The invention herein pertains to latch hardware and particularly pertains to a modified latch bolt for a tilt latch that preferably includes a resilient cantilever that uncovers a channel to catch a portion of the window frame therein when the window is under duress.
Despite numerous innovations in material science and the mechanics that affect them, the business end of a tilt latch bolt has remained unchanged for quite some time. Typically defining a rectangular or wedge geometry, this distal bolt surface positioned at an opposing end relative to the remainder of the latch components is charged with frictionally engaging a portion of the window sash generally referred to as the window stile or jamb to prevent modern tillable windows from rotating out of the window frame unless desirable, for example for cleaning. This rotatable feature is useful at certain times, but it can be a liability and potential hazard to others. For example, the same functional feature that permits the usually vertically oriented window sash to pivot horizontally may also permit the window to disassociate from its jamb in inclement weather. It is considered a well-known phenomenon that the structural components of a window frame, but most notably the vertical stiles, can flex dramatically in high winds, particularly with windows that are formed from polymeric materials such as vinyl. While windows generally, and tilt latches and their respective bolts particularly, are engineered with tolerance for some level of displacement, these tolerances are not infinite and when the jamb surfaces moves sufficiently away from the bolt, little or nothing remains to hold the window in a vertical orientation.
Thus, in view of the problems and disadvantages associated with prior art devices, the present invention was conceived and one of its objectives is to provide a tilt latch bolt that is configured to engage a window jamb in the case of inclement weather.
It is another objective of the present invention to provide a tilt latch bolt that is simple to manufacture and simple to install.
It is still another objective of the present invention to provide a tilt latch bolt that defines a resilient cantilever on the bolt nose.
It is yet another objective of the present invention to provide a tilt latch bolt that defines a resilient cantilever on the bolt nose that is sized and shaped to extend when pressure from the window jamb is released.
It is a further objective of the present invention to provide a tilt latch bolt that defines a resilient cantilever on the bolt nose that is covered, for example by a piece of flashing, when pressure from the window jamb otherwise prevents the cantilever from extending.
It is still a further objective of the present invention to provide a tilt latch bolt that defines a resilient cantilever on the bolt nose that is sized and shaped to extend when pressure from the window jamb is released, revealing a channel sized and shaped to accept a portion of the window jamb therein.
It is yet a further objective of the present invention to provide a polymeric window latch bolt that is resistance to abrasion and impact damage but that defines sufficient resiliency to incorporate a cantilever as described above.
Various other objectives and advantages of the present invention will become apparent to those skilled in the art as a more detailed description is set forth below.
The aforesaid and other objectives are realized by providing an improved tilt latch bolt, of the type typically associated with a tilt latch affixed to a double-hung window sash, with a resilient cantilever that uncovers a channel sized and shaped to engage a portion of the window frame when the window is under duress. The cantilever is formed on the exterior portion of a terminal end of the bolt opposite the latch (sometimes referred to as the “nose”), on the surface that frictionally engages the window jamb when the bolt is extended (the straight, as opposed to the biased, face). In the manufacture of the bolt, the cantilever is designed with a bias to extend outwardly from the bolt body, and when the bias causes extension of the cantilever from the bolt body, the separation reveals a channel defined therein. This channel is sized and shaped to receive a portion of the window jamb therein, resisting inadvertent disassociation from the window jamb, for example during inclement weather when the entire window frame may spatially displace.
For a better understanding of the invention and its operation, turning now to the drawings,
As would be understood, the bolt is an elongated member that generally defines a cylindrical or polygonal cross-sectional shape. Depicted more clearly in
Therefore, preferred tilt latch bolt 10 defines additional features that aid in the frictional attachment of the bolt nose with the associated window jamb. The tilt latch bolt 10 defines a longitudinal axis 40 and a lateral axis 41, and defines bolt end 15 with a planar surface 16 and a biased surface 17. In the preferred embodiment, tilt latch bolt 10 is oriented such that biased surface 17 is facing the exterior of the window, so that biased surface 17 is the first portion of the bolt to contact the window jamb when the window is being returned to the vertical position. The tilt latch bolt 10 ideally includes a deformable cantilever 19. In one embodiment, a portion of planar surface 16 defines one or more grooves 18 therein, said deformable cantilever 19 is disposed within one of the one or more grooves 18 and extends along the lateral axis 41. In a separate embodiment, a portion of biased surface 17 defines one or more grooves 18 therein, said deformable cantilever 19 is disposed within one of the one or more grooves 18 and extends along the lateral axis 41. In a further embodiment as shown in
In an alternate embodiment as shown in
In a further embodiment, it may be desirable to reinforce a section of tilt latch bolt 10 proximate channel 20, for example to provide additional structural integrity from impact when the opening of channel 20 is not needed for more conventional operation of the bolt. In this embodiment, a slight cover or shim 22 (considered herein as a structural portion of material that covers the opening of channel 20, but breaks away when it comes in contact with the window jamb side wall) extends over the opening of channel 20. In the manufacture of the bolt 10, the deformable cantilever 21 is engineered with a bias to extend outwardly from the bolt body, and when the bias causes extension of deformable cantilever 21 from the bolt body, specifically when deformable cantilever 21 is released from shim 22, the separation reveals channel 20 defined therein.
The illustrations and examples provided herein are for explanatory purposes and are not intended to limit the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
389217 | Glenn | Sep 1888 | A |
5669639 | Lawrence | Sep 1997 | A |
6874826 | Polowinczak | Apr 2005 | B1 |
7520541 | Lawrence | Apr 2009 | B1 |
7658035 | Lawrence | Feb 2010 | B1 |
8220846 | Liang | Jul 2012 | B2 |
9316043 | Lawrence | Apr 2016 | B1 |
20080302017 | Phillips | Dec 2008 | A1 |