The use of microbial insecticide in agriculture can be part of a larger integrated pest management program. Bacillus thuringiensis (Bt) based biopesticide has been proven after decades of use as a safe alternative to chemical insecticides. The insecticidal crystal proteins produced by Bacillus thuringiensis are broadly used to control insect pests with agricultural importance. Bt proteins can be used in agriculture via microbial pesticides and genetically modified crop plants.
Bt is a spore-forming, Gram-positive bacterium, that can be isolated from many environments (Chaufaux et al., 1997; Martin and Travers, 1989) and new Bt strains have been isolated from soil (Carozzi et al., 1991a; DeLucca et al., 1979; Martin and Travers, 1989; Smith and Couche, 1991), leaves (Kaelin et al., 1994; Smith and Couche, 1991), and insects (Carozzi et al., 1991b) worldwide. Bt produces one or more delta-endotoxins or Cry proteins, which form insoluble inclusions known as insecticidal crystal proteins (ICPs). Although a specific Bt toxin has a narrow spectrum of activity, many different types of Bt toxins have been characterized that have selective toxicity to different orders of insects (Schnepf et al., 1998). Bt is also the main source of genes for transgenic expression in crops to provide pest control with few or no chemical pesticide applications. However, the narrow spectrum of activity for specific Bt toxins also limits efficacy, resulting in additional chemical pesticide applications for adequate pest control.
A generally accepted mode of action for Cry toxins describes the sequential steps of protoxin activation, specific-binding, and cell toxicity (Schnepf et al., 1998). Ingested ICPs are solubilized and activated to a toxic form by the insect's digestive fluids. After crossing the peritrophic matrix, activated toxins bind to specific proteins (i.e. cadherin and aminopeptidase-N) on the midgut microvilli. A recent model (Bravo et al., 2004) proposes that monomeric toxin binds a cad glycosylphosphatidylinositolherin, facilitating further processing necessary for toxin oligomerization. Toxin oligomers have high-affinity to proteins that are attached to the cell membrane by a (GPI) anchor, such as aminopeptidase or alkaline phosphatase. This binding and the localization of GPI-anchored proteins in specific membrane regions called lipid rafts result in toxin oligomer insertion, formation of pores or ion channels, and cell death by osmotic shock. An alternative model proposes the activation of intracellular signaling pathways by toxin monomer binding to cadherin without the need of the toxin oligomerization step to cause cell death (Zhang et al., 2005). Midgut lesions caused by the toxins led to septicemia induced by midgut bacteria that eventually leads to insect death (Broderick et al., 2006).
The cadherin Bt-R1 is a receptor for Bt Cry1A toxins in midgut epithelia of tobacco hornworm (Manduca sexta). We previously identified the Bt-R1 region most proximal to the cell membrane (CR12-MPED) as the essential binding region required for Cry1Ab-mediated cytotoxicity. We also discovered that a peptide containing this region expressed in Escherichia coli functions as an enhancer of Cry1A toxicity against lepidopteran larvae (Chen et al., 2007).
US-2005-0283857-A1, U.S. Pat. No. 7,396,813, and WO 2005/07014A2 relate to the discovery and development of a Bt synergist that enhances Bt toxicity against insects that are agriculturally important pests. More specifically, these patent references relate to fragments of insect cadherins that can be used to enhance the toxicity of insecticidal crystal proteins produced by Bt some of which are commercial microbial biopesticides and some of which are expressed in transgenic plants. For ease of reference, we these peptides can be called “BtBoosters” or “BtB”. BtBooster can be mixed with commercial formulations of Bt to increase the value of the formulations. BtBooster can also be co-expressed with Bt toxin in Bt transgenic plants to offer better pest protection.
United States Patent Applications 2005010188439 (McCutcheon) relates to using a lipase polypeptide having insecticidal activity together with a Bt insecticidal protein.
The use of microbial insecticide in agriculture can be part of a larger integrated pest management program. Bacillus thuringiensis (Bt) based biopesticide has been proven after decades of use as a safe alternative to chemical insecticides. The insecticidal crystal proteins produced by Bacillus thuringiensis are broadly used to control insect pests with agricultural importance. Bt proteins can be used in agriculture via microbial pesticides and genetically modified crop plants.
Bt is a spore-forming, Gram-positive bacterium, that can be isolated from many environments (Chaufaux et al., 1997; Martin and Travers, 1989) and new Bt strains have been isolated from soil (Carozzi et al., 1991a; DeLucca et al., 1979; Martin and Travers, 1989; Smith. and Couche, 1991), leaves (Kaelin et al., 1994; Smith and Couche, 1991), and insects (Carozzi et al., 1991b) worldwide. Bt produces one or more delta-endotoxins or Cry proteins, which form insoluble inclusions known as insecticidal crystal proteins (ICPs). Although a specific Bt toxin has a narrow spectrum of activity, many different types of Bt toxins have been characterized that have selective toxicity to different orders of insects (Schnepf et al., 1998). Bt is also the main source of genes for transgenic expression in crops to provide pest control with few or no chemical pesticide applications. However, the narrow spectrum of activity for specific Bt toxins also limits efficacy, resulting in additional chemical pesticide applications for adequate pest control.
A generally accepted mode of action for Cry toxins describes the sequential steps of protoxin activation, specific-binding, and cell toxicity (Schnepf et al., 1998). Ingested ICPs are solubilized and activated to a toxic form by the insect's digestive fluids. After crossing the peritrophic matrix, activated toxins bind to specific proteins (i.e. cadherin and aminopeptidase-N) on the midgut microvilli. A recent model (Bravo et al., 2004) proposes that monomeric toxin binds a cad glycosylphosphatidylinositolherin, facilitating further processing necessary for toxin oligomerization. Toxin oligomers have high-affinity to proteins that are attached to the cell membrane by a (GPI) anchor, such as aminopeptidase or alkaline phosphatase. This binding and the localization of GPI-anchored proteins in specific membrane regions called lipid rafts result in toxin oligomer insertion, formation of pores or ion channels, and cell death by osmotic shock. An alternative model proposes the activation of intracellular signaling pathways by toxin monomer binding to cadherin without the need of the toxin oligomerization step to cause cell death (Zhang et al., 2005). Midgut lesions caused by the toxins led to septicemia induced by midgut bacteria that eventually leads to insect death (Broderick et al., 2006).
The cadherin Bt-R1 is a receptor for Bt Cry1A toxins in midgut epithelia of tobacco hornworm (Manduca sexta). We previously identified the Bt-R1 region most proximal to the cell membrane (CR12-MPED) as the essential binding region required for Cry1Ab-mediated cytotoxicity. We also discovered that a peptide containing this region expressed in Escherichia coli functions as an enhancer of Cry1A toxicity against lepidopteran larvae (Chen et al., 2007).
US-2005-0283857-A1, U.S. Pat. No. 7,396,813, and WO 2005/07014A2 relate to the discovery and development of a Bt synergist that enhances Bt toxicity against insects that are agriculturally important pests. More specifically, these patent references relate to fragments of insect cadherins that can be used to enhance the toxicity of insecticidal crystal proteins produced by Bt some of which are commercial microbial biopesticides and some of which are expressed in transgenic plants. For ease of reference, these peptides can be called “BtBoosters” or “BtB”. BtBooster can be mixed with commercial formulations of Bt to increase the value of the formulations. BtBooster can also be co-expressed with Bt toxin in Bt transgenic plants to offer better pest protection.
United States Patent Applications 2005010188439 (McCutcheon) relates to using a lipase polypeptide having insecticidal activity together with a Bt insecticidal protein.
WO 03/018810 (by Syngenta) discusses some possibilities for adding Western corn rootworm (WCRW) cathepsin G favored sites (AAPF, AAPM, AVPF, PFLF) to B.t. Cry3A proteins.
This invention relates in part to the modification of BtBoosters (BtB).
The subject invention relates in part to the discovery and demonstration that derivatives of BtBooster (BtB) have enhanced potentiating activity of various Bt products, including the commercial Bt sprayable products “Javelin®,” “Dipel®,” “Xentari®” and “Agree®” in plant-based bioassays and commercial Bt cotton “Bollgard I.”
This invention also relates in part to the modification of BtBooster to increase its stability in insect midgut digestive juices. Some preferred embodiments of BtB have removed proteinase cleavage sites resulting in increased stability of the modified BtB in the insect gut, while retaining the ability to enhance B. t. proteins for improved insect control.
In some preferred embodiments, the protease-stable BtB is used in combination with B.t. spores and/or crystals comprising a Cry protein. In some of these embodiments, a preferred modified BtB is derived from cadherin repeat 12 (CR12) from BT-R1a. Hua et al. (Hua et al., 2004a).
The subject invention also relates in part to the discovery that derivatives of BtB have enhanced potentiating activity of various Bt Cry proteins against important pest species including Helicoverpa zea, Agrotis ipsilon, Spodoptera exigua and Spodoptera frugiperda.
The subject invention also relates in part that derivatives of BtB have potentiating activity for Cry1Fa protein.
SEQ ID NO: 1 is the polynucleotide sequence of Ms-CR9-MPED also called BtB1.
SEQ ID NO:2 is the amino acid sequence of Ms-CR9-MPED (BtB1).
SEQ ID NO:3 is the nucleotide sequence of Ms-CR9-MPED (BtB1).
SEQ ID NO:4 is the polynucleotide sequence that encodes the amino acid sequence of Ms-CR12 also called BtB2—a 12 kDa peptide representing CR12. An N-terminal methionine and C-terminal 6× histidine residues were added for protein expression and purification.
SEQ ID NO:5 is the amino acid sequence of Ms-CR12 (BtB2).
SEQ ID NO:6 is the nucleotide sequence of Ms-CR12 (BtB2).
SEQ ID NO:7 is the polynucleotide sequence of Ms-CR12(PS) also called BtB3—a modified Ms-CR12 with increased protease stability.
SEQ ID NO:8 is the amino acid of Ms-CR12(PS), also called BtB3—a 12 kDa peptide of modified Ms-CR12 with increased protease stability.
SEQ ID NO:9 is the nucleotide sequence of Ms-CR12(PS), also called BtB3.
SEQ ID NO:10 is the polynucleotide that encodes the amino acid sequence ofMs-CR10-12, also called BtB4. Six histidines were added to the C-terminus of the peptide for ease of protein purification.
SEQ ID NO:11 is the amino acid sequence of Ms-CR10-12, also called BtB4.
SEQ ID NO:12 is the nucleotide sequence of Ms-CR10-12, also called BtB4.
SEQ ID NO:13 is the polynucleotide sequence of Ms-CR10-12(PS), also called BtB5—a protease-stabilized version of Ms-CR10-12
SEQ ID NO:14 is the amino acid sequence of Ms-CR10-12(PS), also called BtB5—the protease stabilized version of CR10-12
SEQ ID NO:15 is the nucleotide sequence of Ms-CR10-12(PS), also called BtB5
SEQ ID NO:16 is the polynucleotide sequence of Ms-CR7-12
SEQ ID NO:17 is amino acid sequence of Ms-CR7-12
SEQ ID NO:18 is nucleotide sequence of Ms-CR7-12
SEQ ID NO:19 is the polynucleotide sequence of Ms-CR9-12
SEQ ID NO:20 is amino acid sequence of Ms-CR9-12
SEQ ID NO:21 is nucleotide sequence of Ms-CR9-12
SEQ ID NO:22 is the polynucleotide sequence of Ms-CR11-12
SEQ ID NO:23 is amino acid sequence of Ms-CR11-12
SEQ ID NO:24 is nucleotide sequence of Ms-CR11-12
SEQ ID NO:25 is the polynucleotide sequence that encodes the amino acid sequence of Sf-CR10-12, also called BtB9. Sf-CR10-12 was designed from cadherin repeats 10-12 of S. frugiperda cadherin. Codons were optimized for E. coli expression. Several CG dinucleotides were changed for plant expression. An N-terminal methionine and a lysine residue was added at amino acid position 2.
SEQ ID NO:26 is the amino acid sequence of Sf-CR10-12, also called BtB9
SEQ ID NO:27 is nucleotide sequence of Sf-CR10-12, also called BtB9
SEQ ID NO:28 is the polynucleotide sequence of Sf-CR10-12(PS), also called BtB10. A protease-stabilized version of Sf-CR10-12.
SEQ ID NO:29 is the amino acid sequence of Sf-CR10-12(PS), also called BtB10
SEQ ID NO:30 is nucleotide sequence of Sf-CR10-12(PS), also called BtB10
The subject invention relates in part to versions of BtBooster™ (BtB) that have even better enhancement properties than the originals tested. For example, BtB versions enhanced the Certis USA product Javelin® WG (contains the Bt NRD12 strain) in tomato excised-leaf bioassays against Helicoverpa zea. Additional excised-leaf bioassays using soybean and cabbage consistently demonstrated that BtBooster™ significantly enhanced Javelin® WG. Bioassays with Javelin® WG plus BtBooster™ against resistant P. xylostella larvae consistently showed that the addition of BtBooster™ to the biopesticide significantly enhanced mortality in both excised-leaf and whole plant greenhouse experiments.
The BtB version described in (Chen et al., 2007) is comprised of the CR12-MPED region of M. sexta cadherin BtR1a. Our analysis of diet surface bioassays against H. zea showed that Ms-CR10-12 (BtB4) was significantly better in enhancing trypsin-activated Cry1Ac. We discovered that although BtB4 enhanced Cry toxins, the BIB4 was rapidly degraded by midgut proteases and that a protease-stabilized version, called BtB5 had improved enhancement of BE spores and crystals.
The original BtB is a truncated cadherin peptide derived from Bt-R1a. Three modified versions of BtB were initially generated: i) Ms-CR9-MPED, also called BtB1—a 60 kDa peptide representing cadherin repeat (CR) 9 to the membrane proximal domain, ii) Ms-CR12, also called BtB2—a 12 kDa peptide representing CR12, and iii) Ms-CR12, also called BtB3—a 12 kDa peptide of modified CR12 with increased protease stability. Additional versions of BtB, Ms-CR10-12 (also called BtB4) and the Ms-CR10-12(PS), also called BtB5 (
Our analysis of diet-surface bioassays with Ms-CR9-MPED also called BtB1 (consisted of cadherin repeats (CR) 9-MPED; 28-fold enhancement of Cry1Ac) was significantly better than the original BtBooster (CR12-MPED). Other Manduca cadherin peptides, including Ms-CR7-12, MsCR9-12 and MsCR10-12 had greater enhancement of Cry1Ac toxicity to H. zea than Ms-CR11-12 (
BtB3 called Ms-CR12(PS), for the protease-stabilized version of pMs-CR12, was designed to have a reduced number of insect gut protease sensitive sites (specifically trypsin) without unduly increasing stability to human digestive enzymes. This version was tested in tomato excised-leaf bioassays with both a preparation of Bt NRD12 spores and crystals and a formulation of Javelin® (Certis). We found that BtB3 was able to enhance Bt spores and crystals toxicity (
Since Fall armyworm is an important lepidopteran pest that is killed by only a few Bt toxins, we reasoned that a BtBooster designed from it's midgut cadherin may have useful and improved toxin-enhancing properties. We designed and expressed Sf-CR10-12 (BtB9) and a protease-stabilized version Sf-CR10-12(PS). Both Sf cadherin peptides enhanced Cry toxicity to Fall armyworm (
In summary, our results further demonstrate the advantage of applying BtB plus Bt for controlling important agricultural insect pests (i.e. H. zea, S. exigua, S. frugiperda and Bt-resistant P. xylostella).
We also developed a modified BtB (BtB5) that works better than a previous version (BtB3) with a Bt spores and crystals formulation and extends insect control to Spodoptera species and Bt-resistant insects. Performance of BtB5 is being tested in field trials. We also developed other BtBs (BtB9 and BtB10) from S. frugiperda cadherin that have increased enhancing properties for certain Cry1 toxins.
Background on Receptor Bt-R1.
The cadherin protein Bt-R1 from Manduca sexta binds Cry1Aa, Cry1Ab and Cry1Ac toxins on ligand blots (Francis and Bulla, 1997). Purified membranes from COS cells expressing Bt-R1 bound all three Cry1A toxins in binding assays and ligand blots (Keeton and Bulla, 1997). Furthermore, expression of Bt-R1 on the surface of COS7 cells led to toxin-induced cell toxicity as monitored by immunofluorescence microscopy with fixed cells (Dorsch et al., 2002). The Bt-R1 protein has been suggested to induce a conformational change in Cry1Ab that allows the formation of a pre-pore toxin oligomer (Gomez et al., 2002). In Bombyx mori, the cadherin-like protein BtR175 serves as a Cry1Aa receptor (Nagamatsu et al., 1998). Sf9 cells expressing BtR175 swell after exposure to Cry1Aa toxin, presumably due to formation of ion channels in cell membranes (Nagamatsu et al., 1999).
Another cadherin protein was cloned from M. sexta called Bt-R1a (Hua et al., 2004b). Bt-R1a cDNA differs from Bt-R1 by 37 nucleotides that altered two amino acids.
In some examples, BtB is a truncated cadherin peptide derived from Bt-R1a. Three versions of BtB were generated, as discussed above. “BtB1” as referred to herein is a 60 kDa peptide representing cadherin repeat (CR) 9 to the membrane proximal domain. The sequence of BtB1 is provided as SEQ ID NO:1.
Use in Spores and Crystals Formulations.
As discussed in more detail below, it is interesting to note that although BtB1 can enhance purified activated Cry1Ac toxin, it was unable to enhance Bt (NRD12) spores and crystals preparation containing Cry1Aa, Cry1Ab, Cry1Ac, Cry2A and Cry2B crystal proteins when applied to plant surfaces. Since the crystals need to be dissolved and activated in the midgut of target insects, the BtB peptides need to be stabilized from protease degradation so that sufficient BtB remains to react with the activated toxins. Site-directed mutagenesis was done sequentially to remove trypsin and chymotrypsin recognition sequence from BtB2 to create BtB3. BtB2 (SEQ ID NO:4) is a 12 kDa peptide representing CR12, and BtB3 (SEQ ID NO:7) is a 12 kDa peptide of modified CR12 with increased protease stability. Embodiments of modified BtBs according to the subject invention can have at least one trypsin and/or chymotrypsin recognition site removed (by removal or by modification to change the site so that it is no longer recognized by one or more proteases. BtB5 (SEQ ID NO:13) and BtB10 (SEQ ID NO:27) are additional examples of modified BtBs having at least one trypsin and/or chymotrypsin recognition site removed.
Overview of some Experimental Procedures.
BtB was cloned by PCR and inserted into an Escherichia coli expression vector and highly expressed in the cells as inclusion bodies. The inclusion bodies were highly soluble in alkaline buffer (pH 9-12). Both inclusion bodies (
BtB was expressed in E. coli as insoluble inclusion bodies. However, the inclusion bodies were highly soluble in alkaline buffers. This suggests that the inclusion bodies would be soluble in the alkaline environment of the lepidopteran larval midgut. Since the BtB was expressed at very high level in E. coli, the subject invention provides for cost-effective production of BtB for addition to B.t. as an adjuvant or as part of the formulation.
BtB Enhanced Purified Bt Toxin.
In some tests showing the enhancing activity of BtB, purified Cry1Ac toxin that was preactivated with trypsin, and was mixed with BtB inclusion bodies. Toxin to BtB1 mass ratio of 1:20 was maintained through serial dilution with distilled water and applied on the diet surface and allowed to air-dry. Bioassays with H. zea neonates were scored on the seventh day, and the percentage of larval mortality was determined (
In another bioassay, various length BtB peptides were tested for their ability to enhance purified Cry1Ac toxin. BtB inclusion bodies were mixed with purified Cry1Ac toxin and was then applied on the diet surface. Toxin to BtB was maintained at a mass ratio of 1:20. In this bioassay (
BtB Enhanced B.t. Spores and Crystals.
Most Bt-based biopesticides contain spores and crystals of the bacteria as the active ingredient. B.t. subsp. kurstaki (NRD12) is the active ingredient of Javelin WG (Certis). The formulation contains several different Cry toxins: Cry1Aa, Cry1Ab, Cry1Ac, Cry2Aa, and Cry2Ab. Spores and crystals suspension from this bacterium was prepared and tested with BtB inclusion bodies in tomato leaf dip bioassay. These leaves were fed to 2nd instar H. zea larvae and the bioassay was scored on the second day. The bioassay results show that only BtB3 the protease-stabilized Ms-CR10-12(PS) significantly enhanced NRD12 (
In another leaf dip bioassay, Javelin WG was mixed with either BtB2 or BtB3 and applied on the leaves. These leaves were fed to 2nd instar H. zea larvae, and the bioassay was scored on the fourth day. The results show that only BtB3 significantly enhanced Javelin WG against the larvae (
BtB Enhanced B.t. Cotton.
Transgenic Cry1Ac B.t. cotton (Bollgard™, Monsanto Co., St. Louis, Mo.) has been available commercially since 1996. Although it is highly efficient in controlling H. virescens and P. gossypiella, supplemental foliar spray is needed to control H. zea (Adamczyk et al., 2001). Leaves from 4-5 weeks old B.t. cotton were dipped in BtB inclusion bodies and air dried. These leaves were fed to 2nd instar H. zea larvae, and the bioassay was scored on the fourth day (
BtBooster Enhanced B.t. Against Bt-Resistant Insect.
As with conventional insecticides, resistance of target insects to B.t. may not be avoidable. Insects have been selected for resistance against Bt in the laboratory settings as well as in the field (reviewed in (Griffitts et al., 2005; McGaughey, 1985)). The diamondback moth, P. xylostella, is an agricultural pest of cruciferous crops including cabbage and canola. Very high resistance against Bt has developed in the field for this pest (Ferre et al., 1991; Liu et al., 1996; Tabashnik et al., 1990).
A laboratory-selected strain of Bt-resistant P. xylostella was tested against Agree WG (a Cry1A and Cry1C producing strain of Bt) and Javelin WG (a Cry1Aa, Cry1Ab, Cry1Ac, Cry2Aa, and Cry2Ab producing strain of Bt). From a diet incorporation bioassay, it was determined that this strain was about 128-fold more susceptible to Agree WG than to Javelin WG (
Sequence Alignments.
As BtB2 represents CR12, and BtB3 is a modified CR12 (see
Further Insights into Mechanism(s) of Action.
Cry toxins bind to BtB and high affinity binding is correlated with toxicity enhancement. For example, as measured by surface plasmon resonance analysis using a BIAcore, the original BtB (Ms-CR12-MPED) bound Cry1Ab at high (9 nM) and low (1 μM) affinity sites. BtB (CR12-MPED)-mediated Cry1A toxicity enhancement was significantly reduced when the high affinity Cry1A-binding epitope (1416GVLTLNIQ1423) within the peptide was altered. The BtB peptide bound brush border membrane vesicles (BBMV) with high affinity (Kd=32 nM) and insect midgut microvilli, but did not alter Cry1Ab or Cry1Ac binding localization in the midgut.
Without being bound by a specific theory, one possible explanation of the observed synergism is that BtB-type peptides bind to the microvilli and attract Cry1A molecules, increasing the probability of toxin interaction with Cry1A receptors such as Bt-R1, GPI-anchored aminopeptidase N and alkaline phosphatase, or sphingoglycolipids (Griffitts et al., 2005). This hypothesis is consistent with the model proposed by Bravo whereby binding of Cry1A monomer to the cadherin Bt-R1 induces structural changes in the toxin that result in further processing and formation of a toxin oligomer. As a Bt-R1 truncation for Cry1A binding, the addition of CR12-MPED might promote the switch of toxin from monomer to oligomer, a form which primarily binds to GPI-anchored receptors resulting in oligomer insertion in the cell membrane.
Since the interaction between BtB and Bt toxins produced a possible novel mode of action for the toxin, the addition of BtB to Bt formulations or Bt transgenic plants might delay resistance.
Several potential advantages can be attributed to BtB: (1) It reduces the amount of Cry protein needed to kill larvae, thus also prolonging pesticidal activity by enhancing the residual activity of Cry protein; (2) It expands host range of Bt biopesticides and (3) It may overcome certain types of acquired resistance to Bt proteins. This discovery suggests that BtB can be used as an additive to Bt to increase its efficacy and potentially increase the usage of Bt biopesticide in agriculture.
We found that low mass ratios (Cry toxin:BtB) were needed for BtB4 and BtB5 to enhance Cry1Ac toxicity to H. zea larvae (
We found the BtB4 could enhance Cry1Ac toxicity to A. ipsilon (black cutworm) (
We found that BtB4 and BtB5 could enhance Cry1Ab and Cry1Ac toxicity to S. exigua (
BtB5 could also lower the amount of Cry1Ab and Cry1Fa needed to kill H. zea larvae. As shown in
In a similar manner BtB5 substantially increased Cry1Ab and Cry1Fa toxicity to S. exigua (beet armyworm) (
Our data presented in
Two BtBs (BtB9 and BtB10 as shown in
Our data presented in
Our data presented in
Various Bacillus thuringiensis Cry proteins can be used with BtB polypeptides of the subject invention. See Crickmore et al. (1998) (world wide web website lifesci.sussex.ac.uldhome/Neil_Crickmore/Bt/) for a list of B.t. toxins. These include, but are not limited to, polynucleotides encoding Cry1A toxins such as Cry1Aa, Cry1Ab, Cry1Ac, as well as Cry1B, Cry1C, Cry1F, Cry1E, Cry3A, and the Cry8s, as well as Cry34s+Cry 35s. Cry2 toxins are also preferred for co-administration with peptides of the subject invention.
Various insects can be targeted or otherwise inhibited/controlled by (one or more of) the subject polypeptides/proteins, including:
Agrotis ipsilon, black cutworm
Agrotis orthogonia, pale western cutworm
Anticarsia gemmatalis, velvetbean caterpillar
Chilo partellus, sorghum borer
Diatraea grandiosclla, southwestern corn
Diatraea saccharalis, sugarcane borer
Elasmopalpus lignosellus, lesser cornstalk borer
Feltia subterranea, granulate cutworm
Helicoverpa zea, corn earworm/cotton bollworm
Heliothis virescens, tobacco budworm/cotton boll worm
Homoeosoma electellum, sunflower moth
Ostrinia nubilalis, European corn borer
Pectinophora gossypiella, pink bollworm borer
Plathypena scabra, green cloverworm
Pseudoplusia includens, soybean limper
Pseudaletia unipunctata, army worm
Spodoptera exigua, beet armyworm
Spodoptera frugiperda, fall armyworm
Suleima helianthana, sunflower bud moth
Any genus listed above (and others), generally, can also be targeted as a part of the subject invention. Any additional insects in any of these genera (as targets) are also included within the scope of this invention.
The subject polypeptides and protein toxins can be “applied” or provided to contact the target insects in a variety of ways. For example, transgenic plants (wherein the protein is produced by and present in the plant) can be used and are well-known in the art. Expression of the toxin genes can also be achieved selectively in specific tissues of the plants, such as the roots, leaves, etc. This can be accomplished via the use of tissue-specific promoters, for example. Spray-on applications are another example and are also known in the art. The subject polypeptides/proteins can be appropriately formulated for the desired end use, and then sprayed (or otherwise applied) onto the plant and/or around the plant/to the vicinity of the plant to be protected—before an infestation is discovered, after target insects are discovered, both before and after, and the like. Bait granules, for example, can also be used and are known in the art. Various combinations of approaches are discussed in WO 2005/070214 A2, US-2005-0283857-A1, and U.S. Pat. No. 7,396,813.
The subject proteins can be used to protect practically any type of plant from damage by an insect. Examples of such plants include maize, sunflower, soybean, cotton, canola, rice, sorghum, wheat, barley, vegetables, ornamentals, peppers (including hot peppers), sugar beets, fruit, and turf, to name but a few.
In light of and having the benefit of the subject application, variants of novel BtBs of the subject invention (e.g. those derived from Spodoptera cadherins) can be constructed using techniques that are known in the art.
It will be recognized by those skilled in the art that the DNA sequences may vary due to the degeneracy of the genetic code and codon usage. All DNA sequences which code for exemplified and/or suggested peptides (and proteins) are included. The subject invention also includes polynucleotides having codons that are optimized for expression in plants, including any of the specific types of plants referred to herein. Various techniques for creating plant-optimized sequences are know in the art.
Additionally, it will be recognized by those skilled in the art that allelic variations may occur in the DNA sequences which will not significantly change activity of the amino acid sequences of the peptides which the DNA sequences encode. All such equivalent DNA sequences are included within the scope of this invention and the definition of the regulated promoter region. The skilled artisan will understand that exemplified sequences can be used to identify and isolate additional, non-exemplified nucleotide sequences that will encode functional equivalents to the DNA sequences, including those that encode amino acid sequences having at least 85% identity thereto and having equivalent biological activity, those having at least 90% identity, and those having at least 95% identity to a novel BtB polypeptide of the subject invention. Other numeric ranges for variant polynucleotides and amino acid sequences are provided below (e.g., 50-99%). Following the teachings herein and using knowledge and techniques well known in the art, the skilled worker will be able to make a large number of operative embodiments having equivalent DNA sequences to those listed herein without the expense of undue experimentation.
As used herein percent sequence identity of two nucleic acids is determined using the algorithm of Karlin and Altschul (1990) Proc. Natl. Acad. Sci. USA 87:2264-2268, modified as in Karlin and Altschul (1993) Proc. Natl. Acad. Sci. USA 90:5873-5877. Such an algorithm is incorporated into the NBLAST and XBLAST programs of Altschul et al. (1990) J. Mol. Biol. 215:402-410. BLAST nucleotide searches are performed with the NBLAST program, score=100, wordlength=12, to obtain nucleotide sequences with the desired percent sequence identity. To obtain gapped alignments for comparison purposes, Gapped BLAST is used as described in Altschul et al. (1997) Nucl. Acids. Res. 25:3389-3402. When utilizing BLAST and Gapped BLAST programs, the default parameters of the respective programs (NBLAST and XBLAST) are used. See ncbi.nih.gov website.
Polynucleotides (and the peptides and proteins they encode) can also be defined by their hybridization characteristics (their ability to hybridize to a given probe, such as the complement of a DNA sequence exemplified herein). Various degrees of stringency of hybridization can be employed. The more stringent the conditions, the greater the complementarity that is required for duplex formation. Stringency can be controlled by temperature, probe concentration, probe length, ionic strength, time, and the like. Preferably, hybridization is conducted under moderate to high stringency conditions by techniques well known in the art, as described, for example, in Keller, G. H., M. M. Manak (1987) DNA Probes, Stockton Press, New York, N.Y., pp. 169-170.
As used herein “moderate to high stringency” conditions for hybridization refers to conditions that achieve the same, or about the same, degree of specificity of hybridization as the conditions “as described herein.” Examples of moderate to high stringency conditions are provided herein. Specifically, hybridization of immobilized DNA on Southern blots with 32P-labeled gene-specific probes was performed using standard methods (Maniatis et al.). In general, hybridization and subsequent washes were carried out under moderate to high stringency conditions that allowed for detection of target sequences with homology to sequences exemplified herein. For double-stranded DNA gene probes, hybridization was carried out overnight at 20-25° C. below the melting temperature (Tm) of the DNA hybrid in 6×SSPE, 5×Denhardt's solution, 0.1% SDS, 0.1 mg/ml denatured DNA. The melting temperature is described by the following formula from Beltz et al. (1983).
Tm=81.5° C.+16.6 Log [Na+]+0.41(% G+C)−0.61 (% formamide) 600/length of duplex in base pairs.
Washes are typically carried out as follows:
For oligonucleotide probes, hybridization was carried out overnight at 10-20° C. below the melting temperature (Tm) of the hybrid in 6×SSPE, 5×Denhardt's solution, 0.1% SDS, 0.1 mg/ml denatured DNA. Tm for oligonucleotide probes was determined by the following formula from Suggs et al. (1981):
Tm (° C.)=2 (number T/A base pairs)+4(number G/C base pairs)
Washes were typically carried out as follows:
In general, salt and/or temperature can be altered to change stringency. With a labeled DNA fragment of greater than about 70 or so bases in length, the following can be used:
1 or 2×SSPE, room temperature
1 or 2×SSPE, 42° C.
0.2× or 1×SSPE, 65° C.
0.1×SSPE, 65° C.
Duplex formation and stability depend on substantial complementarity between the two strands of a hybrid, and, as noted above, a certain degree of mismatch can be tolerated. Therefore, polynucleotide sequences of the subject invention include mutations (both single and multiple), deletions, and insertions in the described sequences, and combinations thereof, wherein said mutations, insertions, and deletions permit formation of stable hybrids with a target polynucleotide of interest. Mutations, insertions, and deletions can be produced in a given polynucleotide sequence using standard methods known in the art. Other methods may become known in the future.
The mutational, insertional, and deletional variants of the polynucleotide and amino acid sequences of the invention can be used in the same manner as the exemplified sequences so long as the variants have substantial sequence similarity with the original sequence. As used herein, substantial sequence similarity refers to the extent of nucleotide similarity that is sufficient to enable the variant polynucleotide to function in the same capacity as the original sequence. Preferably, this similarity is greater than 50%; more preferably, this similarity is greater than 75%; and most preferably, this similarity is greater than 90%. The degree of similarity needed for the variant to function in its intended capacity will depend upon the intended use of the sequence. It is well within the skill of a person trained in this art to make mutational, insertional, and deletional mutations that are designed to improve the function of the sequence or otherwise provide a methodological advantage. In some embodiments, the identity and/or similarity can also be 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99% as compared to a sequence exemplified herein.
The amino acid identity/similarity and/or homology will be highest in critical regions of the protein that account for biological activity and/or are involved in the determination of three-dimensional configuration that ultimately is responsible for the biological activity. In this regard, certain amino acid substitutions are acceptable and can be expected if these substitutions are in regions that are not critical to activity or are conservative amino acid substitutions which do not affect the three-dimensional configuration of the molecule. For example, amino acids may be placed in the following classes: non-polar, uncharged polar, basic, and acidic. Conservative substitutions whereby an amino acid of one class is replaced with another amino acid of the same type fall within the scope of the subject invention so long as the substitution does not materially alter the biological activity of the compound. The following table provides a listing of examples of amino acids belonging to each class.
In some instances, non-conservative substitutions can also be made.
All patents, patent applications, provisional applications, and publications referred to or cited herein are incorporated by reference in their entirety to the extent they are not inconsistent with the explicit teachings of this specification.
Following are examples that illustrate procedures for practicing the invention. These examples should not be construed as limiting. All percentages are by weight and all solvent mixture proportions are by volume unless otherwise noted.
Several modifications were made to the MS-CR12 peptide to increase its stability in the proteolytic larval gut environment. This was done by replacing amino acids in putative trypsin and cyhmotrypsin cleavage sites on CR12 to remove the cleavage sites. The peptide sequences of the wild type CR12 and a protease stable mutant Ms-CR12(PS)=BtB3 are shown below. The underlined amino acids are the residues that were replaced.
MHLERISATDPDGLHAGVVTFQVVGDEESQRYFQVVNDGANLGSLRLLQA
MHLECISATDPDGLHAGVVTFQVVGDEESQAYFQVVNDGANLGSLSLLQA
The pSf-CR10-12 peptide (SEQ ID NO:26) was designed from the S. frugiperda cadherin sequence and then modified for protease stabilization by the removal of trypsin recognition sites. The approach was as described above for Ms-CR-12(PS) and Ms-CR10-12(PS). Amino acid changes from Sf-CR10-12 to Sf-CR10-12(PS) (SEQ ID NO:29) are indicated the in the alignment of their amino acid sequences below. Changed residues are in bold and designated by 2 in the Prim.cons. sequence.
The BtBooster (MsCR10-12(PS)=BtB5) gene was synthesized with a 5′ NdeI site and a 3′ HindIII restriction site. The BtB5 gene was subcloned into pET30a(+) at the NdeI and HindIII restriction sites. The hexahistidine tag is located at the C-terminus of BtB5 peptide. The start codon (ATG) is located at the NdeI site. The stop codon (TAA) occurs after the his-tag codons, immediately before the HindIII site. The BtB constructs were subcloned into pET30a (Novagen) and expressed in BL21(DE3)pRIL cells. E. coli cells were transformed by a standard electroporation method into E. coli BL21(DE3)pRIL (Novagen). The Ms-CR10-12(PS)peptide was over-expressed in E. coif as inclusion bodies. The expression and purification protocol for the truncated cadherin fragment was as described in a previous paper (Chen et al., 2007). The inclusion body form was prepared as a suspension in sterile deionized water. Total protein was measured by Bio-Rad protein assay using bovine serum albumin (BSA) as standard (Bradford, 1976). One microgram of each cadherin peptide was analyzed by sodium dodecyl sulfate—1.5% polyacrylamide gel electrophoresis (SDS-15% PAGE) with Coomassie brilliant blue R-250 staining. Specific concentration of target protein, such as toxin or the cadherin peptide in total protein was determined from Coomassie-stained gel by gel image analyzer (Alpha Innotech, San Leandro, Calif.) using bovine serum albumin (BSA) as standard.
The following conditions illustrate a method for producing BtB for use with Bt formulations in field trials.
Growth Medium:
50 mM (NH4)2SO4, 2 mM MgSO4.7H2O, 40 mM KH2PO4, 55 mM Na2HPO4, 1% (w/v) tryptone, 0.5% (w/v) yeast extract, 30 mM sodium citrate, 1% (v/v) glycerol, 1% (w/v) glucose; Adjust pH to 7.2 with NaOH. Autoclave all components together at 121° C. for 15 min. After autoclaving, add to sterile medium: 10 mM Proline (filter sterilized), and 100 mg/ml Kanamycin (filter sterilized).
Growth and Induction Conditions:
E. coli cells were grown in fermentor (up to 500 L) at 37° C., pH 6.8, and 30% dissolved oxygen. The cells were induced with 1 mM IPTG when the OD600 reached 4 or 5. The cells were grown overnight and harvested the next day (OD600=27-43).
Cell Harvesting and Lysis:
The cells were centrifuged and resuspended in (3 ml per gram pellet ratio) 20 mM NaH2PO4, 0.1% Triton X-100, pH 4.5. The cells were homogenized/broken using a microfluidizer. The lysate was centrifuged and the pellet was resuspended (2 ml per gram pellet ratio) in 20 mM NaH2PO4, 10% (w/v) sucrose, 0.1% Triton X-100, pH 4.5.
Spray Drying Condition:
The lysed cell pellet was spray dried using a Niro Production Minor Spray Dryer (4′ diameter) under standard conditions. Starting weight of material was 62.7 pounds. Material dried without difficulty. At the end of the run, drying chamber brushdown was collected separately and labeled accordingly. Dried samples are stored at 4° C. for later quality control analysis and testing in field trials.
Formulated Bts including Javelin® WG, and Agree® were provided by Certis Corporation. The formulated Bt products XenTari® DiPel® DF were purchased from a local pest control distributor.
Cry1Ac crystal protein was prepared from Bacillus thuringiensis HD-73 essentially as describe previously (Luo et al., 1996). Cry1Ca protein and Cry1Fa were purified from individual Bt strains producing either Cry1Ca or Cry1Fa. The cells were grown in a shaker at 30° C. until cell lysis in a sporulation medium. The spore-crystal preparation was cleaned by a series of sonication and homogenization in detergent (Triton X-100) and high molar salt (1 M NaCl), and finally the spore-crystal preparation was washed and resuspended in distilled water. The Cry1Ac crystal was solubilized in 50 mM Na2CO3 pH 10.5 and activated by trypsin digestion. The toxin was purified by Q-sepharose anion exchange chromatography. Protein concentration was determined using BSA as a standard (Luo et al., 1996). The toxin was aliquoted into 1.5-ml microcentrifuge tubes and stored at −20° C. until needed. Bt NRD12 (the active ingredient in Javelin WG) was also prepared the same way except that the process was stopped after the spore-crystal preparation was resuspended in distilled water. The spore-crystal sample was kept at 4° C. until use.
The cry1Ab gene was over-expressed in Escherichia coli JM103 by using the expression vector pKK223-3 (Lee et al., 1992). Toxin preparation was as described above for preparation of Cry1 toxin derived from Bt crystals.
Insects.
All insect eggs were purchased from Benzon Research (Carlisle, Pa.), and emerged larvae were maintained on artificial insect diet (multiple species insect diet, Southland Products, Lake Village, Ark.). The Bt-resistant P. xylostella was selected with Bt kurstaki HD-1 spore-crystal by Benzon Research. The resistant insects were about 800-1000 fold less susceptible to the HD-1 spore-crystal compared to the susceptible (unselected) P. xylostella (data not shown).
Diet Incorporation Bioassay with Bt-Resistant P. xylostella.
Artificial diet was prepared according to the manufacturer's instruction (Southland Products, Lake Village, Ark.) and cooled to 60° C. before mixing with Javelin WG (Certis, Columbia, Md.) (with or without BtB) or Agree WG (Certis, Columbia, Md.) (with or without BtB) and pipetted into 128-well bioassay trays (C-D International) with a 30-ml plastic syringe. One or three insect neonate was placed in each well. Each treatment contained 16 or 48 larvae with two replicates. Insects were placed in an incubator at 28° C. with a photoperiod of 12:12 h (L:D). Larval mortalities were counted 7 days after treatment.
Diet Surface Overlay Bioassay with IL zea, S. exigua, S. frugiperda and A. ipsilon.
Artificial diet was prepared according to the manufacturer's instruction (Southland Products, Lake Village, Ark.) and pipetted into 128-well bioassay trays. Using distilled water as diluent, Cry1 toxin (with or without BtB) (50 μl) was applied uniformly on the diet surface diet and allowed to dry. A single neonate was placed in each well. Each treatment contained 32 larvae with two replicates. Insects were placed in an incubator at 28° C. with a photoperiod of 12:12 h (L:D). Larval mortalities were counted 7 days after treatment Diet overlay bioassays for H. zea and S. exigua neonates were scored at 7 days after treatment (DAT) and bioassays for A. ipsilon neonates were scored at 6 DAT.
Tomato Leaf Dip Bioassay with II. zea.
H. zea larvae were grown at 28° C. with a photoperiod of 12:12 h (L:D) for 5 days on artificial diet (Southland Products). The larvae were approximately late second instar at the start of bioassay. Tomato seeds (Better Boy Hybrid—catalog no. 5323-SD) were purchased from Park Seed Wholesale, Greenwood, S.C. The plants were maintained in a growth chamber at 28° C., 14:10 photoperiod, and about 80% relative humidity. When the plants were about 10-12 inches tall, leaves were cut at about 2×3 cm and dipped into treatment solutions. The treated leaves were then air dried and placed individually into lidded plastic cups. Each of the cups also contains a wet Whatman fitter paper. A single larva was added into each cup and mortality was scored on day 2 and 3. Fresh-cut tomato leaves were added on Day 2. Thirty larvae were used per treatment with two replicates. 0.02% Tween 20 (Sigma Aldrich, St. Louis, Mo.) was used as a diluent. Insects were placed in an incubator at 28° C. with a photoperiod of 12:12 h (L:D). Larval mortalities were determined 2 to 4 days after treatment. Larvae were considered dead when no larval movement was detected after being prodded. All insect bioassay was repeated at least once.
Cabbage Excised-Leaf Bioassay.
Copenhagen market early cabbage plants were sprayed in the greenhouse with test solution and allowed to dry. Cabbage leaves were removed and cut into ˜30×55 mm pieces, placed in 30 ml clear plastic cups with 1 or more larvae (3 or 4 days old) and capped. Typically 3 replicates of 30 larvae for each dose were done. The bioassays were done at 28° C. with a photoperiod of 12:12 h (L:D). Larval mortalities were determined 4 days after treatment. Larvae were considered dead when no larval movement was detected after being prodded. All insect bioassay was repeated at least once.
Statistical Analysis.
The number of surviving and dead larvae in one treatment was compared with another treatment using a 2×2 contingency table by Chi-square analysis. Treatments are not significantly different if P>0.05.
Enhancement of Cry1Ac Toxicity by ‘Longer’ M. sexta Cadherin Fragments.
Previously, a small fragment of a M. sexta cadherin (Ms-CR12-MPED) was demonstrated as a potent enhancer of Cry1Ab and Cry1Ac toxins (Chen et al., 2007b) (Chen et al., 2007a). Mutation of the CR12 region of the CR12-MPED synergist to remove a Cry1Ab-binding region was shown to block the enhancer activity (Chen et al., 2007b), suggesting the importance of CR12 for toxin enhancement activity. Fragments of M. sexta cadherin longer than MS-CR12 were produced to test their synergistic activity with Cry1Ac toxin. Cadherin fragments of various lengths corresponding to CR7-12, CR9-12, CR10-12, and CR11-12, expressed in E. coli, formed insoluble inclusion bodies. The inclusion bodies were washed and resuspended in deionized water for use in bioassays.
Diet overlay bioassays on neonate H. zea were performed using trypsin-activated Cry1Ac with cadherin fragments set at a fixed toxin to cadherin mass ratio of 1:20 (
Other studies, combining Bt with BtBooster™, tested against H. zea, S. exigua, S. frugiperda, Plutella xylostella (Bt-resistant and susceptible populations), and Agrotis ipsilon have also demonstrated significant increases in mortality. It is important to note that BtBooster™ alone has demonstrated no effects on a wide range of insects, including these species. Artificial diet bioassays, leaf bioassays and whole plant bioassays in the laboratory and greenhouse have provided supportive data. A random selection of different bioassay results are provided below.
Enhancement of Cry1Ac Toxicity Against A. epsilon.
The black cutworm, A. ipsilon, is very tolerant to most Bt toxins (de Maagd et al., 2003). It is only susceptible to Bt toxins at very high doses as demonstrated by diet overlay bioassay (
Enhancement of Cry1Ab Toxicity Against S. exigua.
The beet armyworm, S. exigua, is highly tolerant to Bt toxins, especially Cry1A type toxins (Hernandez-Martinez et al., 2008). Diet overlay bioassay on neonate S. exigua using trypsin-activated Cry1Ab confirmed that the larvae were very tolerant to the toxin (
Enhancement of Cry1Ca and Cry1Ab Toxicity Against S. exigua.
Spodoptera species are among the more difficult to control lepidopteran pests on cotton, corn, vegetables and cruciferous crops with Bt toxins. In a diet surface overlay bioassay (
The results of the S. exigua diet overlay assay presented in
Enhancement of Cry1Ab and Cry1Fa Toxicity to S. frugiperda.
The Fall armyworm, S. frugiperda is an occasional, yet important pest of corn and cotton (Fuxa, 1989). Since Cry1Fa has toxicity to S. frugiperda (Luo et al., 1999) and Cry1Fa is expressed in Bt corn and cotton, we tested ‘improved’ BtBs in bioassays with Cry1Fa against S. frugiperda. Each BtB tested [Ms-CR10-12(PS), Sf-CR10-12 and Sf-CR10-12(PS)] caused increased larval mortality when combined with Cry1Fa toxin (
The use of Bt biopesticides depends in large part on the combined efficacy of Bt spores and crystals. The lack of H. zea larval mortality observed for combinations of Ms-CR9-MPED (BtB1) and Ms-CR12 when mixed with Bt NRD12 (
Similar results of a protease-stabilized BtB enhancing formulated Bt were observed in cabbage-excised leaf bioassays against 4-day old H. zea larvae. Older larvae were tested because they are more tolerant to Bt. As seen in
A laboratory-selected strain of Bt-resistant P. xylostella (purchased from Benzon Research, Inc.) was tested against Agree® WG (a Cry1Aa, Cry1Ca, and Cry1D producing strain of Bt) and Javelin® WG (a Cry1Aa, Cry1Ab, Cry1Ac, Cry2Aa, and Cry2Ab producing strain of Bt). We determined that this strain was about 128-fold more resistant to Javelin® WG than to Agree® WG (
This application is a National Stage filing of PCT International Application Serial No. PCT/US2008/072812, filed 11 Aug. 2008, which claims the benefit of U.S. Provisional Application Ser. No. 60/964,249, filed Aug. 10, 2007, U.S. Provisional Application Ser. No. 60/956,618 filed Aug. 17, 2007, and U.S. Provisional Application Ser. No. 61/084,951, filed Jul. 30, 2008, the disclosures each of which are hereby incorporated by reference in their entirety, including all figures, tables and amino acid or nucleic acid sequences.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2008/072812 | 8/11/2008 | WO | 00 | 5/8/2012 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2009/023639 | 2/19/2009 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6500617 | Stemmer et al. | Dec 2002 | B1 |
20050283857 | Adang et al. | Dec 2005 | A1 |
Entry |
---|
Novotny et al, Nature 416:841-44 (2002). |
Bel & Eseriche, Gene 381:71-80 (2006). |
Guo et al., Proc. Natl. Acad. Sci. USA 101—9205 (2004). |
Argolo-Filho—Insects—5—62—2014. |
Number | Date | Country | |
---|---|---|---|
20120220521 A1 | Aug 2012 | US |
Number | Date | Country | |
---|---|---|---|
61084951 | Jul 2008 | US | |
60956618 | Aug 2007 | US | |
60964249 | Aug 2007 | US |