIIDNFDYLSIKLILESDELNVPDEDYVV






DFVIKWYIKRRNKLGNLLLLIKNVIRSNYLSPRGINN






VKWILDCTKIFHCDKQPRKSYKYPFIEYPMNMDQII






DIFHMCTSTHVGEVVYLIGGWMNNEIHNNAIAVNY






ISNNWIPIPPMNSPRLYASGIPANNKLYVVGGLPNPT






SVERWFHGDAAWVNMPSLLKPRCNPAVASINNVIY






VMGGHSETDTTTEYLLPNHDQWQFGPSTYYPHYKS






CALVFGRRLFLVGRNAEFYCESSNTWTLIDDPIYPR






DNPELIIVDNKLLLIGGFYRESYIDTIEVYNHHTYSW






NIWDGK
















TABLE 36 







Examples of proteins encoded by Copenhagen Vaccinia genes deleted in CopMD3p vector











SEQ ID

Protein




NO
Gene
Accession ID
Amino Acid Sequence
Location





SEQ ID
B14R
AAA49211.1
MNHCLLAISAVYFKAKWLTPFEKEFTSDYPFYVSPT
Inside


NO: 108
(41% 3′) 

EMVDVSMMSMYGELFNHASVKESFGNFSIIELPYV
Deletion





GDTSMMVILPDKIDGLESIEQNLTDTNFKKWCNSLD






AMFIDVHIPKFKVTGSYNLVDTLVKSGLTEVFGSTG






DYSNMCNLDVSVDAMIHKTYIDVNEEYTEAAAATC






ALVSDCASTITNEFCVDHPFIYVIRHVDGKILFVGRY






CSPTTNC






SEQ ID
B15R
AAA49212.1
MTANFSTHVFSPQHCGCDRLTSIDDVKQCLTEYIYW
Inside


NO: 109


SSYAYRNRQCAGQLYSTLLSFRDDAELVFIDIRELV
Deletion





KNMPWDDVKDCTEIIRCYIPDEQKTIREISAIIGLCA






YAATYWGGEDHPTSNSLNALFVMLEMLNYVDYNII






FRRMN






SEQ ID
B ORF E
AAA48213.1
MYNSSIHTPEYDVIIHVIEHLKHHKQCVQTVTSGMV
Inside


NO: 110


FTSPVSSSICTKSDDGRNLSDGFLLIRYITTDDFCTIF
Deletion





DIIPRHIFYQLANVDEH






SEQ ID
B16R
AAA48214.1
MSILPVIFLPIFFYSSFVQTFNASECIDKGXYFASFME
Inside


NO: 111


LENEPVILPCPQINTLSSGYNILDILWEKRGADNDRII
Deletion





PIDNGSNMLILNPTQSDSGIYICITTNETYCDMMSLN






LTIVSVSESNIDFISYPQIVNERSTGEMVCPNINAFIAS






NVNADIIWSGHRRLRNKRLKQRTPGIITIEDVRKND






AGYYTCVLEYIYGGKTYNVTRIVKLEVRDKIIHPTM






QLPEGVVTSIGSNLTIACRVSLRPPTTDADVFWISNG






MYYEEDDGDGDGRISVANKIYMTDKRRVITSRLNI






NPVKEEDATTFTCMAFTIPSISKTVTVSIT






SEQ ID
B ORF F
AAA48215.1
MVIIPGVRCLSLLFLRRRCPLHIISAFTLLAINALILGH
Inside


NO: 112


TISPVDLSFTICGYEIKSIFDSETDTIVKFNDIMSQ
Deletion





SEQ ID
B17L
AAA48216.1
MSRKFMQVYEYDREQYLDEFIEDRYNDSFITSPEYY
Inside


NO: 113


SAEKYMCRYTTLNHNCVNVRRCALDSKLLHDIITN
Deletion





CKIYNNIELVRATKFVYYLDLIKCNWVSKVGDSVL






YPVIFITHTSTRNLDKVSVKTYKGVKVKKLNRCAD






HAIVINPFVKFKLTLPNKTSHAKVLVTFCKLRTDITP






VEAPLPGNVLVYTFPDINKRIPGYIHVNIEGCIDGMI






YINSSKFACVLKLHRSMYRIPPFPIDICSCCSQYTND






DIEIPIHDLIKDVAIFKNKETVYYLKLNNKTIARFTYF






NNIDTAITQEHEYVKIALGIVCKLMINNMHSIVGVN






HSNTFVNCLLEDNV






SEQ ID
B18R
AAA48217.1
MSRRLIYVLNINRKSTHKIQENEIYTYFSHCNIDHTS
Inside


NO: 114


TELDFVVKNYDLNRRQHVTGYTALHCYLYNNYFT
Deletion





NDVLKILLNHDVNVTMKTSSGRMPVYILLTRCCNIS






HDVVIDMIDKDKNHLSHRDYSNLLLEYIKSRYMLL






KEEDIDENIVSTLLDKGIDPNFKQDGYTALHYYYLC






LAHVYKPGECRKPITIKKAKRIISLFIQHGANLNALD






NCGNTPFHLYLSIEMCNNIHMTKMLLTFNPNFKICN






NHGLTPILCYITSDYIQHDILVMLIHHYETNVGEMPI






DERRMIVFEFIKTYSTRPADSITYLMNRFKNINIYTR






YEGKTLLHVACEYNNTQVIDYLIRINGDINALTDNN






KHATQLIIDNKENSPYTINCLLYILRYIVDKNVIRSLV






DQLPSLPIFDIKSFEKFISYCILLDDTFYDRHVKNRDS






KTYRYAFSKYMSFDKYDGIITKCHDETMLLKLSTVL






DTTLYAVLRCHNSRKLRRYLTELKKYNNDKSFKIY






SNIMNERYLNVYYKDMYVSKVYDKLFPVFTDKNC






LLTLLPSEIIYEILYMLTINDLYNISYPPTKV






SEQ ID
B19R
AAA48218.1
MTMKMMVHIYFVSLSLLLLLFHSYAIDIENEITEFFN
Inside


NO: 115


KMRDTLPAKDSKWLNPACMFGGTMNDMATLGEPF
Deletion





SAKCPPIEDSLLSHRYKDYVVKWERLEKNRRRQVS






NKRVKHGDLWIANYTSKFSNRRYLCTVTTKNGDC






VQGIVRSHIKKPPSCIPKTYELGTHDKYGIDLYCGIL






YAKHYNNITWYKDNKEINIDDIKYSQTGKELIIHNPE






LEDSGRYDCYVHYDDVRIKNDIVVSRCKILTVIPSQ






DHRFKLILDPKINVTIGEPANITCTAVSTSLLIDDVLI






EWENPSGWLIGFDFDVYSVLTSRGGITEATLYFENV






TEEYIGNTYKCRGHNYYFEKTLTTTVVLE






SEQ ID
B20R
AAA48219.1
MDEDTRLSRYLYLTDREHINVDSIKQLCKISDPNAC
Inside


NO: 116 


YRCGCTALHEYFYNYRSVNGKYKYRYNGYYQYYS
Deletion





SSDYENYNEYYYDDYDRTGMNSESDSESDNISIKTE






YENEYEFYDETQDQSTQHNDL






SEQ ID
B21R
AAA48220.1
MSLESFIITTFNNNSSTNIDNMCHLYVKVCPSSLLFR
Inside


NO: 117


LFVECCDINKLVEGTTPLHCYLMNEGFESSVLKNLL
Deletion





KEYVMNTFNVHDIHYTNI






SEQ ID
B22R
AAA48221.1
MISLSFLIHNPLKKWKLKPSISINGYRSTFTMAFPCA
Inside


NO: 118


QFRPCHCHATKDSLNTVADVRHCLTEYILWVSHRW
Deletion





THRESAGSLYRLLISFRTDATELFGGELKDSLPWDNI






DNCVEIIKCFIRNDSMKTAEELRAIIGLCTQSAIVSGR






VFNDKYIDILLMLRKILNENDYLTLLDHIRTAKY






SEQ ID
B23R
AAA48222.1
MIAFIIFREIGIISTRIAMDYCGRECTILCRLLDEDVTY
Inside


NO: 119


KKIKLEIETCHNLSKHIDRRGNNALHCYVSNKCDTD
Deletion





IK1VRLLLSRGVERLCRNNEGLTPLGAYSKHRYVKS






QIVHLLISSYSNSSNELKSNINDFDLSSDNIDLRLLKY






LIVDKRIRPSKNTNYAINGLGLVDIYVTTPNPRPEVL






LWLLKSECYSTGYVFRTCMYNSDMCKNSLHYYISS






HRESQSLSKDVIKCLINNNVSIHGRDEGGSLPIQYY






WSFSTIDIEIVKLLLIKDVDTCRVYDVSPILEAYYLN






KRFRVTPYNVDMEIVNLLIERRHTLVDVMRSITSYD






SREYNHYIIDNILKRFRQQDESIVQAMLINYLHYGD






MVVRCMLDNGQQLSSARLLC






SEQ ID
B24R
AAA48223.1
MYGLILSRFNNCGYHCYETILIDVFDILSKYMDDID
Inside


NO: 120


MIDNENKTLLYYAVDVNNIQFAKRLLEYGASVTTS
Deletion





RSIINTAIQKSSYQRENKTRIVDLLLSYHPTLETMIDA






FNRDIRYLYPEPLFACIRYALILDDDFPSKVSMISPVII






RN






SEQ ID
B ORF G
AAA48224.1
MRRCIHIKERKIHMTNIVDRNVTFILTVVHKYVRYV
Inside


NO: 121 


PHTVANDAHNLVHLAHLIHFIIYFFIIRDVRKKKKKK
Deletion





KKNRTIYFFSNVYARHIK






SEQ ID
B25R
AAA48225.1
MSRINITKKIYCSVFLFLFLFLSYISNYEKVNDEMYE
Inside


NO: 122


MGEMDEIVSIVRDSMWYIPNVFMDDGKNEGHVSV
Deletion





NNVCHMYFTFFDVDTSSHLFKLVIKHCDLNKRGNS






PLHCYTMNTRFNPSVLKILLHHGMRNFDSKDEKGH






HYLIHSLSIDNKIFDILTDTIDDFSKSSDLLLCYLRYK






FNGSLNYYVLYKGSDPNCADEDELTSLHYYCKHIST






FYKSNYYKLSHTKMRAEKRFIYAIIDYGANINAVTH






LPSTVYQT






SEQ ID
B26R
AAA48226.1
MEQTLTRLHTYLQQYTKHSPRVVYALLSRGYVIILI
Inside


NO: 123


VHPSWNDCATGHILIMLLNWHEQKEEGQHLLYLFI
Deletion





KHNQGYTLNILRYLLDRFDIQKDEYIYRLSKL






SEQ ID
B27R
AAA48227.1
MLPHTSDTTSTFRLKTVFDLVFENRNIIYKADVVNDI
Inside


NO: 124


IHHRLKVSLPMIKSLFYKMSEFSPYDDYYVKKILAY
Deletion





CLLRDESFAELHSKFCLNEDYKSVFMKNISFDKIDSII






VT






SEQ ID
B28R
AAA48228.1
MKSVLYSYILFLSCIIINGRDIAPHAPSDGKCKDNEY
Inside


NO: 125


KRHNLCPGTYASRLCDSKTNTQCTPCGSGTFTSRNN
Deletion





HLPACLSCNGRRDRVTLLTIESVNALPDIIVFSKDHP






DARHVFPKQNVE






SEQ ID
C23L/B29R
AAA48229.1
MHVPASLQQSSSSSSSCTEEENKHHMGIDVIIKVTK
Inside


NO: 126
(44% 5′)

QDQTPTNDKKQSVTEITESESDPDPEVESEDDSTSV
Deletion





EDVDPPTTYYSIIGGGLRMNFGFTKCPQIKSISESAD






GNTVNARLSSVSPGQGKDSPAITREEALAMIKDCEV






SIDIRCSEEEKDSDIKTHPVLGSNISHKKVSYEDIIGST






IVDTKCVKNLEFSVRIGDMCKESSELEVKDGFKYVD






GSASEGATDDTSLIDSTKLKACV
















TABLE 37







Examples of proteins encoded by Western Reserve Vaccinia genes 


equivalent to those deleted in CopMD3p vector













Protein




SEQ ID

Accession 




NO
Gene
ID
Amino Acid Sequence
Location





SEQ ID
SPI-
AAO89474.1
MDIFREIASSMKGENVFISPASISSVLTILYYGANGST
Inside


NO: 127
2/B13R/

AEQLSKYVEKEENMDKVSAQNISFKSINKVYGRYS
Deletion



VACWR195

AVFKDSFLRKIGDKFQTVDFTDCRTIDAINKCVDIFT




(26% 3′)

EGKINPLLDEPLSPDTCLLAISAVYFKAKWLTPFEKE






FTSDYPFYVSPTEMVDVSMMSMYGKAFNHASVKE






SFGNFSIIELPYVGDTSMMVILPDKIDGLESIEQNLTD






TNFKKWCNSLEATFIDVHIPKFKVTGSYNLVDTLVK






SGLTEVFGSTGDYSNMCNSDVSVDAMIHKTYIDVN






EEYTEAAAATCALVSDCASTITNEFCVDHPFIYVIRH






VDGKILFVGRYCSPTTNC






SEQ ID
VACWR196
AAO89475.1
MTANFSTHVFSPQHCGCDRLTSIDDVRQCLTEYIYW
Inside


NO: 128


SSYAYRNRQCAGQLYSTLLSFRDDAELVFIDIRELV
Deletion





KNMPWDDVKDCAEIIRCYIPDEQKTIREISAIIGLCA






YAATYWGGEDHPTSNSLNALFVMLEMLNYVDYNII






FRRMN






SEQ ID
VACWR197
AAO89476.1
MSILPVIFLSIFFYSSFVQTFNAPECIDKGQYFASFME
Inside


NO: 129


LENEPVILPCPQINTLSSGYNILDILWEKRGADNDRII
Deletion





PIDNGSNMLILNPTQSDSGIYICITTNETYCDMMSLN






LTIVSVSESNIDLISYPQIVNERSTGEMVCPNINAFIAS






NVNADIIWSGHRRLRNKRLKQRTPGIITIEDVRKND






AGYYTCVLEYIYGGKTYNVTRIVKLEVRDKIIPSTM






QLPDGIVTSIGSNLTIACRVSLRPPTTDADVFWISNG






MYYEEDDGDGNGRISVANKIYMTDKRRVITSRLNI






NPVKEEDATTFTCMAFTIPSISKTVTVSIT






SEQ ID
VACWR198
AAO89477.1
MSRKFMQVYEYDREQYLDEFIEDRYNDSFITSPEYY
Inside


NO: 130


SAEKYMCRYTTLNHNCINVRRCALDSKLLHDIITNC
Deletion





KIYNNIELVRATKFVYYLDLIKCNWVSKVGDSVLYP






VIFITHTSTRNLDKVSVKTYKGVKVKKLNRCADHAI






VINPFVKFKLTLPNKTSHAKVLVTFCKLKTDITPVEA






PLPGNVLVYTFPDINKRIPGYIHLNIEGCIDGMIYINS






SKFACVLKLHRSMYRIPPFPIDKSCCSQYINYDIEIPI






HDLIKDVAIFKNKETVYYLKLNNKTIARFTYFNNID






TAITQEHEYVKIALGIVCKLMINNMHSIVGVNHSNT






FVNCLLEDNV






SEQ ID
VACWR199
AAO89478.1
MSRRLIYVLNINRESTHKIQENEIYTYFSHCNIDHTST
Inside


NO: 131


ELDFVVKNYDLNRRQPVTGYTALHCYLYNNYFTN
Deletion





DVLKILLNHGVDVTMKTSSGRMPVYILLTRCCNISH






DVVIDMIDKDKNHLLHRDYSNLLLEYIKSRYMLLK






EEDIDENIVSTLLDKGIDPNFKQDGYTALHYYYLCL






AHVYKPGECRKPITIKKAKRIISLFIQHGANLNALDN






CGNTPFHLYLSIEMCNNIHMTKMLLTFNPNFEICNN






HGLTPILCYITSDYIQHDILVMLIHHYETNVGEMPID






ERRIIVFEFIKTYSTRPADSITYLMNRFKNIDIYTRYE






GKTLLHVACEYNNTHVIDYLIRINGDINALTDNNKH






ATQLIIDNKENSPYTINCLLYILRYIVDKNVIRSLVDQ






LPSLPIFDIKSFEKFISYCILLDDTFYNRHVRNRDSKT






YRYAFSKYMSFDKYDGIITKCHKETILLKLSTVLDT






TLYAVLRCHNSKKLRRYLTELKKYNNDKSFKIYSNI






MNERYLNVYYKDMYVSKVYDKLFPVFTDKNCLLT






LLPSEIIYEILYMLTINDLYNISYPPTKV






SEQ ID
B18R/
AAO89479.1
MTMKMMVHIYFVSLLLLLFHSYAIDIENEITEFFNK
Inside


NO: 132
VACWR200

MRDTLPAKDSKWLNPACMFGGTMNDIAALGEPFS
Deletion





AKCPPIEDSLLSHRYKDYVVKWERLEKNRRRQVSN






KRVKHGDLWIANYTSKFSNRRYLCTVTTKNGDCV






QGIVSHIRKPPSCIPKTYELGTHDKYGIDLYCGILY






AKHYNNITWYKDNKEINIDDIKYSQTGKELIIHNPEL






EDSGRYDCYVHYDDVRIKNDIVVSRCKILTVIPSQD






HRFKLILDPKINVTIGEPANITCTAVSTSLLIDDVLIE






WENPSGWLIGFDFDVYSVLTSRGGITEATLYFENVT






EEYIGNTYKCRGHNYYFEKTLTTTVVLE






SEQ ID
VACWR201
AAO89480.1
MHVIDVDVRLYMSTFIIIDQSTENTSIDTTVTINIIYL
Not


NO: 133


AIMKIIMNIIMMIMIELV
Present





SEQ ID
VACWR202
AAO89481.1
MNSESDNISIKTEYEFYDETQDQSTQLVGYDIKLKT
Not


NO: 134


NEDDFMANIDQWVSMII
Present





SEQ ID
VACWR203
AAO89482.1
MEMYPRHRYSKHSVFKGFSDKVRKNDLDMNVVKE
Inside


NO: 135


LLSNGASLTIKDSSNKDPITVYFRRTIMNLEMIDERK
Deletion





YIVHSYLKNYKNFDYPFFRKLVLTNKHCLNNYYNIS






DSKYGTPLHILASNKKLITPNYMKLLVYNGNDINAR






GEDTQMRTPLHKYLCKFVYHNIEYGIRYYNEKIIDA






FIELGADLTIPNDDGMIPVVYCIHSNAEYGYNNITNI






KIIRKLLNLSRRASHNLFRDRVMHDYISNTYIDLECL






DIIRSLDGFDINGYFEGRTPLHCAIQHNFTQIAKYLL






DRGADIVVPNTLIIHQYIQ






SEQ ID
VACWR204
AAO89483.1
MLNFSLCLYPVFILNKLVLRTQSIILHTINNASIKNR
Not


NOS 677


\\\\\\ and \\\\\\
Present


and 136


MEEDTNISNKVIRYNTVNNIWETLPNFWTGTINPGV






VSHKDDIYVVCDIKDEKNVKTCIFRYNTNTYNGWE






LVTTTESRLSALHTILYNNTIMMLHCYESYMLQDTF






NVYTREWNHMCHQHSNSYIMYNILPIY






SEQ ID
SPI-1/
 AAO89484.1
MDIFKELILKHTDENVLISPVSILSTLSILNHGAAGST
Outside


NO: 137
VACWR205

AEQLSKYIENMNENTPDDNNDMDVDIPYCATLATA
Deletion





NKIYGSDSIEFHASFLQKIKDDFQTVNFNNANQTKE






LINEWVKTMTNGKINSLLTSPLSINTRMTVVSAVHF






KAMWKYPFSKHLTYTDKFYISKNIVTSVDMMVSTE






NNLQYVHINELFGGFSIIDIPYEGNSSMVIILPDDIEGI






YNIEKNITDEKFKKWCGMLSTKSIDLYMPKFKVEM






TEPYNLVPILENLGLTNIFGYYADFSKMCNETITVEK






FLHTTFIDVNEEYTEASAVTGVFMTNFSMVYRTKV






YINHPFMYMIKDNTGRILFIGKYCYPQ






SEQ ID
C13L/
AAO89485.1
MMIYGLIACLIFVTSSIASPLYIPVIPPISEDKSFNSVE
Outside


NO: 138
VACWR206

VLVSLFRDDQKDYTVTSQFNNYTIDTKDWTIGVLST
Deletion





PDGLDIPLTNITYWSRFTIGRALFKSESEDIFQKKMSI






LGVSIECKKSSTLLTFLTVRKMTRVFNKFPDMAYYR






GDCLKAVYVTMTYKNTKTGETDYTYLSNGGLPAY






YRNGVDG






SEQ ID
VACWR207
AAO89486.1
MKLFTQNDRYFGLLDSCTHIFCITCINIWHKTRRETG
Outside


NO: 139


ASDNCPICRTRFRNITMSKFYKLVN
Deletion





SEQ ID
p28/
AAO89487.1
MEFDPAKINTSSIDHVTILQYIDEPNDIRLTVCIIRNIN
Outside


NO: 140
VACWR208

NITYYINITKINTHLANQFRAWKKRIAGRDYMTNLS
Deletion





RDTGIQQSKLTETIRNCQKNRNIYGLYIHYNLVINVV






IDWITDVIVQSILRGLVNWYIANNTYTPNTPNNTTTI






SELDIIKILDKYEDVYRVSKEKECGICYEVVYSKR






SEQ ID
C10L/
AAO89488.1
MDIYDDKGLQTIKLFNNEFDCIRNDIRELFKHVTDS
Outside


NO: 141
VACWR209

DSIQLPMEDNSDIIENIRKILYRRLKNVECVDIDSTIT
Deletion





FMKYDPNDDNKRTCSNWVPLTNNYMEYCLVIYLE






TPICGGKIKLYHPTGNIKSDKDIMFAKTLDFKSKKVL






TGRKTIAVLDISVSYNRSMTTIHYNDDVDIDIHTDK






NGKELCYCYITIDDHYLVDVETIGVIVNRSGKCLLV






NNHLGIGIVKDKRISDSFGDVCMDTIFDFSEARELFS






LTNDDNRNIAWDTDKLDDDTDIWTPVTEDDYKFLS






RLVLYAKSQSDTVFDYYVLTGDTEPPTVFIFKVTRF






YFNMPK






SEQ ID
VGF-1/
AAO89489.1
MSMKYLMLLFAAMIIRSFADSGNAIETTSPEITNATT
Outside


NO: 142
VACWR210

DIPAIRLCGPEGDGYCLHGDCIHARDIDGMYCRCSH
Deletion





GYTGIRCQHVVLVDYQRSENPNTTTSYIPSPGIMLV






LVGIIIITCCLLSVYRFTRRTKLPIQDMVVP






SEQ ID
VACWR211
AAO89490.1
MDEIVRIVRDSMWYIPNVFMDDGKNEGHVSVNNV
Inside


NO: 143


CHMYFTFFDVDTSSHLFKLVIKHCDLNKRGNSPLHC
Deletion





YTMNTRFNPSVLKILLHHGMRNFDSKDEKGHHYQS






ITRSLIY






SEQ ID
C20L/
AAO89491.1
MLFYLEEPIRGYVIILIVHPSWNDCATGHILIMLLNW
Inside


NO: 144
VACWR212

HEQKEEGQHLLYLFIKHNQGYTLNILRYLLDRFDIQ
Deletion





KDEYYNTAFQNCNNNVASYIGYDINLPTKDGIRLGV






SEQ ID
VACWR213
AAO89492.1
MLPHTSDTTSTFRLKTVFDLVFENRNIIYKADVVNDI
Inside


NO: 145


IHHRLKVSLPMIKSLFYKMSLPTTITT
Deletion





SEQ ID
VACWR214
AAO89493.1
MYDDLIEQCHLSMERKSKLVDKALNKLESTIGQSRL
Outside


NO: 146


SYLPPEIMRNII
Deletion





SEQ ID
B28R/
AAO89494.1
MKSVLYSYILFLSCIIINGRDIAPHAPSDGKCKDNEY
Inside


NO: 147
VACWR215

KRHNLCPGTYASRLCDSKTNTQCTPCGSGTFTSRNN
Deletion





HLPACLSCNGRRDRVTRLTIESVNALPDIIVFSKDHP






DARHVFPKQNVE






SEQ ID
VACWR216
AAO89495.1
MDSLRPVVVVNWIQINFHIDIVKGITGYGFAFICGRD
Outside


NO: 148


GVRICSETTRRTDDVSGYSVSYSTFCLGNTCLASG
Deletion





SEQ ID
VACWR217
AAO89496.1
MWKLICIQLTTTTGLSESISTSELTITMNHKDCNPVF
Outside


NO: 149


REEYFSVLNKVATSGFFTGERCAL
Deletion





SEQ ID
B29R/
AAO89497.1
MHVPASLQQSSSSSSSCTEEENKHHMGIDVIIKVTK
Inside


NO: 150
VACWR218

QDQTPTNDKICQSVTEITESESDPDPEVESEDDSTSV
Deletion



(44% 5′)

EDVDPPTTYYSIIGGGLRMNFGFTKCPQIKSISESAD






GNTVNARLSSVSPGQGKDSPAITHEEALAMIKDCEV






SIDIRCSEEEKDSDIKTHPVLGSNISHKKVSYEDIIGST






IVDTKCVKNLEFSVRIGDMCKESSELEVKDGFKYVD






GSASEGATDDTSLIDSTKLKACV
















TABLE 38







Examples of proteins encoded by Tian Tan Vaccinia genes


equivalent to those deleted in CopMD3p vector













Protein




SEQ ID

Accession




NO
Gene
ID
Amino Acid Sequence
Location





SEQ ID
TF3L
AAF34083.1
MNHCLLAISAVYFKAKWLTPFEKEFTSDYPFYVSPT
Inside


NO: 151
(41% 3′)

EMVDVSMMSMYGKAFNHASVKESFGNFSIIELPYV
Deletion





GDTSMMVILPDKIDGLESIEQNLTDTNFKKWCDFM






DAMFIDVHIPKFKVTGSYNLVDTLVKSGLTEVFGST






GDYSNMCNLDVSVDAMIHKTYIDVNEEYTEAAAA






TCALVSDCASTITNEFCVDHPFIYVIRHVDGKILFVG






RYCSPTTNC






SEQ ID
TB15R
AAF34084.1
MTANFSTHVFSPQHCGCDRLTSIDDVKQCLTEYIYW
Inside


NO: 152


SSYAYRNRQCAGQLYSTLLSFRDDAELVFIDIRELV
Deletion





KNMPWDDVKDCTEIIRCYIPDEQKTIREISAIIGLCA






YAATYWGGEDHPTSNSLNALFVMLEMLNYVDYNII






FRRMN






SEQ ID
ORFL
AAF34085.1
MYNSSIHTPEYDVIIHVIEHLKHHKQCVQTVTSGMV



NO: 153


FTSPVSSSICTKSDDGRNLSDGFLLIRYITTDDFCTIF






DIIPRHIFYQLANVDEH






SEQ ID
TB16R
AAF34086.1
MELENEPVILPCPQINTLSSGYNILDILWEKRGADND
Inside


NO: 154


RIIPIDNGSNMLILNPTQSDSGIYICITTNETYCDMMS
Deletion





LNLTIVSVLESNIDLISYPQIVNERSTGEMVCPNINAF






IASNVNADIIWSGHRRLRNKRLKQRTPGIITIEDVRK






NDAGYYTCVLEYIYRGKTYNVTRIVKLEVRDKIIPS






TMQLPDGIVTSIGSNLTIACRVSLRPPTTDADVFWIS






NGMYYEEDDGDGNGRISVANKIYMTDKRRVITSRL






NINPVKEEDATTFTCMAFTIPSISKTVTVSIT






SEQ ID
ORFL
AAF34087.1
MVIIPGVRCLSLLFLRRRCPLHIISAFTLLAINALILGH



NO: 155


TISPVDLSFTICGYEIRSIFDSKTDTIVKFNDIMSQ






SEQ ID
TB17L
AAF34088.1
MSRKFMQVYEYDREQYLDEFIEDRYNDSFITSPEYY
Inside


NO: 156


SAEKYMCRYTTLNHNCVNVRRCALDSKLLHDIITN
Deletion





CKIYNNIELVRATKFVYYLDLIKCNWVSKVGDSVL






YPVIFITHTSTRNLDKVSVKTYKGVKVKKLNRCAD






HAIVINPFVKFKLTLPNKTSHAKVLVTFCKLRTDITQ






IEAPLSGNVLVYTFPNINKRIPGYIHVNIEGCIDGMIY






INSSKFACVLKLHRSMYRIPPFPIDKSCCSQYTNGDI






EIPIHDLIKDVAIFKNKETVYYLKLNNKTIARFTYFN






NIDTAITQEHEYVKIALGIVCKLMINNMHSIVGVNH






SNTFVNCLLEDNV






SEQ ID
TB18R
AAF34089.1
MSRRLIYVLNINRESTHKIQENEIYTYFSHCNIDHTST
Inside


NO: 157


ELDFVVKNYDLNRRHPVTGYTALHCYLYNNYFTN
Deletion





DVLKILLNHGVDVTMKTSSGRMPVYILLTRCCNISH






DVVIDMIDKDKNHLLHRDYSNLLLEYIKSRYMLLK






EEDIDENIVSTLLDKGIDPNFKQDGYTALHYYYLCL






AHVYKPGECRKPITIKKAKRIISLFIQHGANLNALDN






CGNTPFHLYLSIEMCNNIHMTKMLLTFNPNFKICNN






HGLTPILCYITSDYIQHDILVMLIHHYETNVGEMPID






ERRIIVFEFIKTYSTRPADSITYLMNRFKNINIYTRYE






GKTLLHVACEYNNTQVIDYLIRINGDINALTDNNKH






ATQLIIDNKENSPYTINCLLYILRYIVDKNVIRSLVDQ






LPSLPIFDIKSFEKFISYCILLDDTFYDRHVKNRNSKT






YRYAFSKYMSFDKYDGIITKCHDETMLLKLSTVLDT






TLYAVLRCHNSRKLRRYLTELKKYNNDKSFKIYSNI






MNERYLNVYYKDMYVSKVYDKLFPVFTDKNCLLT






LLPSEIIYEILYMLTINDLYNISYPPTKV






SEQ ID
TB19R
AAF34090.1
MTMKMMVHIYFVSLSLLLLLFHSYAIDIENEITEFFN
Inside


NO: 158


KMRDTLPAKDSKWLNPACMFGGTMNDIAALGEPF
Deletion





SAKCPPIEDSLLSHRYKDYVVKWERLEKNRRRQVS






NKRVKHGDLWIANYTSKFSNRRYLCTVTTKNGDC






VQGIVRSHIKKPPSCIPKTYELGTHDKYGIDLYCGIL






YAKHYNNITWYKDNKEINIDDIKYSQTGKELIIHNPE






LEDSGRYDCYVHYDDVRIKNDIVVSRCKILTVIPSQ






DHRFKLILDPKINVTIGEPANITCTAVSTSLLIDDVLI






EWENPSGWLIGFDFDVYSVLTSRGGITEATLYFENV






TEEYIGNTYKCRGHNYYFEKTLTTTVVLE






SEQ ID
ORFR
AAF34091.1
MHVIDVDVRLYMSTFIIIDQSTENTSIDTTVTINIIYL



NO: 159


AIMKIIMNIIMMIMIELV






SEQ ID
TB21R
AAF34092.1
LKNVECVDIDSTITFMKYDPNDDNKRTCSNWVPLT



NO: 160


NNYMEYCLVIYLETPICGGKIKLYHPTGNIKSDKDI






MFAKTLDFKSTKVLTGRKTIAVLDISVSYNRSMTTI






HYNDDVDIDIHTDKNGKELCYCYITIDDHYLVDVET






IGVIVNRSGKCLLVNNHLGIGIVKDKRISDSFGDVC






MDTIFDFSEARELFSLTNDDNRNIAWDTDKLDDDT






DIWTPVTENDYKFLSRLVLYAKSQSDTVFDYYVLT






GDTEPPTVFIFKVTRFYFNMPK






SEQ ID
TB22L
AAF34093.1
MYCRCSHGYTGIRCQHVVLVDYQRSEKPNTTTSYIP



NO: 161


SPGIMLVLVGIIIITCCLLSVYRFTRRTKLPLQDMVVP






SEQ ID
TB23R
AAF34094.1
MHVPASLQQSSSSSSSCTEEENKHHMGIDVIIKVTK
Inside


NO: 162
(44% 5′) 

QDQTPTNDKICQSVTEITESESDPDPEVESEDDSTSV
Deletion





EDVDPPTTYYSIIGGGLRMNFGFTKCPQIKSISESAD






GNTVNARLSSVSPGQGKDSPAITHEEALAMIKDCEV






SIDIRCSEEEKDSDIKTHPVLGSNISHKKVSYEDIIGST






IVDTKCVKNLEFSVRIGDMCKESSELEVKDGFKYVD






GSASEGATDDTSLIDSTKLKACV







TB20R






ORFL
















TABLE 39







Examples of proteins encoded by Wyeth Vaccinia genes equivalent to


those deleted in CopMD3p vector













Protein




SEQ ID

Accession




NO
Gene
ID
Amino Acid Sequence
Location





SEQ ID
VAC_DPP20_207
AEY74905.1
MNHCLLAISAVYFKAKWLTPFEKEFTSDYPFYVSPT
Inside


NO: 163


EMVDVSMMSMYGKAFNHASVKESFGNFSIIELPYV
Deletion





GDTSMMVILPDKIDGLESIEQNLTDTNFKKWCDFM






DAMFIDVHIPKFKVTGSYNLVDTLVKSGLTEVFGST






GDYSNMCNLDVSVDAMIHKTYIDVNEEYTEAAAA






TCALVSDCASTVTNEFCADHPFIYVIRHVDGKILFV






GRYCSPTTNC






SEQ ID
VAC_DPP10_208
AEY74906.1
MTANFSTHVFSPQHCGCDRLTSIDDVKQCLTEYIYW
Inside


NO: 164


SSYAYRNRQCAGQLYSTLLSFRDDAELVFIDIRELV
Deletion





KHMPWDDVKDCAEIIRCYIPDEQKTIREISAIIGLCA






YAATYWGGEDHPTSNSLNALFVMLEMLNYVDYNII






FRRMN






SEQ ID
VAC_DPP12_209
AEY74907.1
MSILPVIFLSIFFYSSFVQTFNASECIDKGQYFASFME
Inside


NO: 165


LENEPVILPCPQINTLSSGYNILDILWEKRGADNDRII
Deletion





PIDNGSNMLILNPTQSDSGIYICITTNETYCDMMSLN






LTIVSVSESNIDLISYPQIVNERSTGEMVCPNINAFIAS






NVNADIIWSGHRRLRNKRLKQRTPGIITIEDVRKND






AGYYTCVLEYIYGGKTYNVTRIVKLEVRDKIIPSTM






QLPDGIVTSIGSNLTIACRVSLRPPTTDTDVFWISNG






MYYEEDDGDGDGRISVANKIYMTDKRRVITSRLNI






NPVKEEDATTFTCMAFTIPSISKTVTVSIT






SEQ ID
VAC_DPP20_210
AEY4908.1
MSRKFMQVYEYDREQYLDEFIEDRYNDSFITSPEYY
Inside


NO: 166


SAEKYMCRYTTLNHNCVNVRRCALDSKLLHDIITN
Deletion





CKIYNNIELVRATKFVYYLDLIKCNWVSKVGDSVL






YPVIFITHTSTRNLDKVSVKTYKGVKVKKLNRCAD






HAIVINPFVKFKLTLPNKTSHAKVLVTFCKLRTDITQ






IEAPLSGNVLVYTFPDINKRIPGYIHVNIEGCIDGMIY






INSSKFACVLKLHRSMYRIPPFPIDKSCCSQYTNDDI






EIPIHDLIKDVAIFKNKETVYYLKLNNKTIARFTYFN






NIDTAITQEHEYVKIALGIVCKLMINNMHSIVGVNH






SNTFVNCLLEDNV






SEQ ID
VAC_DPP20_211
AEY74909.1
MSRRLIYVLNINRESTHKIQENEIYTYFSHCNIDHTST
Inside


NO: 167


ELDFVVKNYDLNRRQPVTGYTALHCYLYNNYFTN
Deletion





DVLKILLNHGVDVTMKTSSGRMPVYILLTRCCNISH






DVVIDMIDKDKNHLSHRDYSNLLLEYIKSRYMLLK






EEDIDENIVSTLLDKGIDPNFKQDGYTALHYYYLCL






AHVYKPGECRKPITIKKAKRIISLFIQHGANLNALDN






CGNTPFHLYLSIEMCNNIHMTKMLLTFNPNFKICNN






HGLTPILCYITSDYIQHDILVMLIHHYETNVGEMPID






ERRIIVFEFIKTYSTRPADSITYLMNRFKNINIYTRYE






GKTLLHVACEYNNTHVIDYLIRINGDINALTDNNKH






AIQLIIDNKENSPYTIDCLLYILRYIVDKNVIRSLVDQ






LPSLPIFDIKSFEKFISYCILLDDTFYNRHVRNRNSKT






YRYAFSKYMSFDKYDGIITKCHDETMLLKLSTVLDT






TLYAVLRCHNSKKLRRYLNELKKYNNDKSFKIYSNI






MNERYLNVYYKDMYVSKVYDKLFPVFTDKNCLLT






LLPSEIIYEILYMLTINDLYNISYPPTKV






SEQ ID
VAC_DPP20_212
AEY74910.1
MTMKMMVHIYFVSLSLLLLLFHSYAIDIENEITEFFN
Inside


NO: 168


KMRDTLPAKDSKWLNPACMFGGTMNDIATLGEPFS
Deletion





AKCPPIEDSLLSHRYKDYVVKWERLEKNRRRQVSN






KRVKHGDLWIANYTSKFSNRRYLCTVTTKNGDCV






QGIVRSHIRKPPSCIPKTYELGTHDKYGIDLYCGILY






AKHYNNITWYKDNKEINIDDIKYSQTGKKLIIHNPEL






EDSGRYDCYVHYDDVRIKNDIVVSRCKILTVIPSQD






HRFKLKRNCGYASN






SEQ ID
VAC_DPP10_217
AEY74911.1
MRQIKINGTDMLTVMYMLNKPTKKRYVNNPIFTD
Not


NO: 169


WANKQYKFYNQIIYNANKLIEQSKKIDDMIEEVSID
Present





DNRLSTLPLEIRHLIFSYAFL






SEQ ID
VAC_DPP10_218
AEY74912.1
MSSKGGSGGMWSVFIHGHDGSNKGSKTYTSGGGG
Outside


NO: 170


MWGGGSSSGVNGGVKSGTGKI
Deletion





SEQ ID
VAC_DPP10_219
AEY74913.1
MFDYLENEEVALDELKQMLRDRDPNDTRNQFKNN
Outside


NO: 171


ALHAYLFNEHCNNVEVVKLLLDSGTNPLRKNWRQ
Deletion





LPH






SEQ ID
VAC_DPP10_220
AEY74914.1
MLKLKDIAMALLEATGFSNINDFNIFSYMKSKNVD
Outside


NO: 172


VDLIKVLVEHGFDLSVKCENHRSVIENYVMTMILFI
Deletion





ENGCSVLYEDEY






SEQ ID
VAC_DPP10_221
AEY74915.1
MKGIDNTAYSYIDDLTCCTRGIMADYLNSDYRYNK
Outside


NO: 173


DVDLVKLFLENGKPHGIMCSIVPLWRNDKETIFLILK
Deletion





TMNSDVLQHILIEYMTFGDIPLVEYGTVVNKEAIHG






YFRNINIDSYTMKYLLKKEGRCHQLSRLDTYVNPT






MDVIISTLIHTKRVFVTCLMLAQFLVL






SEQ ID
VAC_DPP10_222
AEY74916.1
MPSIISIGHLCKSNYGCYNFYTYTYKKGLCDMSYAC
Outside


NO: 174


PILSTINICLPYLKDINMIDKRGETLLHKAVRYNKQS
Deletion





LVSLLLESGSDVNIRSNNGYTCIAIAINESKNIELLKM






LLCHKPTLDYVIDSLREISNIVDNDYAIKQCIKYAMII






DDCTSSKIPEFISQRYNDYIDLCN






SEQ ID
VAC_DPP10_223
AEY49171.1
MKKIMVGGNTMFSLIFTDHGAKIIHRYANNPELREY
Outside


NO: 175


YELKQNKIYVEAYDIISNAIVKHDRIHKTIESVDDNT
Deletion





YISNLPYTIKYKIFEQQ






SEQ ID
VAC_DPP10_224
AEY74918.1
MRILFLIAFMYGCVHSYVNAVETKCSNLDIVTSSGE
Outside


NO: 176


FHCSGCVEHMPNFSYMYWLAKDMRSDEDAKFIEH
Deletion





LGEGIKEDETVRTIDGRIVTLQKVLHVTDTNKFAHY






RFTCVLTTIDGVSKKNIWLK






SEQ ID
VAC_DPP10_225
AEY74919.1
MKLFTQNDRYFGLLDSCNHIFCITCINIWFIKTRRET
Outside


NO: 177


GASDNCPICRTRFRNITMSKFYKLVN
Deletion





SEQ ID
VAC_DPP10_226
AEY74920.1
MHYPKYYINITKINPHLANQFRAWKKRIAGRDYMT
Outside


NO: 178


NLSKDTGIQQSKLYVTVKKIETYMVYIYTTI
Deletion





SEQ ID
VAC_DPP20_227
AEY74921.1
MDIYDDKGLQTIKLFNNEFDCIRNDIRELFKHVTDS
Outside


NO: 179


DSIQLPMEDNSDIIENIRKILYRRLKNVECVDIDNTIT
Deletion





FMKYDPNDDNKRTCSNWVPLTNNYMEYCLVIYLE






TPICGGKIKLYHPTGNIKSDKDIMFAKTLDFKSKKVL






TGRKTIAVLDISVSYNRSITTIHYNDDVDIDIHTDKN






GKELCYCYITIDDHYLVDVETIGVIVNRSGKCLLVN






NHLGIGIVKDKRISDSFGDVCMDTIFDFSEARELFSL






TNDDNRNIAWDTDKLDDDTDIWTPVTENDYKFLSR






LVLYAKSQSDTVFDYYVLTGDTEPPTVFIFKVTRFY






FNMFK






SEQ ID
VAC_DPP20_228
AEY74922.1
MLINYLMLLFAAMIIRSFADSGNAIETTLPEITNATT
Outside


NO: 180


DIPAIRLCGPEGDGYCLHGDCIHARDIDGMYCRCSH
Deletion





GYTGIRCQHVVLVDYQRSEKPNITTSYIPSPGIMLV






LVGIIIITCCLLSVYRFTRRTNKLPLQDMVVP






SEQ ID
VAC_DPP20_229
AEY74923.1
MDIFKELIVKHPDENVLISPVSILSTLSILNHGAAGST
Outside


NO: 181


AEQLSKYIENMNENTPDDKKDDNNDMDVDIPYCAT
Deletion





LATANKIYGSDSIEFHASFLQKIKDDFQTVNFNNAN






QTKELINEWVKTMTNGKINSLLTSPLSINTRMTVVS






AVHFKAMWKYPFSKHLTYTDKFYISKNIVTSVDMM






VGTENNLQYVHINELFGGFSIIDIPYEGNSSMVIILPD






DIEGIYNIEKNITDEKFKKWCGMLSTKSIDLYMPKF






KVEMTEPYNLVPILENLGLTNIFGYYADFSKMCNET






ITVEKFLHTTFIDVNEEYTEASAVTGVFMTNFAMVY






RTKVYINHPFMYMIKDTTGRILFIGKYCYPQ






SEQ ID
C13L/
AEY74924.1
MMIYGLIACLIFVTSSIASPLYIPVIPPITEDKSFNSVE
Outside


NO: 182
VAC_DPP20_230

VLVSLFRDDQKDYTVISQFNNYTIDTKDWTIGVLST
Deletion





PDGLDIPLTNITYWSRFTIGRALFKSESEDIFQKKMSI






LGVSIECKKSSTLLTFLTVRKMTRVFNKFPDMAYYR






GDCLKAVYVTMTYKNTKTGETDYTYLSNGGLPAY






YRNGVDG






SEQ ID
VAC_DPP20_231
AEY74925.1
MNLQKLSLAIYLTATCSWCYETCIRKTALYHDIQLE
Outside


NO: 183


HVEDNKDSVASLPYK
Deletion





SEQ ID
VAC_DPP20_232
AEY74926.1
MSLESFIITTFNNSSTNIDNMCHLYVKVCPSSLLFR
Inside


NO: 184


LFVECCDINKLVEGTTPLHCYLMNEGFESSVLKNLL
Deletion





KEYVMTSITQIFNS






SEQ ID
VAC_DPP20_233
AEY74927.1
MISLSFLIHNPLKKWKLKPSISINGYRSTFTMAFPCA
Inside


NO: 185


QFRPCHCHATKDSLNTVADVRHCLTEYILWVSHRW
Deletion





THRETAGPLYRLLISFRTDATELFGGELKDSLPWDNI






DNCVEIIKCFIRNDSMKTAEELRAIIGLCTQSAIVSGR






VFNDKYIDILLMLRKILNENDYLTLLDHIRTAKY






SEQ ID
VAC_DPP20_234
AEY74928.1
MIAFIIFREIGIISTRIAMDCTCILCRLLDEDVTYKKIK
Inside


NO: 186


LEIETCHNLSKHIDRRGNNALHCYVFNKCDTDIKIV
Deletion





RLLLSRGVERLCRNNEGLTPLGVYSKHRYVKSQIVH






LLISSYSNSSNELKSNINDFDLSSDNIDLRLLKYLIVD






KRIRPSKNTNYAINSLGLVDIYVTTPNPRPEVLLWLL






KSECYSTGYVFRTCMYNSDMCKNSLHYYISSHRES






QSLSKDVIKCLINNNVSIHGRDEGGSLPIQYYWSFST






IDIEIVKLLLIKDVDTCRVYDVSPILEAYYLNKRFRV






TPYNVDMEIVNLLIERRHTLVDVMRSITSYDSREYN






HYIIDNILKRFRQQDESIVQAMLINYLHYGDMVVRC






MLDNGQQLSSARLLC






SEQ ID
VAC_DPP20_235
AEY74929.1
MYGLILSRFNNCGYHCYETILIDVFDILSKYMDNID
Inside


NO: 187


MIDNENKTLLYYAVDVNNIQFAKRLLEYGASVTTS
Deletion





RSIINTAIQKSSYRRENKTKLVDLLLSYHPTLETMID






AFNRDIRYLYPEPLFACIRYALILDDDFPSKVKYDIS






GRHKELKRYRVDINRMKNAYISGVSMFDILFKRSK






RHRLRYAKNPTSNGTKKN






SEQ ID
VAC_DPP20_236
AEY74930.1
MSRINITKKIYCSVFLFLFLSYISNYEKVNDEMYEMG
Inside


NO: 188


EMDEIVSIVRDSMWYIPNVFMDDGKNEGHVSVNNV
Deletion





CHMYFTFFDVDTSSHLFKLVIKHCDLNKRGNSPLHC






YTMNTRFNPSVLKILLHHGMRNFDSKDDHYQSITRS






LIY






SEQ ID
VAC_DPP20_237
AEY74931.1
MEQTLTRLHTYLQQYTKHSPRVVYALLSRGYVIILI
Inside


NO: 189


VHPSWNDCATGHILIMLLNWHEQKEEGQHLLYLFI
Deletion





KHNQGYTLNILRYLLDRFDIQKDEYYNTAFQNCNN






NVASYIGYDINLPTKDGIRLGV






SEQ ID
VAC_DPP20_238
AEY74932.1
MLPHTSDTTSTFRLKTVFDLVFENRNIIYKADVVNDI
Inside


NO: 190


IHHRLKVPMIKSLFYKMSEFSPYDDYYVKKILAYCL
Deletion





LRDESFAELHSKFCLNEDYKSVFMKNISFDKIDSIIVT






SEQ ID
VAC_DPP20_239
AEY74933.1
MHHPMESVKTTNTNAIICVREHTLPDYANTQCTPC
Inside


NO: 191


GSGTFTSRNNHLPACLSCNGRRDRVTLLTIESVNAL
Deletion





PDIIVFSKDHPDARHVFPKQNVE






SEQ ID
VAC_DPP20-241
AEY74934.1
MHVPASLQQSSSSCTEEENKHHMGIDVIIKVTKQDQ
Inside


NO: 192
(43% 5′)

TPTNDKKQSVTEITESESDPDPEVESEDDSTSVEDV
Deletion





DLPTTYYSIIGGGLRMNFGFTKCPQIKSISESADGNT






VNARLSSVSPGQGKDSPAITHEEALAMIKDCEVSIDI






RCSEEEKDSDIKTHPVLGSNISHKKVSYEDIIGSTIVD






TKCVKNLEFSVRIGDMCKESSELEVKDGFKYVDGS






ASEGATDDTSLIDSTKLKACV






SEQ ID
VAC_DPP10_225
AEY74919.1
MKLFTQNDRYFGLLDSCNHIFCITCINIWHKTRRET
Outside


NO: 193


GASDNCPICRTRFRNITMSKFYKLVN
Deletion





SEQ ID
VAC_DPP10_226
AEY74920.1
MHYPKYYINITKINPHLANQFRAWKKRIAGRDYMT
Outside


NO: 194


NLSKDTGIQQSKLYVTVKKIETYMVYIYTTI
Deletion





SEQ ID
VAC_DPP20_207
AEY74921.1
MDIYDDKGLQTIKLFNNEFDCIRNDIRELFKHVTDS
Outside


NO: 195


DSIQLPMEDNSDIIENIRKILYRRLKNVECVDIDNTIT
Deletion





FMKYDPNDDNKRTCSNWVPLTNNYMEYCLVIYLE






TPICGGKIKLYHPTGNIKSDKDIMFAKTLDFKSKKVL






TGRKTIAVLDISVSYNRSITTIHYNDDVDIDIHTDKN






GKELCYCYITIDDHYLVDVETIGVIVNRSGKCLLVN






NHLGIGIVKDKRISDSFGDVCMDTIFDFSEARELFSL






TNDDNRNIAWDTDKLDDDTDIWTPVTENDYKFLSR






LVLYAKSQSDTVFDYYVLTGDTEPPTVFIFKVTRFY






FNMPK






SEQ ID
VAC_DPP20:228
AEY74922.1
MLINYLMLLFAAMIIRSFADSGNAIETTLPEITNATT
Outside


NO: 196


DIPAIRLCGPEGDGYCLHGDCIHARDIDGMYCRCSH
Deletion





GYTGIRCQHVVLVDYQRSEKPNTTTSYIPSPGIMLV






LVGIIIITCCLLSVYRFTRRTNKLPLQDMVVP






SEQ ID
VAC_DPP20_239
AEY74933.1
MHHPMESVKTTNTNAIICVREHTLPDYANTQCTPC
Inside


NO: 197


GSGTFTSRNNHLPACLSCNGRRDRVTLLTIESVNAL
Deletion





PDIIVFSKDHPDARHVFPKQNVE






SEQ ID
VAC_DPP20-241
AEY74934.1
MHVPASLQQSSSSCTEEENKHHMGIDVIIKVTKQDQ
Inside


NO: 198
(43% 5′)

TPTNDKICQSVTEITESESDPDPEVESEDDSTSVEDV
Deletion





DLPTTYYSIIGGGLRMNFGFTKCPQIKSISESADGNT






VNARLSSVSPGQGKDSPAITHEEALAMIKDCEVSIDI






RCSEEEKDSDIKTHPVLGSNISHKKVSYEDIIGSTIVD






TKCVKNLEFSVRIGDMCKESSELEVKDGFKYVDGS






ASEGATDDTSLIDSTKLKACV
















TABLE 40 







Examples of proteins encoded by Lister Vaccinia genes equivalent to 


those deleted in CopMD3p vector













Protein




SEQ ID

Accession




NO
Gene
ID
Amino Acid Sequence
Location





SEQ ID
B15R/
ABD52695.1
MTANFSTHVFSPQHCGCDRLTSIDDVKQCLTEYIYW
Inside


NO: 200
List191

SSYAYRNRQCAGQLYSTLLSFRDDAELVFIDIRELV
Deletion





KNMPWDDVKDCTEIIRCYIPDEQKTIREISAIIGLCA






YAATYWGGEDHPTSNSLNALFVMLEMLNYVDYNII






FRRMN






SEQ ID
List192
ABD52696.1
MSILPVIFLPIFFYSSFVQTFNAPECIDKGQYFASFME
Inside


NO: 201


LENEPVILPCPQINTLSSGYNILDILWEKRGADNDRII
Deletion





PIDNGSNMLILNPTQSDSGIYICITTNETYCDMMSLN






LTIVSVSESNIDLISYPQIVNERSTGEMVCPNINAFIAS






NVNADIIWSGHRRLRNKRLKQRTPGIITIEDVRKND






AGYYTCVLEYIYRGKTYNVTRIVKLEVRDKIIPSTM






QLPDGIVTSIGSNLTIACRVSLRPPTTDADVFWISNG






MYYEEDDGDGNGRISVANKIYMTDKRRVITSRLNI






NPVKEEDATTFTCMAFTIPSISKTVTVSIT






SEQ ID
B17L/
ABD52698.1
MSRKFMQVYEYDREQYLDEFIEDRYNDSFITSPEYY
Inside


NO: 202
List193

SAEKYMCRYTTLNHNCINVRRCALDSKLLHDIITNC
Deletion





KIYNNIELVRATKFVYYLDLIKCNWVSKVGDSVLYP






VIFITHTSTRNLDKVSVKTYKGVKVKKLNRCADHAI






VINPFVKFKLTLPNKTSHAKVLVTFCKLRTDITQIEA






PLSGNVLVYTFPDINKRIPGYIHVNIEGCIDGMIYINS






SKFACVLKLHRSMYRIPPFPIDKSCCSQYTNDDIEIPI






HDLIKDVAIFKNKETVYYLKLNNKTIARFTYFNNID






TAITQEHEYVKIALGIVCKLMINNMHSIVGVNHSNT






FVNCLLEDNV






SEQ ID
crmE/
ABD52700.1
MTKVIIILGFLIINTNSLSMKCEQGVSYYNSQELKCC
Not


NO: 203
List195

KLCKPGTYSDHRCDKYSDTICGHCPSDTFTSIYNRSP
Present





WCHSCRGPCGTNRVEVTPCTPTTNRICHCDSNSYCL






LKASDGNCVTCAPKTKCGRGYGKKGEDEMGNTIC






KKCRKGTYSDIVSDSDQCKPMTR






SEQ ID
L6/
ABD52701.1
MAMPSLSACSSIEDDFNYGSSVASASVHIRMAFLRK
Not


NO: 204
List196

VYGILCLQFLLTTATTAVFLYFDCMRTFIQGSPVLIL
Present





ASMFGSIGLIFALTLHRHKHPLNLYLLCGFTLSESLT






LASVVTFYDVHVVMQAFMLTTAAFLALTTYTLQSK






RDFSKLGAGLFAALWILILSGLLGIFVQNETVKLVLS






AFGALVFCGFIIYDTHSLIHKLSPEEYVLASINLYLDII






NLFLHLLQLLEVSNKK






SEQ ID
List197
ABD52704.1
MASPCAKFRPCHCHATKDSLNTVADVRHCLTEYIL
Inside


NO: 205


WVSHRWTHRESAGSLYRLLISFRTDATELFGGELKD
Deletion





SLPWDNCVEIIKCFIRNDSMKTAEELRAIIGLCTQSAI






VSGRVFNDKYIDILLMLRKILNENDYLTLLDHIRTA






KY






SEQ ID
List199C
ABD52706.I
MEQTLTRLHTYLQQYTKHSPRVVYALLSRGYVIILI
Inside


NO: 206


VHPSWNDCATGHILIMLLNWHEQKEEGQHLLYLFI
Deletion





KHNQGYTLNILRYLLDRFDIQKDEYYNTAFQNCNN






NVASYIGYDINLPTKDGIRLGV






SEQ ID
List199D
ABL63830.1
MLPHTSDTTSTFRLKTVFDLVFENRNIIYKADVVNDI
Inside


NO: 207


IHHRLKVSLPMIKSLFYKMSLPTTITT
Deletion





SEQ ID
C23L/
ABL63827.1
MKQYIVLACMCLAAAAMPASLQQSSSSSSSCTEEE
Inside


NO: 208
List201

NKHHMGIDVIIKVTKQDQTPTNDKICQSVTEITESES
Deletion



(47% 5′)

DPDPEVESEDDSTSVEDVDPPTTYYSIIGGGLRMNF






GFTKCPQIKSISESADGNTVNARLSSVSPGQGKDSPA






ITHEEALAMIKDCEVSIDIRCSEEEKDSDIKTHPVLGS






NISHKKVSYEDIIGSTIVDTKCVKNLEFSVRIGDMCK






ESSELEVKDGFKYVDGSASEGATDDTSLIDSTKLKA






CV







List198A






List198B






List199A






List199B






List200






List194









EXAMPLES

The following examples are put forth so as to provide those of ordinary skill in the art with a description of how the compositions and methods claimed herein are performed, made, and evaluated, and are intended to be purely exemplary of the invention and are not intended to limit the scope of what the inventor regards as her invention.


Example 1—Creation of the CopMD5p3p “SKV-B8R+” Recombinant Orthopoxvirus

The open reading frames (ORFs) from 59 poxvirus strains were clustered into orthologs and aligned at the amino acid level (see FIG. 1 for phylogenetic analysis). Bayesian analysis was performed to determine relatedness of all strains. Poxviruses are very diverse in gene content and host range. There are several naturally occurring Vaccinia wild-type strains, which are different from one another.


Five Vaccinia wild type strains (Copenhagen, TianTan, Lister, Wyeth, and Western Reserve) were mixed at equal plaque forming unit counts and sequenced with NGS (Input pool). The resulting mixture was passaged three times in different cancer cell lines (HeLa, 786-O, HT29, MCF7). The final population was sequenced with NGS illumina sequencing. Reads (short DNA fragments) were assigned to various strains based on sequence identity and used to calculate the percent of each strain in the final population. The relative abundance of the different viral strains was then quantified. As shown in FIG. 2, the Copenhagen strain was the most abundant vaccinia strain after three passages in any of the four cancer cell lines indicating that this strain was able to outgrow other strains and therefore replicates faster.


Different Vaccinia wild type strains were also used to infect at low PFU (1×104) various patient tumor cores. Each strain infected on average 4 replicates each containing three 2×2 mm tumor cores. Replication was assessed through virus titering and is expressed as plaque forming units (PFU) as shown in FIG. 3. The Copenhagen strain grows to higher titers than other strains and therefore replicates faster in patient ex-vivo samples. Patient ex-vivo cores are a good mimic of a patient's 3D tumor.


Vaccinia wild-type strains were then subjected to a plaque assay on U2-OS cells with a 3% CMC overlay. Two days past infection, 20-30 plaques for each strain were measured for their size. Plaque size measurements for Copenhagen, Western Reserve, Wyeth, Lister, and Tian Tan are shown in FIG. 4. Plaque formation is affected by the ability of the virus to replicate, spread, and kill. The larger plaque sizes observed for the Copenhagen strain suggest that this strain is superior in these abilities, which are important for the development of an oncolytic virus.


Then, the number of TTAA sites across 1 kb regions in Vaccinia Copenhagen genome were counted (see FIG. 5A). Ilumina NGS sequencing was combined and used to identify Transposon Insertion Sites (Tn-Seq). The input library was passaged three times in either HeLa or U2-OS cells after which frequencies of transposon knockouts were determined. The frequency of a knockout directly corresponds to the amount of reads supporting the event (see FIG. 5B and FIG. 6).


Finally, all 59 poxvirus genomes from FIG. 1 were used to find ORFs and clustered into orthologous groups. Groups containing Copenhagen genes were plotted based on location of the gene in the Copenhagen genome (x-axis) and size of the group (y-axis). When all 59 species share the same gene the conservation is considered to be 100%. The TTAA motif is required for a transposon insertion and this motif is ubiquitous along the genome, meaning transposons can insert anywhere in the genome. However, it was noted that transposons insert preferentially in areas of low poxvirus gene conservation. While sequencing transposon knockouts, major deletions were identified and labelled as CopMD5p and CopMD3p (see FIG. 5C and FIG. 6). Genes that are present in the middle of the genome and that have an elevated gene conservation (FIG. 5C) are important for viral replication. This is because knocking these genes out with transposon insertions causes a decrease in fitness (less frequency after passaging). Genes that are part of the major deletions CopMD5p and CopMD3p were found to be less important for viral replication as their deletion does not impact fitness.


Illumina NGS deep sequencing revealed presence of major deletions during the plaque purification process. CopMD5p and CopMD3p represent clones, which were plaque purified and found to harbor major genomic deletions. These 2 clones were used to co-infect a monolayer of HeLa cells at a high MOI (MOI 10) to induce recombination. Random plaque picking and PCR revealed presence of a double deleted CopMD5p3p which contained both genome deletions (see FIG. 8). These 2 deletions were combined and purified to give a replicating virus, referred to herein as “CopMD5p3p”, that exhibits deletions in the C2L, C1L, N1L, N2L, M1L, M2L, K1L, K2L, K3L, K4L, K5L, K6L, K7R, F1L, F2L, F3L, B14R, B15R, B16R, B17L, B18R, B19R, and B20R genes, as well as single deletions in each of the ITR genes B21R, B22R, B23R, B24R, B25R, B26R, B27R, B28R, and B29R. As used herein, “CopWT” refers to wild-type Copenhagen vaccinia virus, “CopMD5p” refers to a Copenhagen vaccinia virus harboring deletions in representative 5′ genes (C2L, C1L, N1L, N2L, M1L, M2L, K1L, K2L, K3L, K4L, K5L, K6L, K7R, F1L, F2L, F3L), and “CopMD3p” refers to a Copenhagen vaccinia virus harboring deletions in representative 3′ genes (B14R, B15R, B16R, B17L, B18R, B19R, and B20R) as well as single deletions in each of the ITR genes B21R, B22R, B23R, B24R, B25R, B26R, B27R, B28R, and B29R.


The 59 poxvirus genomes were then assessed for the presence of these 31 genes deleted in the CopMD5p3p. Homology searches were used to query poxviruses from other clades with amino acid sequences of Table 2 genes from the Copenhagen genome. As shown in FIG. 36, the percentage of these 32 genes present in various poxvirus strains decreases with increasing divergence from the Copenhagen strain (each dot on the plot represents one poxvirus genome). However, a majority of the members of the orthopox family, comprise at least 85% of the genes which are deleted in the CopMD5p3p recombinant vector.


Example 2—Cancer Cell Death

Cancer cells were infected with CopMD5p3p at a range of MOIs (1 to 0.01) in 24-well plates in 4 replicates. Two days post infection with virus, plates were stained with crystal violet. Crystal violet stain was dissolved into SDS and read by spectrophotometry. Data is represented as percent of non-infected cells (see FIG. 9). This data shows that the majority of cancer cell lines die faster when exposed to the CopMD5p3p virus.


The ability of wild-type Copenhagen vaccinia virus and several modified Copenhagen vaccinia virions to induce an anti-tumor immune response and to propagate in various cancer cell lines is also shown in FIGS. 26, 27, and 29-35.


Example 3—Growth in Cancer Cells

Four cancer cell lines were infected with CopMD5p3p at a low MOI (0.001) in 24-well plates in triplicates, and at different time points, the virus was collected and tittered. Time 0 h represents input. The growth curves of HeLa, 786-O, HT-29, and MCF7 are shown in FIG. 10. This data shows that the modified CopMD5p3p virus is not impaired in its ability to grow in vitro. This means that the virus is replication competent, even in presence of interferon response. The ability to replicate in mammalian cell lines provides another important advantage. As such, viruses may be manufactured with enhanced speed and efficiency.


Example 4—Growth in Patient Tumor Samples

Patient tumor samples were obtained immediately after surgery and cut into 2 mm×2 mm cores. Three cores were infected with a small amount of virus (1×104 PFU), either wild-type Copenhagen or CopMD5p3p. After 72 h virus output was assessed by plaque assay and final Viral Titer expressed as PFU (see FIG. 11). This data shows that the modified CopMD5p3p virus can replicate in fresh patient tumor samples. Replication in patient tumor samples is a good model of replication in a patient 3D tumor.


Example 5—Syncytia in U2-OS Cells

Monolayers of U2-OS cells were infected with either Copenhagen wild-type or CopMD5p3p virus. After 2 h, the media was changed for overlay media as done for a plaque assay. At 48 h post infection, pictures were taken with EVOS to assess plaque phenotype (see FIG. 12). Cell fusion, also known as syncytia, is thought to help the virus spread, since uninfected cells merge with infected cells. Additionally, it has been shown that fused cells are immunogenic and in the case of cancer cells can help initiate an anti-tumor immune response. See, e.g., http://cancerres.aacrjournals.org/content/62/22/6566.long.


Example 6—Syncytia in 786-O Cells

Monolayers of 786-O cells were infected with either Copenhagen wild-type or CopMD5p3p virus. After 24 h pictures were taken with EVOS at 10× magnification (see FIG. 13). This is additional evidence for the occurrence of syncytia. In FIG. 12, the phenotype of a plaque is shown. In the current experiment, monolayers of cells were infected without overlay. Most cells infected by the CopMD5p3p virus have fused.


Example 7—Tumor Control and Weight Loss in Mouse Model

Nude CD-1 (Crl:CD1-Foxn1 nu) mice were seeded with HT-29 human colon cancer xenograft (5e6 cells). Once subcutaneous tumours have established an approximate 5 mm×5 mm size, mice were treated three times (dashed lines) 24 h apart with 1×107 PFU of either vaccinia virus intravenously. Mice were measured approximately every other day for tumor size and weight loss (see FIG. 14). This experiment shows that CopMD5p3p is a much safer virus because it does not cause any weight loss or other signs of sickness in immunocompromised nude mice. This experiment also shows CopMD5p3p is able to control tumor growth similarly to the parental Copenhagen wild-type virus.


Example 8—Pox Lesion Formation

Nude CD-1 mice were treated once with 1×107 PFU of either vaccinia virus intravenously, six mice per group. Two weeks post treatment, mice were sacrificed and pictures of tails were taken. Pox lesions on tails were counted manually on every mouse tail. Representative pictures shown in FIG. 15. This experiment shows that CopMD5p3p is a much safer virus because it does not cause any pox lesions in immunocompromised nude mice. This is important since prior Oncolytic Vaccinia clinical data has shown patients developing pox lesions upon treatment. Knockout of thymidine kinase (TK) is a popular way of increasing the safety of an OV (oncolytic virus), currently present in a Phase III Oncolytic Vaccinia and in FDA approved Oncolytic T-Vec. The data shows that deleting TK does not play a crucial role in this assay, where mice develop pox lesions when challenged with TK deleted viruses, but do not develop pox lesions with CopMD5p3p which has an intact TK.


Example 9—IVIS Bio-Distribution of Vaccinia after Systemic Administration

Vaccinia viruses wild-type Wyeth, wild-type Copenhagen, and CopMD5p3p were engineered to express Firefly Luciferase (Flue) and YFP through transfection of infected cells with a pSEM1 plasmid replacing TK with Fluc and YFP. Viruses were plaque purified and expanded. All viruses are TK knockouts and encode functional Fluc in their TK locus.


Nude CD-1 mice were then seeded with HT-29 human colon cancer xenograft. Once subcutaneous tumors have established an approximate 5 mm×5 mm size, mice were treated once with 1e7 PFU of either vaccinia Fluc encoding virus intravenously, four mice per group. Four days post treatment, mice were injected i.p. (intraperitoneal) with luciferin and imaged with IVIS for presence of virus (see FIG. 16). This experiment shows that CopMD5p3p is a much safer virus because it is more specific to the tumor. Other viruses show off target replication in the tail, muscle, paws and intra-nasal cavity. CopMD5p3p is only localized in the tumor. As shown in previous FIGS. 15 and 16, there is less detectable CopMD5p3p in the tail compared to the other strains. FIG. 17 shows that CopMD5p3p also has lower titers in other organs when compared to other oncolytic Vaccinia. Since the CopMD5p3p replicates at the same level as the other viruses in the tumor but less in off-target tissues, CopMD5p3p fits the profile of an oncolytic virus better.


An additional example of the biodistribution of various vaccinia viral vectors, including the wild-type Copenhagen vaccinia virus and several modified Copenhagen vaccinia virions, is shown in FIG. 28.


Example 10—Immunogenicity of Vaccinia in Human PBMCs

PBMCs were isolated from blood of healthy human donors (n=2). PBMCs were incubated with either Vaccinia for 24 h and checked for early activation markers using Flow Cytometry (see FIG. 18). This experiment shows that CopMD5p3p is more immunogenic and more readily detectable by immune cells. We believe that this is a desirable trait, since OVs replicating in tumor tissue need to activate immune cells for a successful anti-tumor immune response.


Example 11—Immunogenicity of Vaccinia in Mouse Splenocytes

Immune competent Balb/C mice were injected with 1×10 7 Vaccinia PFU Vaccinia virus intravenously. After one or two days, mice were sacrificed, spleens were harvested and analyzed for immune activation using Flow Cytometry (see FIG. 19). This experiment shows that CopMD5p3p is more immunogenic and more readily detectable by mouse immune cells. This data complements nicely the previous FIG. 18, since most of the in vivo experiments are done in mice.


Example 12—Immunogenicity of Vaccinia in Human Cells

Human cancer cells 786-O were infected at an MOI of 0.01 with either virus. The next day, cells were harvested and nuclei and cytoplasm were separated by cell fractionation. Protein was extracted from each fraction and blotted for NF-kB subunits p65 and p50 (see FIG. 20). NF-kB immune transcription factor initiated an immune response once it's subunit p65 and p50 are translocated to the nucleus. Some viruses are immunosuppressive and block this translocation, preventing an immune response. Suppressing NF-kB function is counter-intuitive to the goal of using oncolytic viruses in combination with immunotherapeutic approaches. Thus, CopMD5p3p is a more advantageous virus as it behaves similarly to MG-1.


Example 13—Synergy with Immune Checkpoint Inhibitor Anti-CTLA4 in Aggressive Melanoma Model

Immune competent C57BL/6 mice were seeded (5e5 cells) subcutaneously with B16-F10 melanoma tumors. Treatment began once subcutaneous tumors have established an approximate 5 mm×5 mm size. Mice treated with CopMD5p3p virus received three 1×107 PFU doses into the tumor (intra-tumor) one day apart. Mice treated with anti-CTLA4 received five 100 μg doses of antibody i.p. one day apart. Survival were recorded every other day once treatment started (see FIG. 21). In this experiment, we tested if the oncolytic effect of our CopMD5p3p virus can synergize with blockade of a well-known immune checkpoint CTLA-4 in a very aggressive melanoma murine model. Surprisingly, the median survival of mice treated with virus and checkpoint was higher than any other group. This suggests that CopMD5p3p has some stimulating properties that synergize with checkpoint blockade immunotherapy.


Example 14—Synergy with Immune Checkpoint Inhibitor Anti-CTLA4

Immune competent Balb/C mice were seeded (5×105 cells) subcutaneously with CT26-LacZ tumors. Treatment began once subcutaneous tumors have established an approximate 5 mm×5 mm size. Mice treated with Vaccinia virus received three (24 h apart, first three dashed lines) 1e7 PFU doses into the tumour (intra-tumour). Mice treated with Anti-CTLA4 received five (24 h apart, dashed lines) 100 μg doses of antibody i.p. Tumor size and survival were recorded every other day once treatment started (see FIG. 22). The data shows that a TK knockout Vaccinia virus does not work as well with Anti-CTLA4 as does CopMD5p3p. This suggests CopMD5p3p is more immunogenic and more capable of generating an anti-tumour immune response.


Example 15—Synergy with Immune Checkpoint Inhibitor Anti-PD1

Immune competent Balb/C mice were seeded (5×105 cells) subcutaneously with CT26-LacZ tumors. Treatment began once subcutaneous tumors have established an approximate 5 mm×5 mm size. Mice treated with Vaccinia virus received three (24 h apart, first three dashed lines) 1e7 PFU doses into the tumor (intra-tumor). Mice treated with Anti-PD1 received five (24 h apart, last five dashed lines) 100 μg doses of antibody i.p. 24 h after the last dose of Vaccinia virus. Tumor size and survival were recorded every other day once treatment started (see FIG. 23). The data shows that a TK knockout Vaccinia virus does not work as well with Anti-PD1 as does CopMD5p3p. This suggests CopMD5p3p is more immunogenic and more capable of generating an anti-tumor immune response.


Example 16—Synergy with Immune Checkpoint Inhibitor Anti-PD1 and Anti-CDLA4

Immune competent Balb/C mice were seeded (5×105 cells) subcutaneously with CT26-LacZ tumors. Treatment began once subcutaneous tumors have established an approximate 5 mm×5 mm size. Mice treated with Vaccinia virus received three (24 h apart, first three dashed lines) 1×107 PFU doses into the tumor (intra-tumor). Mice treated with Anti-CTLA4 received five (24 h apart, first five dashed lines) 100 μg doses of antibody i.p. Mice treated with Anti-PD1 received five (24 h apart, last five dashed lines) 100 μg doses of antibody i.p. 24 h after the last dose of Vaccinia virus. Tumor size and survival were recorded every other day once treatment started (see FIG. 24). In this experiment we tested whether a lower dose (25 μg instead of 100 μg) of checkpoint inhibitor antibody could work if we blocked both checkpoints simultaneously. The CopMD5p3p still managed to achieve cures in this murine model with a lower dose (50 μg total) of both inhibitors of checkpoints. Since checkpoint inhibitors have dose dependent toxicity, it is advantageous that very small doses of checkpoint blockers can still achieve an observable phenotype. As in other experiments, the CopMD5p3p virus manages to cure established tumors, and this effect is not observed with wild-type virus lacking the corresponding deletions of CopMD5p3p.


Example 17—Administration for the Treatment of a Subject

Using the methods described herein, a clinician of skill in the art can administer to a subject (e.g., a patient) a pharmaceutical composition containing a recombinant orthopoxvirus vector described herein to treat cancer or tumor cells. The cancer may be, for example, leukemia, lymphoma, liver cancer, bone cancer, lung cancer, brain cancer, bladder cancer, gastrointestinal cancer, breast cancer, cardiac cancer, cervical cancer, uterine cancer, head and neck cancer, gallbladder cancer, laryngeal cancer, lip and oral cavity cancer, ocular cancer, melanoma, pancreatic cancer, prostate cancer, colorectal cancer, testicular cancer, or throat cancer, among others.


For instance, a clinician of skill in the art may assess that a patient is suffering from cancer or tumors and may administer to the patient a therapeutically effective amount (e.g., an amount sufficient to decrease the size of the tumor) of a pharmaceutical composition containing the recombinant orthopoxvirus vector disclosed herein. The pharmaceutical composition may be administered to the subject in one or more doses (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, or more) per a specified time interval (e.g., weekly, daily, or hourly). The patient may be evaluated between doses to monitor the effectiveness of the therapy and to increase or decrease the dosage based on the patient's response. The pharmaceutical composition may be administered to the patient orally, parenterally (e.g., topically), intravenously, intramuscularly, subcutaneously, or intranasally. The treatment may involve a single dosing of the pharmaceutical composition. The treatment may involve continued dosing of the pharmaceutical composition (e.g., days, weeks, months, or years). The treatment may further involve the use of another therapeutic agent (e.g., an immune checkpoint inhibitor, such as an anti-PD-1 or anti-CTLA-4 antibody or antigen-binding fragment thereof, IL-12, FLT3L).


Example 18—Targeted Deletions of CopMD5p and CopMD3p

The following protocol for producing modified vaccinia viral vectors utilizes techniques described, e.g., in Rintoul et al. PLoS One. 6(9): e24643 (2011), the disclosure of which is incorporated herein by reference.


Briefly, CopMD5p (Copenhagen vaccinia virus harboring deletions in 5′ genes: C2L, C1L, N1L, N2L, M1L, M2L, K1L, K2L, K3L, K4L, K5L, K6L, K7R, F1L, F2L, F3L) and CopMd3p (Copenhagen vaccinia virus harboring deletions in 3′ genes: (B14R, B15R, B16R, B17L, B18R, B19R, and B20R as well as single deletions in each of the ITR genes B21R, B22R, B23R, B24R, B25R, B26R, B27R, B28R, and B29R targeting recombinant constructs were synthesized by g-Block technology (IDT, Coralville Iowa). U2OS cells were infected with wildtype vaccinia virus (Wyeth, Western Reserve, Tian Tan, Lister) at an MOI of 0.01 in serum free DMEM for 1.5 hours. Viral supernatant was aspirated and U2OS cells were transfected with PCR amplified CopMD5p or CopMd3p targeting g-Blocks by Lipofectamine 2000 (Invitrogen) in OptiMEM (Gibco). DMEM supplemented with 10% FBS was added to cells 30 minutes after transfection and left overnight. The following day, transfection media was aspirated and fresh DMEM 10% FBS media was added to cells. 48 hours after infection transfection, U2OS cells were harvested and lysed by a single freeze thaw cycle. Serially diluted lysates were plated onto a confluent monolayer of U2OS cells and eGFP positive (CopMD5p targeted) or mCherry positive (CopMd3p targeted) plaques were isolated and purified through 5 rounds of plaque purifications.


Double major deleted vaccinia viruses were generated by co-infection of CopMD5p and CopMd3p deleted vaccinia viruses at an MOI of 5 for each virus in U2OS cells. Cells were harvested the next day and lysed by one round of freeze thaw. Lysates were serially diluted and plated onto a confluent monolayer of U2OS cells and selected for double positive plaques (eGFP+mCherry). Plaques were purified by 5 rounds of plaque purification.


An exemplary scheme for the production of modified orthopoxvirus vectors (e.g., modified vaccinia viral vectors, such as modified Copenhagen vaccinia viral vectors) of the disclosure is shown in FIG. 25.


Example 19—SKV-GFP (CopMD5p3p-B8R−) has Similar Efficacy in Tumour Control Compared to SKV (CopMD5p3p-B8R+)

The vaccinia virus (VV) B8R gene encodes a secreted protein with homology to gamma interferon receptor (IFN-γ). In vitro, the B8R protein binds to and neutralizes the antiviral activity of several species of gamma interferon including human and rat gamma interferon; it does not, however, bind significantly to murine IFN-γ. Here we describe the construction and characterization of recombinant VVs lacking the B8R gene. Homologous recombination between the targeting construct and the B8R locus resulted in the replacement of 75% of the B8R gene with the eGFP transgenes flanked by two loxP sites (SKV-GFP).


B8R− viruses showed similar efficacy to B8R+ viruses. FIG. 39. Survival of mice treated with either SKV or SKV-GFP was assessed. 5×106 CT26-LacZ cells were seeded subcutaneously on day 0. On day 14, 16 and 18 tumours were treated at a dose of 107 pfu with an intratumoural injection of either SKV or SKV-GFP. No significant decrease in efficacy was seen when the viruses injected had a deletion of the B8R locus.


Example 20—Infection of Normal Versus Cancer Cell Lines of SKV (CopMD5p3p-B8R+) Virus

Primary health cell viability was compared to that of cancer cells. Confluent normal or cancer cells were infected at a range of MOI (pfu/cell) for 48 hrs, after which viability was quantified. As indicated in FIG. 37, SKV-B8R+ virus preferentially infects cancer cells.


Example 21—SKV (CopMD5p3p-B8R+) does not Impair Interferon Signaling

Interferon signaling was assessed by determining the number of genes in the interferon pathway that are upregulated (induced expression) or downregulated (repressed expression) in a variety of normal cell lines and one cancer cell line (786-O). FIG. 38 Confluent monolayers of 1 million cells were infected at an MOI of 3 (3×106 PFU) for 18 h with either SKV (CopMD5p3p-B8R+) or the parental Copenhagen virus strain having the TK gene disabled. RNA was sequenced using RNA-seq and gene expression of interferon genes was determined after read mapping a expression normalization. While the SKV (CopMD5p3p-B8R+) virus mostly induces genes in the interferon pathway the parental Copenhagen represses genes. This suggests SKV (CopMD5p3p-B8R+) is able to induce Type I Interferon signaling which is critical in viral clearance of normal cells.


Example 22—B8R Negative Vaccinia Virus Engineered to Express Flt3L, IL-12 TM and Anti-hCTLA-4

Modified vaccinia viruses containing both the CopMD5p3p and B8R deletions, as described above, were further engineered to express the immunotherapeutic transgenes. An SKV-123 virus 3 (CopMD5p3p-B8R+-IL12TM-FLT3-antiCLTA4) expressing three transgenes was evaluated in terms of transgene expression kinetics. Confluent monolayers of 786-O human adenocarcinoma cell lines were infected with SKV-123 virus at an MOI of 3 (3×106 pfu). RNA was sequenced using RNA-seq and gene expression of inserted transgenes were determined after read mapping after expression normalization. Transgene expression peaked at 3-4 hours after cell infection. See FIG. 40.


Example 23 SKV Expressing Murine IL-12 p35 Membrane Bound (SKV3) has Greater Efficacy in Controlling Murine Tumors

The survival of mice treated with either SKV (CopMD5p3p-B8R+) or SKV-3 (CopMD5p3p-B8R+-IL12TM) virus (expressing murine membrane bound p35 IL-12) was assessed. 5×106 CT26-LacZ cells were seeded sub cutaneously on day 0. On day 14, 16 and 18 tumours were treated at a dose of 1e7 pfu with an intratumoural injection of either SKV or SKV-3. Although SKV virus extend survival of mice bearing CT26 colon tumours. SKV-3 expression of IL-12 is able to induce remissions that lead to durable cures. See FIG. 41.


Example 24—Major Double Deletions in Engineered in Various Vaccinia Strains Enhance Cancer Cell Killing In Vitro

Hela cells were infected at an MOI of 0.1 with the following strains of engineered vaccinia viruses: (1) parental wildtype virus (wt); (2) 5 prime major deleted (5p), (3) 3 prime major deleted (3p), and (4) recombined 5 prime and 3 prime major double deleted (5p3p). Cell viability was quantified by alamar blue assay 72 hours post infection. Both 5p and 5p3p major double deleted vaccinia strains are more cytotoxic in HelLa cells when compared to their parental wildtype and 3p major deleted strains. See FIG. 42. FIG. 43 depicts a summary of the major deleted Vaccinia strains, and the effect of 5p, 3p and 5p3p deletions on syncytia, cytotoxicity and replication. CD-1 nude mice were treated with 1×107 pfu via intravenously tail vein injection and measured at the indicated timepoints. 5p3p vaccinia strains did not induce weight loss compared to wildtype strains. FIG. 44. Mice were also examined for pox lesions 6 days post-injection. 5p3p vaccinia strains do not induce pox lesions compared to wildtype strains. FIG. 45.


Some Embodiments

All publications, patents, and patent applications mentioned in this specification are incorporated herein by reference to the same extent as if each independent publication or patent application was specifically and individually indicated to be incorporated by reference.


While the invention has been described in connection with specific embodiments thereof, it will be understood that it is capable of further modifications and this application is intended to cover any variations, uses, or adaptations of the invention following, in general, the principles of the invention and including such departures from the invention that come within known or customary practice within the art to which the invention pertains and may be applied to the essential features hereinbefore set forth, and follows in the scope of the claims.


Some embodiments are within the claims.

Claims
  • 1. A nucleic acid comprising a recombinant orthopoxvirus genome, wherein the genome comprises deletions in each of the following 23 genes: C2L, C1L, N1L, N2L, M1L, M2L, K1L, K2L, K3L, K4L, K5L, K6L, K7R, F1L, F2L, F3L, B14R, B15R, B16R, B17L, B18R, B19R, and B20R and further comprises deletions in each of the following 9 genes: B21R, B22R, B23R, B24R, B25R, B26R, B27R, B28R, and B29R; and wherein the nucleic acid further comprises: (i) a transgene encoding a tumor-associated antigen; (ii) a transgene encoding an immune checkpoint inhibitor; (iii) a transgene encoding an interleukin (IL); (iv) a transgene encoding an interferon (IFN); (v) a transgene encoding a TNF superfamily member protein; (vi) a transgene encoding a cytokine; or (vii) a combination thereof.
  • 2-79. (canceled)
  • 80. A recombinant orthopoxvirus vector comprising the nucleic acid of claim 1.
  • 81-164. (canceled)
  • 165. A packaging cell line comprising the nucleic acid of claim 1.
  • 166. A method of treating cancer in a mammalian patient, said method comprising administering a therapeutically effective amount of the nucleic acid of claim 1 to said mammalian patient.
  • 167-185. (canceled)
  • 186. A kit comprising the nucleic acid of claim 1 and (a) a package insert instructing a user of said kit to express said nucleic acid in a host cell, or (b) a package insert instructing a user to administer a therapeutically effective amount of said nucleic acid to a mammalian patient having cancer, thereby treating said cancer.
  • 187-196. (canceled)
  • 197. A nucleic acid comprising a recombinant orthopoxvirus genome, wherein the genome comprises: a first set of deletions in each of the following genes: C2L, C1L, N1L, N2L, M1L, M2L, K1L, K2L, K3L, K4L, K5L, K6L, K7R, F1L, F2L, and F3L, anda second set of deletions in each of the following genes: B14R, B15R, B16R, B17L, B18R, B19R, B20R, B21R, B22R, B23R, B24R, B25R, B26R, B27R, B28R, and B29R;and wherein:(i) the genome further comprises a deletion in the B8R gene; and/or(ii) the genome does not comprise a thymidine kinase (TK) gene deletion.
  • 198. The nucleic acid of claim 197, wherein the orthopoxvirus is a vaccinia virus and the vaccinia virus is a strain selected from the group consisting of Copenhagen, Western Reserve, Wyeth, Lister, EM63, ACAM2000, CV-1, modified vaccinia Ankara (MVA), Dairen I, GLV-1h68, IHD-J, L-IVP, LC16m8, LC16mO, Tashkent, Tian Tan, and WAU86/88-1.
  • 199. The nucleic acid of claim 197, wherein the orthopoxvirus is a Copenhagen strain vaccinia virus.
  • 200. The nucleic acid of claim 197, wherein each of the deletions is a deletion of the entire polynucleotide encoding the corresponding gene.
  • 201. The nucleic acid of claim 197, wherein each of the deletions is a deletion of at least a portion of the polynucleotide encoding the corresponding gene that is sufficient to render the gene nonfunctional upon introduction into a host cell.
  • 202. The nucleic acid of claim 197, wherein the genome comprises a deletion in the B8R gene.
  • 203. The nucleic acid of claim 202, wherein the only deletions in the genome are deletions in the following genes: C2L, C1L, N1L, N2L, M1L, M2L, K1L, K2L, K3L, K4L, K5L, K6L, K7R, F1L, F2L, F3L, B8R, B14R, B15R, B16R, B17L, B18R, B19R, B20R, B21R, B22R, B23R, B24R, B25R, B26R, B27R, B28R, and B29R.
  • 204. The nucleic acid of claim 197, wherein the genome does not comprise a TK gene deletion.
  • 205. The nucleic acid of claim 202, wherein the genome does not comprise a TK gene deletion.
  • 206. The nucleic acid of claim 197, wherein the genome does not comprise a ribonucleotide reductase gene deletion.
  • 207. A recombinant orthopoxvirus vector comprising the nucleic acid of claim 197.
  • 208. A packaging cell line comprising the nucleic acid of claim 197.
  • 209. A pharmaceutical composition for treating a cancer in a mammalian patient, comprising a therapeutically effective amount of the nucleic acid of claim 197.
  • 210. A kit comprising the nucleic acid of claim 197 and (a) a package insert instructing a user of the kit to express the nucleic acid in a host cell, or (b) a package insert instructing a user to administer a therapeutically effective amount of the nucleic acid to a mammalian patient having a cancer, thereby treating the cancer.
  • 211. A method of treating cancer in a mammalian patient, said method comprising administering a therapeutically effective amount of the nucleic acid of claim 197 to said mammalian patient.
Provisional Applications (2)
Number Date Country
62784371 Dec 2018 US
62614349 Jan 2018 US
Divisions (1)
Number Date Country
Parent 16959632 Jul 2020 US
Child 18461241 US