1. Technical Field
The present invention relates to a modified food-slicing shoe for a slicing system that provides for the commercial production of folded or curly food snack chip products that resemble pencil shavings. A standard interchangeable food product slicing shoe and its blade are modified to produce shaped slices, which when fried provide a chip product with enhanced crunchiness and texture.
2. Description of Related Art
There are a number of methods for slicing food products as a pre-processing step to producing food products in the industry. Various machines and methods have been manufactured for the commercial production of ready-to-eat food products, such as potato or other vegetable or fruit chips, to produce chips of a variety of textures and sizes to appeal to the different preferences of consumers.
One such machine is a centrifugal type slicer, such as the one disclosed in U.S. Pat. No. 5,694,824 to Jacko et al., which is directed to “a cutting head for slicing a food product.” Jacko et al. describes a slicing machine typically used to cut raw produce, usually in the form of whole potatoes, into slices to create, for example, potato chips. As seen in
A centrifugal slicing machine, such as the one disclosed in Jacko et al., is manufactured and sold by Urschel Laboratories, Inc of Valparaiso, Ind. These machines allow for the production of generally flat slices which may or may not contain some texture along the surface. For example, a flat blade produces a flat slice, while a blade having a number of waves or ridges along its cutting edge produces either a wavy or ridged chip, respectively. However, the blades currently used remain straight and elongated, confined to the same plane, producing generally flat potato slices.
Market studies have shown that consumers crave more variety in terms of shape. Specifically, studies show that consumers often desire the folded or curled shapes produced when products are sliced by hand. Consequently, there is a need for a method and apparatus for commercially production of snack chips having folded or curled shapes that more closely resemble hand-made chips, which are made by batch processes. Further, there is a need to provide nonplanar shapes, while utilizing currently available commercial equipment such as the centrifugal type slicing machines. There is also a need for a modified slicing shoe capable of providing more variety with regard to the shapes of ready-to-eat snack products. Accordingly, there is a need for modification of the straight (or flat) slicing head blades and their corresponding slicing shoes presently available.
The present invention provides a modified slicing shoe comprising a vertically concave shape along the interior of a slicing shoe facing a rotatable impeller. A blade secured to the front end of the slicing shoe conforms to (i.e. mirrors) the vertically concave shape of the slicing shoe, enabling the production of food products into folded or curled shapes that resemble pencil shavings. The vertically concave shaped knife blades and their corresponding slicing shoe castings comprise a vertex which forms a depression in the interior of the shoes along transverse plane of the shoe, as the top and bottom ends of the blade project inward towards an axis of rotation for the impeller. The matching shape of the interior of the casting provides support to the blade such that the centrifugal forces cause at least one food product to move into the depression to be subsequently sliced by the concave blade.
In a first embodiment, the vertically concave shape of the blade and interior surface of the slicing shoe comprises two knife blade edges which meet at a vertex point away from an impeller, forming an angular “V” shape. In a second embodiment, the vertically concave shape of the interior surface and blade of the slicing shoe is curvilinear such that the vertex is rounded, creating a trough-like shape on inside surface of the slicing shoe. Thus, the slicing shoe is able to create an angled or curved shaped slice which can intentionally fold or curl up on adjacent sides of the slice.
The present cutting system improves upon traditionally made batch snack food products with fewer product defects in a continuous process and at much higher production levels. The modified shoe slicing segments are formed to fit within a standard slicing head assembly such as one typically used in centrifugal slicing known in the industry for commercial production. The slicing head assembly surrounds a rotatable impeller with blades, which is caused to spin by a motor. Raw or whole produce is fed through a food product hopper onto the impeller and the centrifugal force then causes the food products to move away from the axis of rotation and towards the depression or vertex on the inner sides of the stationary slicing head assembly. The cutting edge of the blades having a vertex at a transverse plane of the assembly is then able to continuously cut shaped slices from the food product. The slices can then be further processed to reduce the moisture of the products, producing ready-to-eat snacks having folded or curled shapes.
Other aspects, embodiments and features of the invention will become apparent from the following detailed description of the invention when considered in conjunction with the accompanying drawings. The accompanying figures are schematic and are not intended to be drawn to scale. In the figures, each identical, or substantially similar component that is illustrated in various figures is represented by a single numeral or notation. For purposes of clarity, not every component is labeled in every figure. Nor is every component of each embodiment of the invention shown where illustration is not necessary to allow those of ordinary skill in the art to understand the invention.
The novel features believed characteristic of the invention are set forth in the appended claims. The invention itself, however, as well as a preferred mode of use, further objectives and advantages thereof, will be best understood by reference to the following detailed description of illustrative embodiments when read in conjunction with the accompanying drawings, wherein:
a is a perspective view of an exterior side featuring the angled sand gate portion of a first embodiment of the modified slicing shoe of the present invention.
b is a frontal perspective view of an exterior side featuring the angled blade of a first embodiment of the modified slicing shoe of the present invention.
c is a perspective view of an interior side featuring the angled blade of a first embodiment of the modified slicing shoe of the present invention.
d is a perspective view of an interior side featuring the angled sand gate portion of a first embodiment of the modified slicing shoe of the present invention.
is a perspective, detailed view of a second embodiment of the modified slicing support segment and blade of the present invention.
a is a perspective view of an exterior side featuring the curved sand gate portion of a second embodiment of the modified slicing shoe of the present invention.
b is a frontal perspective view of an exterior side featuring the curved blade of a second embodiment of the modified slicing shoe of the present invention.
c is a perspective view of an interior side featuring the curved blade of a second embodiment of the modified slicing shoe of the present invention.
d is a perspective view of an interior side featuring the curved sand gate portion of a second embodiment of the modified slicing shoe of the present invention.
A known centrifugal slicer such as that manufactured as an Urschel Model CC is seen in
As shown in
Applicants use the term “pencil shavings” or “shavings” interchangeably to refer to the shapes achieved and typically discarded when sharpening a pencil such that the resulting food product slicings are coiled, twisted or folded, thereby having surfaces which are not confined to only one plane. As used herein, “folded” is meant to refer to having at least two sides come into contact with one another. When cooked by means such as frying or baking, these food product shavings produced by the slicing shoes of the present invention result in ready-to-eat food products with an enhanced crunchy texture similar to hand-made chip products. Food products suitable for use with the present invention include without limitation potatoes, apples, pears, beets, yucca, sweet potato, mangos, eggplant, cucumber, zucchini, etc.
The modified slicing shoe of the present invention comprising a distinct arcuate shape is designed for use together with a centrifugal-type Urschel slicing system as disclosed above. In one embodiment, the slicing shoes and assembly of the present invention are utilized to conform to the G2 Urschel system. A knife blade, removably secured to a first end of each slicing shoe, comprises a cutting edge with top and bottom ends that protrude inward towards the impeller. Further, a vertex in the cutting edge of the blade protrudes away from the impeller to form a vertically concave shape in relation to the axis of rotation of the rotatable impeller. The vertex at the center of the blade is concave relative to the axis of rotation of the impeller such that the blade is symmetrical with regard to the central transverse plane. Consequently, the cutting edge vertex is contained within a vertical plane outside that of a parallel vertical plane containing the top and bottom protruding ends, forming a bent (or curved) blade not confined to only one plane. The vertex forms a depression in the interior of each slicing shoe and at a transverse plane of the stationary assembly. To support the concave shape of the blade and the centrifugal force caused by the rotating impeller, the casting of the slicing shoe comprises a matching concave shape such that the blades are properly supported and the food product is drawn towards the transverse plane of the modified slicing shoes and assembly. The modified slicing shoes are interchangeably situated in a generally cylindrical modified stationary assembly around a rotatable impeller. The assembly thus comprises a plurality of the modified slicing shoes, with a first end of each shoe positioned adjacent to a second end of a juxtaposed slicing shoe.
To protect the assembly and blades from debris, a sand gate containing wells for trapping debris is also shaped for use with the modified slicing shoe. The sand gate secured at a second end of the casting also conforms to the vertically concave shape of the blade such that, upon aligning the slicing shoe segments around a generally circular array, a second end of a slicing shoe lines up correctly with a first end of an adjacent slicing shoe segment so as to define a food slicing opening or gap, the size of which determining the thickness of the food slice. The cutting edges of the blades are exposed to the rotatable impeller at these openings such that as food passes by the openings, food shavings are achieved in a continuous and uninterrupted manner. In addition to having a vertically concave shape with a vertex in the interior of the sand gate facing the impeller, the sand gate also comprises a corresponding convex shape along its trailing end such that the edge of the blade and interior of the assembly is further protected. The sand gate may be removable attached or integral to the slicing shoe.
As used herein, the term “vertex” refers to both the vertex of an angle as well as the vertex of a curve. The “vertex” of the shaped blade edge includes the point where two planes or blade edge sides intersect and the local extreme point of a curvature or curve. The “vertex” of the slicing shoe that conforms to the blade comprises an area on the inner surface of the slicing shoe that protrudes away from the impeller, while the surrounding top and bottom end portions of the shoe protrude towards the impeller, resulting in a trough-like depression along an interior side of the slicing shoe intersected by a transverse plane of both the individual slicing shoes as well as the assembly.
The blade 50 can be secured to the casting by any means known in the art including but not limited to screws or bolts having flat heads which fit through openings in a knife blade clamp (not pictured) rigidly attaching the angular blade 50 to the front, exterior side of the casting 56. A knife blade holder can also hold the blade in place along the interior side of the blade. One skilled in the art, armed with this disclosure will appreciate that any components used to removably secure the blade and sand gate to the casting will conform to the concave shape of the interior.
The modified slicing shoes of a first embodiment are arranged in spaced relation to one another to form a generally cylindrical shape for placement around a rotatable impeller of a centrifugal-type slicing machine having an axis of rotation as shown in
a-d depict a second embodiment of the present invention, wherein the blade 70 takes on a curvilinear shape that can vary in terms of curvature (i.e., width and depth). The vertically concave interior surface 74 of the casting and the cutting edge shape of the knife blade are curvilinear, having a vertex at a point furthest away from the impeller intersecting a central transverse plane. The vertex at the center of the blade is concave relative to the axis of rotation of the impeller such that the blade forms a semi-circular or parabolic shape, symmetrical with regard to the transverse plane. To quantify the depth of the concave surface for the curvilinear blade, a curvature distance is measured. The curvature distance is the distance between the vertex of the blade and a vertical plane, which intersects the top and bottom ends of the blade and which is parallel to the axis of rotation. The curvature can range from about 1.0 cm to about 2.5 cm, more preferably from about 1.25 cm to about 2.25 cm, and most preferably from about 1.5 cm to about 2.0 cm. However defined the curvature of the blade 50, the slicing shoe components should also conform to the shape of the blade to support a parallel curvilinear blade of the slicing shoe. As explained above, the removably attached sand gate also comprises a concave shape conforming to the shape of said knife blade and said casting, wherein said sand gate is secured to a second end of the slicing shoe.
Similar to the angular blade discussed above, the curvilinear blade 70 can be secured to the casting by any means known in the art including but not limited to screws or bolts having flat heads which fit through openings in a knife blade clamp (not pictured) rigidly attach the curvilinear blade 70 to the front, exterior side 72 of the casting. A flat head is preferred so that the bolts will not interfere with the ejected slices as they pass through the opening between the blade cutting edge on a first end of one shoe and the adjacent sand gate on a second end of a juxtaposed shoe. A knife blade holder (not pictured) conforming to the vertically concave shape and vertex can also hold the blade in place along the interior side of the blade. As seen in
The modified slicing shoes and assembly provide for a modified method of slicing food product with a centrifugal-type slicing machine. At least one food product is inserted into said impeller, which is caused to rotate such that the at least one food product is forced away from the axis of rotation due to centrifugal forces. The food product moves towards the vertically concave interior wall surface of the castings of said slicing shoe. The food product is finally sliced by the specialized cutting edges of the knife blades attached to the castings of the shoe.
It is to be understood that the angle or curvature of one or more blades in a slicing head assembly can vary according to desired shape or type of food product used. Further, any combination of the novel blades can be used around the slicing head assembly to maximize the number of shapes achieved.
Unless otherwise indicated, all numbers expressing angles, curvatures and so forth used in the specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the following specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by the present invention. Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements.
Having thus described several aspects of at least two embodiments of this invention, it is to be appreciated that various alterations, modifications, and improvements will readily occur to those skilled in the art. Such alterations, modifications, and improvements are intended to be part of this disclosure, and are intended to be within the spirit and scope of the invention. Accordingly, the foregoing description and drawings are by way of example only.
Number | Name | Date | Kind |
---|---|---|---|
2195879 | Urschel et al. | Apr 1940 | A |
3139127 | Urschel et al. | Jun 1964 | A |
4523503 | Julian et al. | Jun 1985 | A |
4590835 | Matsuo | May 1986 | A |
4648296 | Wisdom et al. | Mar 1987 | A |
4937084 | Julian | Jun 1990 | A |
4945794 | Quo et al. | Aug 1990 | A |
5095875 | Morris et al. | Mar 1992 | A |
5097735 | Mendenhall | Mar 1992 | A |
5211098 | Mendenhall | May 1993 | A |
5694824 | Jacko et al. | Dec 1997 | A |
5745999 | Zirkiev | May 1998 | A |
5819628 | Cogan et al. | Oct 1998 | A |
Number | Date | Country |
---|---|---|
2004106015 | Dec 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20100015312 A1 | Jan 2010 | US |