Oxygen is a gas of significant interest, simply because of its role in the cycle of all living organisms. Measurement of oxygen concentration or partial pressure is important in a wide variety of applications. In some applications, gaseous oxygen concentrations are measured directly. In other applications, the concentration of oxygen dissolved in a liquid is measured. It is important to realize that the term “dissolved oxygen” refers to gaseous oxygen dissolved in water, and it should not be confused with combined oxygen as found in the water molecule, H2O.
Dissolved oxygen measurement is very important in the treatment of domestic wastewater, as well as industrial waste from such sources as food, pulp and paper, chemical, and metal industries. Most water pollutants from these sources fall into one of two categories: (1) those that cannot be further broken down but persist in or out of solution; and (2) those that are biologically degradable. Biologically degradable pollutants are both organic and inorganic degradable substances, of which the organic type tends to represent a large majority.
The primary function of dissolved oxygen in a waste stream is to enhance the oxidation process by providing oxygen to aerobic bacteria so that they will be able to successfully perform their function of turning organic wastes into their inorganic byproducts, specifically, carbon dioxide, water, and sludge. This oxidation process, known as the activated sludge process, is probably the most popular and widely used method of secondary waste treatment today and is employed downstream of a primary settling tank. The process takes place in an aeration basin and is accomplished by aeration (the bubbling of air or pure oxygen through the waste water at this point in the treatment process). In this manner, the oxygen, which is depleted by the bacteria, is replenished to allow the process to continue.
In order to keep the waste treatment process functioning properly, a certain amount of care must be taken to hold the dissolved oxygen level within an acceptable range and to avoid conditions detrimental to the process. It is also important to make the measurement at a representative location on a continuous basis to have a truly instantaneous measurement of the biological activity taking place in the aeration basin.
Yet another promising application for the measurement of dissolved oxygen is in biological specimens. These biological specimens may be in vitro specimens in a laboratory, or in vivo specimens within a patient. The measurement of dissolved oxygen in biological specimens provides important diagnostic information for care providers, and/or information about the efficacy of a particular treatment.
Traditionally, dissolved oxygen can be measured in a variety of ways. For example, various laboratory methods exist, such as the Winkler Method; electrochemical analysis, such as conductimetric, voltimetric, and galvanic; and membrane electrode methods (galvanic membrane electrodes and ampierometric membrane electrodes). Yet another way in which oxygen, whether dissolved in a liquid, or gaseous, can be measured is by employing optical techniques. For example, known oxygen sensors employ a ruthenium complex luminescence dye which luminescences in the presence of oxygen. Measurement of the luminescence provides an indication of oxygen concentration.
Generally, sensors that measure dissolved oxygen in liquid and sensors that measure gaseous oxygen are of significantly different designs. However, since embodiments of the present invention are applicable to both the measurement of gaseous oxygen and dissolved oxygen in liquid, both types of situations are presented here to provide a better understanding of the vast array of potential applications for various embodiments.
Commercially available ruthenium complex luminescence dyes used for oxygen sensing are generally hydrophilic and have low solubility in non-polar polymers. The degree to which commercially available ruthenium complex luminescence dye is hydrophilic limits the type of media which can be used to immobilize the dye. For example, in most applications that use ruthenium complex dye for oxygen sensing, the dye is dissolved in silica-based sol solution, and then a thin film is cast through a known sol-gel process from the sol solution. However the coating process of sol-gel silica involves many chemical changes and is sensitive to variations in temperature and humidity. Moreover, the quality control of the sol-gel coating is difficult. Providing a ruthenium complex luminescence dye that was not limited to sol-based media for immobilization would facilitate simpler manufacture. Moreover, removing the stringent quality control requirements of sol-gel coating would further facilitate yields and potentially reduce costs.
Modification of ruthenium complex luminescence dye for oxygen sensing is provided. Generally, modification includes bonding long chain hydrophobic organic groups to the ligands of the ruthenium complex in order to increase solubility of the ruthenium complex in non-polar organic solvents. A sensor manufacture using the modified ruthenium complex luminescence dye is also provided.
Embodiments of the present invention generally provide modification of a ruthenium complex luminescence dye for improved solubility in non-polar polymers. The modification is generally done by covalently attaching hydrophobic organic groups to the ligands in the ruthenium complex. The chemically modified ruthenium complex has higher solubility in hydrophobic polymeric media. The resulting polymeric coating has a more uniform distribution of the luminescence dye. The increased solubility of the ruthenium complex in the hydrophobic polymer medium allows the ruthenium complex to be more soluble in non-polar organic solvents such as toluene. Further, the increased solubility of the ruthenium complex luminescence dye facilitates the use of polymers as the immobilization media for the modified ruthenium complex luminescence dye. There are many advantages to using a polymer as the immobilization media instead of sol-gel derived silica. Polymer coatings will not experience: the shrinkage and pore collapse which are usually observed in sol-gel derived silica. Moreover, the processing of polymer coatings, on the other hand, does not involve the many chemical changes, in comparison to sol-gel silica processing, and it is easy to control.
Although the present invention has been described with reference to preferred embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention.
The present application is based on and claims the benefit of U.S. provisional patent application Ser. No. 60/669,574, filed Apr. 8, 2005, the content of which is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
60669574 | Apr 2005 | US |