The present invention relates to a propeller blade system, and more particularly, to a tapered roller bearing element therefore.
Aircraft propeller blade systems include propeller blades which have root portions that extend through a hub arm of a blade hub assembly. Each propeller blade is secured to and rotatable relative to the hub arm via a retention system. Typically, the retention system includes a multitude of bearing assemblies which permit the rotation of the blade within the hub arm to permit blade pitch change. A propeller retention system may include one or more tapered roller bearings for structural capacity and ease of assembly in the case of a preloaded retention as explained in U.S. Pat. No. 7,422,419.
Some traditional tapered roller bearing elements have a relatively small radius on one or both ends where contact between the bearing element and the adjacent components abruptly ends. During the rotation of the blade during pitch change, the loading on the bearing element combined with the distinct ends of the bearing element causes a stress concentration at one or both ends of the bearing element. The prior art has dealt with these stress concentrations by crowning the bearing element, meaning that instead of a linear taper, the bearing element has a convex contact surface. Under loading, this surface is elastically deformed slightly such that the contact gradually discontinues along the bearing element. Unfortunately, this approach shortens the effective length of the bearing element as the bearing element extends past the point at which contact with the adjacent components is terminated a significant distance due to the gradual curvature of the contact surface.
According to the present invention, a tapered roller bearing element includes a first end and a second end, the second end having a second end radius. There is an apex ring between the two ends having an apex ring radius. There is also a base cone extending between the first end and the apex ring, the base cone tapering outwardly at a base cone angle. In addition, a relief cone extends between the apex ring and the second end, the relief cone tapers inwardly at a relief cone angle, and relief cone angle is larger than the base cone angle.
In another embodiment, a propeller blade retention assembly includes a propeller blade root which defines a blade axis and a hub arm which at least partially surrounds the propeller blade root. There is a floating race between the hub arm and the propeller blade root that defines a floating race bearing surface. The propeller blade root defines a propeller blade root bearing surface, and together with the floating race bearing surface, a base cone angle is defined. The base cone angle intersects the blade axis. In addition, a tapered roller bearing set includes multiple tapered roller bearing elements, each element having a bearing element main body section that has a base cone that tapers outwardly at the base cone angle. Adjacent to the base cone, each tapered roller bearing element also has a relief cone that tapers inwardly. Furthermore, an end cap is mounted to the floating race to maintain preload in the propeller blade root relative to the hub arm.
In another embodiment, a method of assembling a propeller blade retention assembly includes locating a propeller blade root into a hub arm along a blade axis and locating a floating race in contact with an outboard retaining ball bearing set within the hub arm. In addition, a tapered roller bearing set is located between the floating race and the propeller blade root. The tapered roller bearing set includes multiple tapered roller bearing elements, each element having a bearing element main body section that has a base cone that tapers outwardly at the base cone angle. Adjacent to the base cone, each tapered roller bearing element also has a relief cone that tapers inwardly. Also, the method includes locating an end cap into facial engagement with the floating race, and the end cap contacts the tapered roller bearing set to maintain preload of the propeller blade root relative to the hub arm.
As shown in
Hub assembly 12 is mounted to propeller drive shaft 12S which extends transversely therefrom such that propeller system 10 may be driven about an axis of rotation A. Each propeller blade retention assembly 14 defines blade axis B transverse to axis of rotation A.
As shown in
Propeller blade retention assembly 14 applies a preload to propeller blade root 18 generally along blade axis B which increases the moment capacity of the retention for a given pitch diameter, yet permits pitching of propeller blade root 18 about blade axis B in response to a propeller pitch change actuation system which interacts with blade pitch pin 18P. It should be understood that propeller blade root 18 as illustrated may be a section of a complete propeller blade, or a retention portion which receives a removable airfoil portion of a propeller blade.
The components and configuration of propeller system 10 as depicted in
As shown in
Tapered roller bearing set 26 runs between floating race 24 and propeller blade root 18 as maintained by end cap 28 which is fastened to floating race 24 through a plurality of threaded fasteners 30 (also illustrated in
Tapered roller bearing elements of tapered roller bearing set 26 define base cone angle C which intersects blade axis B. Tapered roller bearing set 26 runs between floating race bearing surface 24B of floating race 24 and propeller blade root bearing surface 18B of propeller blade root 18. Floating race bearing surface 24B and propeller blade root bearing surface 18B are also defined along a base cone angle such that floating race bearing surface 24B is an inner surface which faces toward blade axis B and propeller blade root bearing surface 18B is an outer surface which faces away from blade axis B. In other words, a frustoconical interface is formed about blade axis B to receive tapered roller bearing set 26.
The preload condition is generated by tapered roller bearing set 26 which pushes propeller blade root 18 outboard along blade axis B and floating race 24 inboard along blade axis B. Tapered roller bearing set 26 provides potentially lower rolling element friction than outboard retention ball bearing set 22 in which pitch change results in rotation at inner retention ball bearing set 20 and tapered roller bearing set 26 during pitch change. Outboard retention ball bearing set 22 has a potentially higher friction and need not rotate. Outboard retention ball bearing set 22 also provides a softer preloaded joint allowing for wear without loss of preload. The preload provides relatively stiff blade retention, yet permits pitching of propeller blade root 18 about blade axis B by allowing rotation at outboard retention ball bearing set 22.
The components and configuration of propeller blade retention assembly 14 as shown in
Depicted in
In
Referring to
In the illustrated embodiment, tapered roller bearing set 26 has four tapered roller bearing elements 44 per retention cartridge 42 with a total of seven cartridges per propeller blade P. It should be understood that any number of cartridges may be utilized with the least number of cartridges possible being two, however, assembly considerations may dictate the number of cartridges based on the size of the initial gap between the plurality of tapered roller bearing cartridge assemblies 40 relative to the desired preload.
Referring to
Generally, bearing element main body section 48 comprises base cone 54 and relief cone 56. More specifically, base cone 54 has a frusto-conical shape that tapers outwardly (with respect to tapered roller bearing element axis E) from bottom end 58 (which is connected to neck 50) to apex ring 60. Relief cone 56 is adjacent to base cone 54 and has a frusto-conical shape that tapers inwardly (with respect to base cone 54) from apex ring 60 to top end 62 along tapered roller bearing element axis E.
Generally, base cone 54 extends along base cone angle C, and relief cone 56 extends along relief cone angle R. Both base cone angle C and relief cone angle R are measured with respect to tapered roller bearing element axis E. Preferably, base cone angle C is between one half (0.5) degrees and five (5) degrees. More preferably, base cone angle C is between one degree and two degrees. In the illustrated embodiment, base cone angle 1.26 degrees. Preferably, relief cone angle R is between one degree and two degrees. In the illustrated embodiment, relief cone angle R is 1.74 degrees. In addition, transition angle T exists between base cone 54 and relief cone 56 at apex ring 60. Preferably, transition angle T is at least 170 degrees and no more than 179 degrees. In the illustrated embodiment, transition angle T is 177 degrees.
Relief cone 56 is preferably not more than twenty percent of the total length of bearing element main body section 48. In addition, relief cone 56 is preferably at least ten percent of the total length of bearing element main body section 48. In the illustrated embodiment, bearing element main body section 48 has a length of 17.8 mm (0.70 inches) and relief cone 56 has a length of 2.54 mm (0.10 inches). Therefore, relief cone 56 is 14.3 percent of the length of bearing element main body section 48.
Apex ring 60 occurs at the junction of base cone 54 and relief cone 56. Apex ring 60 is the outermost edge of bearing element main body section 48 and has apex ring radius G. Towards top end 60 of relief cone 56, prior to edge radius 64, there is top end radius F. The difference between top end radius F and apex ring radius G is drop off D. Drop off D is preferably between 0.050 mm (0.002 inches) and 0.26 mm (0.010 inches). In the illustrated embodiment, drop off D is 0.10 mm (0.004 inches).
Strictly from the perspective of geometry, apex ring 60 should be the topmost contact point between bearing element main body section 48 and propeller blade root 18/floating race 24. But when tapered roller bearing element 44 is loaded or preloaded, tapered roller bearing element 44 compresses slightly. This elastically deforms tapered roller bearing element 44 such that apex ring 60 is no longer the outermost portion of bearing element main body section 48. Instead, contact ceases between bearing element main body section 48 and propeller blade root 18/floating race 24 at some point along relief cone 56. This creates a gradual separation of bearing element main body section 48 from propeller blade root 18/floating race 24. But drop off D is sufficiently large as to prevent the end of contact from occurring at top end 62 (or on edge radius 64) because that would create a sharp break in contact that would lead to stress concentrations in bearing element main body section 48, propeller blade root 18, and/or floating race 24.
The configuration of tapered roller bearing element 44 as shown in
Depicted in
In
As shown in
As shown in
As shown in
As shown in
Preload springs S bias end cap 28 toward floating race 24. Nut RP threaded to the preload bolt P selectively retains spring S on preload bolt P. Nut RP is then torqued to create a state of compression on preload spring S. It should be understood that other preload devices and fixtures may alternatively be utilized to apply a preload which biases tapered roller bearing elements 44 toward floating race 24 during installation.
As shown in
The preload condition is initially established by preload springs S which apply a load on top end 62 of tapered roller bearing elements 44 as floating race 24 is rotated, which allows tapered roller bearing set 26 to progressively push propeller blade root 18 outboard and floating race 24 inboard along blade axis B generating the preloaded condition. That is, springs S maintain an axial roller end load as tapered roller bearing elements 44 progressively engage the conical space between floating race 24 and propeller blade root 18. This axial end load may alternatively or additionally be applied with tooling designed to interface with outer race 22R. The axial force is applied to top ends 62 of tapered roller bearing elements 44. The axial force slides across top ends 62 of tapered roller bearing elements 44 during the preload process as a result of the hardware geometry. (Although, propeller blade retention assembly 14 can be configured to apply a load on bottom end 58. In such an embodiment, relief cone 56 would exist at bottom end 58.)
The movement along the axis E (shown in
Once this process is completed, tapered roller bearing set 26 is retained in place due to a relative high static coefficient of friction along blade axis B. But propeller blade root 18 is still free to rotate about blade axis B in response to pitch change inputs. The plurality of tapered roller bearing cartridge assemblies 40 move closer together during the process of preloading because their final installed diameter, relative to the pitch change axis, is smaller in their final position than in their initial position.
As shown in
To disassemble blade assembly 14 from hub arm 16, threaded fasteners 30 are removed. The axial load on tapered roller bearing set 26 is then removed by rotation of floating race 24 such that the normal forces on tapered roller bearing set 26 from the preload and tapered roller bearing element base cone angle C result in a self-generated axial load on tapered roller bearing set 26 which pushes tapered roller bearing set 26 out of engagement.
The steps of the method of assembly of propeller blade retention assembly 14 allow for tapered roller bearing set 26 to be preloaded. This prevents separation of bearing element main body sections 48 from propeller blade root 18/floating race 24 due to moment loading during operation. This preload also compresses bearing element main body sections 48, changing the upper end of contact between bearing element main body sections 48 and propeller blade root 18/floating race 24.
It should be recognized that the present invention provides numerous benefits and advantages. For example, the life of tapered roller bearing elements 44, propeller blade root 18, and floating race 24 are all increased due to the substantial prevention of a stress concentration at the cessation of contact with bearing element main body sections 48. For another example, the maximum effective length of bearing element main body sections 48 is utilized without wasting length, which conserves both weight and space.
While the invention has been described with reference to an exemplary embodiment(s), it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment(s) disclosed, but that the invention will include all embodiments falling within the scope of the appended claims.