The present invention relates generally to transdermal patches and bandages, also known as drug delivery devices. The present invention relates more specifically to embodiments of modified transdermal patches and bandages which incorporate two or more absorbent pads within the construction of the patch of bandage. The use of absorbent pads within the patch avoid the use of Drug-In-Adhesive patch constructs which place the drug directly into contact with a strong adhesive. Such formulations limit the number of drugs which can be incorporated into a patch as the drug may interact with and become degraded through interaction with adhesive chemicals. Using absorbent pads in a transdermal patch enhance the drug delivery, increase the longevity of the patch and remove the need for adhesive-drug mixtures.
In the prior art, transdermal drug delivery systems employ a medicated device or patch which is affixed to the exposed surface of the skin of a patient. The patch allows a medicinal compound contained within the patch to be absorbed into the skin layers and finally into the patient's blood stream. Transdermal drug delivery avoids the need and the pain associated with drug injections and intravenous drug administration. Transdermal drug delivery also avoids gastrointestinal metabolism of administered drugs, reduces the elimination of drugs by the liver, and provides a sustained release of the administrated drug. Transdermal drug delivery also enhances patient compliance with a drug regimen because of the relative ease of administration and the sustained release of the drug.
Several medicinal compounds are not suitable for transdermal drug delivery since they are absorbed with difficulty through the skin due to the molecular size of the drug or to other bioadhesion properties of the drug. In these cases, when transdermal drug delivery is attempted, the drug may be found pooling merely on the outer surface of the skin and not permeating directly through into the blood stream. Once such example is insulin, which in the prior art has been found difficult to administer by means of transdermal drug delivery.
Some of the most critically needed medications are presently administered either by injection or oral dosage forms. In particular, chemotherapeutic agents are administered in increased dosages because of their need to survive degradation in the gastrointestinal tract. Many critical treatments for AIDS require a cocktail of drugs taken orally in solid dosage forms, several times a day to be effective. These medications are not suitable for transdermal drug delivery use because of the extensive dosing requirement, the inability of the drug molecule to remain stable in a transdermal form. Moreover, the unsuitability for transdermal to skin transfer of the drug leading to low bioabsorbance of the drug across the skin layers.
Generally, conventional transdermal drug delivery methods have been found suitable only for low molecular weight medications such as nitroglycerin for alleviating angina, nicotine for smoking cessation regimens, and estradiol for estrogen replacement in post-menopausal women. Larger molecular medications such as insulin (a polypeptide for the treatment of diabetes), erythropoietin (used to treat severe anemia) and gamma-interferon (used to boost the immune systems cancer fighting ability) are all compounds not normally effective when used with transdermal drug delivery methods of the prior art.
There are three basis designs to transdermal patch products:
Characterized by the inclusion of a liquid reservoir compartment containing a drug solution or suspension, which is separated from a release liner by a semi permeable membrane and an adhesive.
Commercial examples include: Duralgesic® (Fentanyl), Estraderm @(estradiol) and Transderm-Nitro @ (Nitroglycerin).
2. Matrix Type Patch: Similar to the Reservoir Type Patch design but has two distinguishing characteristics:
1. The drug reservoir is provided within a semisolid formulation.
2. There is no membrane layer.
3. Drug-In-Adhesive Type Patch: DIA
Characterized by the inclusion of the drug directly within the skin—contacting adhesive (Wick 1988). In this design the adhesive fulfills the adhesion-to-skin function and serves as the formulation foundation, containing the drug and all the excipients. (Wilking 1994). This category also has two sub-sections: Monolithic and Multilaminate.
Commercial examples include Monolithic DIA: Climara® (Estradiol), Multilaminate DIA: Nicoderm® (Nicotine)
The DIA patch design has several advantages in reducing the size of the overall patch and provides a more concentric seal upon the skin. DIA patches tend to be more comfortable to wear and very thin. A typical DIA patch is 165 to 200 Um thick. Major disadvantages include a longer drug delivery profile. The release of the drug from a DIA patch follows first order kinetics, that is, it is proportional to the concentration of drug within the adhesive. As the drug is delivered from the DIA patch the drug concentration will eventually begin to fall. The delivery rate therefore falls off over time and this fact needs to be considered in the clinical evaluation phase of development.
A major problem with all major forms of transdermal patches is the intermingling of the drug with adhesive compositions. These result in new profiles and in many instances the drug is degraded through the interaction with the adhesive composition. The chemistry of the adhesive can alter the stability, performance and function of certain drugs.
Additionally there are limits to the molecule size of drugs, which can be delivered via a passive system. Typically drug candidates are below 500 Daltons for DIA patches and below 1,000 Daltons for Matrix or Reservoir patches, even through the use of skin enhancers.
There are several approaches used to electronically assist in transdermal delivery including iontophoresis and ultrasound. These systems are designed to either increase the flow of metallic based drugs across the stratum corneum or to microporate the skin or allow the delivery of macromolecules across the stratum corneum into the dermis or underlying tissue. Such electronically assisted transdermal drug delivery devices (TDD's) often use an outside electronic system, which is not connected to a drug-containing patch or the patch has electrodes within it to assist in ionic transfer. Direct connection to a disposable transdermal patch is often impractical because the electrodes or the ultrasonic transducer system is not disposable.
To solve the problem of electronically assisted transdermal drug delivery systems, and enabling such systems to become more portable or wearable by the patient, and in consideration of conventional patch designs wherein drug contamination or denaturing may be caused through interaction with an adhesive or polymer component within the patch design a new transdermal patch, the subject of this invention, was developed.
The use of adhesives, which directly contact the drug, is eliminated in this design. Adhesives may be used in the border of the patch but the DIA, Matrix or Reservoir designs are discarded in favor of an absorbent pad which is held in place in the patch of this invention which also employs a rate control semi-permeable film to provide both on-off functions to the patch and dosing control. The Patch of this invention is also fitted with a snap to enable the patch to connect easily to an ultrasonic emitter. This design enables the more expensive ultrasonic emitter to be retained for future use while the Modified Transdermal Patch is disposable.
Patches are designed to provide either passive or active delivery platforms. The skin has evolved as a formidable barrier against invasion by external microorganisms and against the prevention of water loss. Notwithstanding this, transdermal drug delivery systems have been designed with the aim of providing continuous controlled delivery of drugs via this barrier to the systemic circulation. There are numerous systems now available that effectively deliver drugs across the skin. These include reservoir devices, matrix diffusion-controlled devices, multiple polymer devices, and multilayer matrix systems. This review article focuses on the design characteristics and composition of the main categories of passive transdermal delivery device available.
Mechanisms controlling release of the active drug from these systems as well as patch size and irritation problems will be considered. Recent developments in the field are highlighted including advances in patch design as well as the increasing number of drug molecules now amenable to delivery via this route. From the early complex patch designs, devices have now evolved towards simpler, matrix formulations. One of the newer technologies to emerge is the delivery-optimized thermodynamic (DOT) patch system, which allows greater drug loading to be achieved in a much smaller patch size. With the DOT technology, drug is loaded in an acrylic-based adhesive. The drug/acrylic blend is dispersed through silicone adhesive, creating a semi-solid suspension. This overcomes the problem with conventional drug-in-adhesive matrix patches, in which a large drug load in the adhesive reservoir can compromise the adhesive properties or necessitate a large patch size.
Transdermal drug delivery remains an attractive and evolving field offering many benefits over alternative routes of drug delivery. Future developments in the field should address problems relating to irritancy and sensitization, which currently exclude a number of therapeutic entities from delivery via this route. It is likely that further innovations in matrix composition and formulation will further expand the number of candidate drugs available for transdermal delivery.
Active Transdermal Drug Delivery Market Dynamics
Active Transdermal Technology Overview
Market Drivers for Transdermal Delivery
Excipients and Penetration Enhancers
Competitive Landscape
Factors Limiting Growth
Active Transdermal Technologies
Electrical Current
Iontophoresis
Electroporation
Microporation
Lasers
Mechanical Arrays
Radio Frequency
Thermal/Heat
Ultrasound
Active Transdermal Design Factors
Drug Formulation Factors
Proprietary Delivery vs. 3rd Party Patches
Dosing and Rate Factors
Biocompatibility
One objective of the modified transdermal patch of this invention is to avoid Drug-In-Adhesive formulations by utilizing an absorbent pad within the patch. This was disclosed in U.S. Pat. No. 7,440,798, Substance Delivery Device, Bruce K. Redding, Jr. inventor, granted Oct. 21, 2008. However in that work it was discovered that a particular drug, stored within an absorbent material often did not release significant quantities of the drug. While the absorbent pad patch did avoid adhesive-drug combinations, the absorbent pad often released less than 30% of the drug stored within it. This was due to the absorbency power of the absorbent material. Cellulose for example releases up to 50% of the drug, while retaining 50%. Therefore absorbent pad patches were not suitable for long term release patterns for the drug.
In an effort to increase the longevity of the absorbent pad patch, while also avoiding adhesive-drug combinations, it was discovered that layering absorbent material one layer on top of another or stacking one absorbent pad on top of another, providing a stacked pad design, was very effective in providing long term release and enabling long term patch functionality.
The invention includes embodiments of a modified patch, which contains two or more layers of absorbent material, which in some embodiments are absorbent pads, placed atop one another within the drug reservoir of the patch, enabling the patch to (1) hold a greater quantity of the drug, (2) extend the useful life of the patch, (3) Enhance the quantity of the dose which can be released from the patch, by either passive of active methods of drug release.
This is especially functional with the transdermal delivery of insulin from a patch which is subjected to ultrasonic excitation.
The present invention includes a transdermal delivery device or patch designed with at least two thin layers of an absorbent material or pad, within the drug reservoir compartment, which are stacked on top of one another.
An object of the invention of the invention is a transdermal patch which has a one absorbent pad stacked above the other, or multiple absorbent pads within the patch, which thereby enable greater and longer drug delivery from the patch over time, avoid interaction with adhesive mixes and enhance the quantity of the dose which can be released from the patch, by either passive of active methods of drug release.
Additional objects, advantages and novel features of the invention will be set forth in part in the description which follows, and in part will become apparent to those skilled in the art upon examination of the following, or may be learned by practice of the invention.
It is to be understood that the figures and descriptions of the present invention have been simplified to illustrate elements that are relevant for a clear understanding of the present invention, while eliminating, for purposes of clarity, many other elements found in conventional ultrasonic substance delivery systems. Those of ordinary skill in the art will recognize that other elements are desirable and/or required in order to implement the present invention. However, because such elements are well known in the art, and because they do not facilitate a better understanding of the present invention, a discussion of such elements is not provided herein.
As used herein, the term “substance” may include, but are not limited to, any substance, solution or suspension including, but not limited to, a medicinal or non-medicinal substance which may be transported through a live surface or live membrane, including, but not limited to, live tissue and other types of live membranes. The term “delivery device” includes transdermal patches and bandages. The term “proximal” means toward the end of a delivery device where the substance is released from the device. The term “distal” means toward the end of the device that is away from where the substance is released from the device.
Structure of Human Skin and Drug Transport Dynamics.
Commercial examples include: Duralgesic® (Fentanyl), Estraderm @(estradiol) and Transderm-Nitro® (Nitroglycerin).
A Matrix Type Patch is Similar to the Reservoir Type Patch design but has two distinguishing characteristics:
1. The drug reservoir is provided within a semisolid formulation.
2. There is no membrane layer.
Commercial examples include Monolithic DIA: Climara® (Estradiol), Multilaminate DIA: Nicoderm® (Nicotine)
The DIA patch design has several advantages in reducing the size of the overall patch and provides a more concentric seal upon the skin. DIA patches tend to be more comfortable to wear and very thin. A typical DIA patch is 165 to 200 Um thick. Major disadvantages include a longer drug delivery profile. The release of the drug from a DIA patch follows first order kinetics, that is, it is proportional to the concentration of drug within the adhesive. As the drug is delivered from the DIA patch the drug concentration will eventually begin to fall. The delivery rate therefore falls off over time and this fact needs to be considered in the clinical evaluation phase of development.
Within the patch interior a substance (4.11) is absorbed onto an absorbent pad (4.3), and contained within the drug reservoir compartment (4.8). In an Active Patch embodiment, ultrasound (4.6), or another energy medium, may be delivered through the top membrane (4.2) through the patch (4.1), and will have the effect of liberating the substance (4.9) from the patch (4.) onto the skin's surface (4.10). In this embodiment the substance (4.11) is absorbed and stored within the absorbent pad (4.3) which can hold the drug, free of adhesive interaction for lengthy periods of time depending upon the thickness of the absorbent pad, and its holding power.
Once the substance (4.11) is liberated from the absorbent material (4.3) it travels to the proximal end 50, which may be the bottom, of the patch (4.1) and in some embodiments, through a separator, which can be, but is not limited to, a semi-permeable film layer (4.4) or mesh screen. The proximal end 50 of the patch is the end of the patch toward where the substance is released from the patch. The distal end 52 of the patch is the end of the patch that is generally away from the end were the substance is released from the patch. The semi-permeable film layer (4.4) can be comprised of a film with micro-pores or a mesh screen which will disperse the liberated substance onto droplets (4.9) which then fall onto the skin's surface and are absorbed. In some embodiments, to prepare the patch for use a peel away film 4.5 is peeled away from the bottom of the patch. Once the peel away film (4.5) is removed the flow of the stored drug can be effected in a Passive patch or when an energy media such as ultrasound (4.6) is applied to the Active patch.
Several materials may be used as an absorbent. One preferred material is a cellulose based composition. Common materials such as cellulose, cotton, fabrics, and synthetic fibers such as nylon or sponges may be employed to absorb the medicant, drug or substance. Additionally the weave pattern is a factor in determining the quantity of the drug which can be stored.
A transdermal Patch using the construction illustrated in
However a problem ensued with the patch developed according to
Increasing the thickness of the absorbent pad did not solve this problem. While more drug could be stored with a thicker pad, the result was often that the delivery rate was excessive and once again only 50% of the load could be liberated.
One solution was simply to use multiple thin absorbent at least partially separatable layers, stacked on top of each other. One solution was simply to use multiple thin absorbent pads, stacked on top of each other.
According to embodiments of the present invention, a delivery device is provided for enhancing substance delivery by the use of ultrasound. Use of ultrasonics is particularly effective in delivering larger pharmaceutically active compounds, wherein the delivery device is made to accommodate both the special needs of ultrasonic excitation through the patch construct and the delivery of medicinal compounds stored within the patch.
It is to be understood that in some embodiments the delivery devices can include transdermal delivery of substances and in some embodiments can include the delivery of substances directly on other types of living tissues and membranes. Delivery devices include transdermal patches and bandages.
Reference is now made to
As exemplarily illustrated in
Reference is now made to
The patch (24) is comprised of a backbone layer of plastic ideally shaped in the form of a butterfly but can be any other shape, An adhesive tape section (25) is cut to the shape of the backbone (24) and comes into contact with the patients skin, but is not in the path of any drug contained with the patch (24).
A membrane film (26) is placed across the backbone layer (32) and acts to protect any stored drug. In the case of an ultrasonic patch the membrane film (26) enables ultrasound to pass through the film without deflection.
Next at least two absorbent pads, (28) are stacked on top of one another.
At the bottom of the patch (24) a mesh screen (29) is placed and this is then covered over with a Rate Control Film (30).
One embodiment is a butterfly patch design, with a snap in ultrasonic transducer when used for a substance delivery system, which in some embodiments could be an insulin delivery system, powered by ultrasound. This is shown in the photograph in
While an active patch, powered by ultrasound is shown in
While an active patch, powered by ultrasound is shown in
In
A Backbone layer (9.1) is the base of the patch. A transducer assembly (9.3) snaps onto the patch (9.1) at the top of the patch by connecting to the well cap (9.2) Directly at the top of the patch a film which may allow ultrasound to penetrate it (9.6) is placed directly above the Absorbent Well (9.5), which contains at least two absorbent pads, on top of the other, into which a dose of a particular substance or drug may be stored. In the initial application of this design insulin is stored within each absorbent pad so that the patch may be used to treat diabetes. In addition, in some embodiments more than two absorbent pads 14 could be included. In addition, in some embodiments, on absorbent material could be formed into more than one layer of absorbent substance as exemplarily illustrated in
Referring now to
In this experiment an absorbent system was compared, one using a single absorbent pad and one using a stacked absorbent pad.
Composition:
Sandwiched pad comprising of a top section comprised of Saran™ Polyvinylidene Chloride film, followed by a mid-section absorbent material comprised of 100% virgin wood pulp cellulose fiber supplied by Buckeye Products Co, and a synthetic emulsion binder and an under section which includes a of protective film.
Pad Material: Woven cellulose fiber, un-bleached
Pad Diameter: 2.25 inch
Holding Capacity: 100 units insulin
In Experiment 1 a Patch-Cap is configures according to
The Patch-Cap, single absorbent pad is loaded with 100 units of Lispro insulin (Humalog R-100 supplied by Eli Lilly Co.) and is powered by an ultrasonic applicator for a total of 8 hours.
The delivery pattern of the drug upon the surface of the skin corresponded to the pooling effect shown in
Using a single absorbent pad construction, after 8 hours of ultrasonic driving power, the patch-Cap could release only 50.8% of the load of insulin upon the absorbent pad.
For a 200 lb. man, with a maximum need of 3.8 units of Lispro insulin per hour the single absorbent patch-cap could only be relied to work for 12 hours or to deliver a maximum of 46 units before the delivery rate from the patch would fall below the listed need for the average 200 lb. male diabetic.
In Experiment 2 a Patch-Cap is configures according to
The Patch-Cap, a thicker, single absorbent pad, at 2 mm thickness, is loaded with 100 units of Lispro insulin (Humalog R-100 supplied by Eli Lilly Co.) and is powered by an ultrasonic applicator for a total of 8 hours.
The delivery pattern of the drug upon the surface of the skin corresponded to the pooling effect shown in
In Experiment 2 a Patch-Cap is configures according to
The Patch-Cap, single absorbent pad is loaded with 100 units of Lispro insulin (Humalog R-100 supplied by Eli Lilly Co.) and is powered by an ultrasonic applicator for a total of 8 hours.
The delivery pattern of the drug upon the surface of the skin corresponded to the pooling effect shown in
Using a double absorbent pad construction, under continuous ultrasonic driving power, the Patch-Cap could release over twice the load of insulin to a diabetic patient.
For a 200 lbs. man, with a maximum need of 3.8 units of Lispro insulin per hour the single absorbent patch-cap could only be relied to work for 12 hours or to deliver a maximum of 46 units before the delivery rate from the patch would fall below the listed need for the average 200 lb. male diabetic.
The use of a thicker pad was not as effective as a double pad use, stacked on top of one another.
For a 200 lbs. man, with a maximum need of 3.8 units of Lispro insulin per hour the double absorbent patch-cap could be relied to work for 49 hours or to deliver a maximum of 187 units before the delivery rate from the patch would fall below the listed need for the average 200 lb. male diabetic.
The use of a double absorbent pad extended the useful delivery capability of the ultrasonically powered insulin patch by a factor of 4.
In fact, coupled with an ultrasonic propagation mechanism this experiment demonstrated significant advantages to the treatment of diabetes, through the use of a transdermal delivery device which is constructed with multiple absorbent pads instead of using one pad or even a pad with a greater overall thickness.
Combination Ultrasonic Device and Transdermal Patch:
The invention further includes a method for conducting the transport of active substances, including but not limited to pharmaceutical compositions, through the body surface of an individual. The method includes applying ultrasound through a transdermal delivery device which is attached with to a programmable ultrasonic regulator device, which itself is worn by the individual wherein said ultrasound is applied at a frequency and intensity and for a time period effective to enable movement of a therapeutic quantity of the active pharmaceutical composition from a transdermal delivery device, or transdermal patch, through the skin, for the purpose of effecting regulated, and timed drug delivery to the individual.
The method of can also include providing an ultrasound having a frequency in the range of about 20 kHz to 10 MHz, and having intensity in the range of about 0.01 W/cm·sup.2 to 5.0 W/cm·sup.2, and wherein the ultrasound is applied either in a continuous or pulsed manner.
The method can further include affixing or connecting the wearable, portable sonic device with a transdermal patch which provides the transdermal delivery of drugs or other substances to the individual. The connection can be effected via the use of a snap-on feature built into the transdermal patch, or by some other effective connector which provides a connection of the backbone of the patch with a transducer or array of transducers.
The method can further include providing that the wearable, portable sonic device is controllable through programmable settings for at least one of the following: the quantity of drug released by the device, the time interval of active ultrasonic drug delivery, the time interval between ultrasonic drug delivery, the frequency and intensity of the ultrasonic signal, the basal delivery schedule of drug dosing and the bolus delivery schedule of booster doses of a particular drug, with both automatic functions and a manual operation capability.
The invention further includes a delivery device for conducting the transport of active substances, including but not limited to pharmaceutical compositions, through the body surface of an individual, which is attachable with a programmable ultrasonic regulator device. The programmable ultrasonic regulator device is wearable by the individual wherein ultrasound is applied through the device at a frequency and intensity and for a time period effective to enable movement of a therapeutic quantity of the active pharmaceutical composition from a transdermal delivery device, or transdermal patch, through the skin or live tissue for the purpose of effecting regulated, and timed drug delivery to the individual. The delivery device can also contain a transducer assembly, holding a single or multiple transducers of any effective type including cymbal type, wherein the transducer assembly may be internal or external to the device.
The invention further includes an ultrasonic drug deliverer that uses a single transducer or an array of transducers, employed to deliver ultrasonic energy through a transdermal patch, wherein the array makes possible the application of the ultrasonic drug transport through a number of multiple skin transport sites. The drug deliverer avoids premature damage to the skin transport sites and effects the greatest quantity of deliverable drug from the patch, through the patients skin and into the bloodstream. In some embodiments, the multiple transducer elements in the drug deliverer transmit ultrasound at identical frequencies and intensity levels to each other. In some embodiments, the multiple transducer elements in the drug deliverer transmit ultrasound at differing frequencies and intensity levels to each other.
The invention includes an ultrasonic substance delivery transdermal patch, wherein the modified transdermal patch includes:
A) Patch Backbone and Sonic membrane:
B) Absorbent Pad:
C) Semi-Permeable Film
D) Gasket for providing a good seal to the skin
In some embodiments of the transdermal patch, the semi-permeable film may be comprised of materials including but not limited to the following materials:
Membranes:
Reverse Osmosis membranes made from semi permeable material such as:
Membrane films using;
Commercial examples of semi-permeable films include:
The at least one absorbent pad in the transdermal patch may include materials including, but is not limited to, the following list of materials:
Co-Polymer formulations of Poly methacrylic acid and Poly ethylene glycol Co-Polymer formulations of Poly acrylic acid and Poly (N-isopropylacrylamide) Hyrdogels, e.g. Polyacrylamide, poly(propylene oxide Pluronic polyols family of gel materials, e.g. Pluronic-chitosan hydrogels Silica gels
It is to be understood that the at least on pad could also be made of any other natural or synthetic material, which will act to absorb the drug compound and be able to release the drug upon ultrasonic excitation.
In some embodiments, the use of an absorbent pad is made to provide extended delivery of the substance via the manipulation of the thickness of the absorbent material, or through the selection of materials with increased absorbency power, thereby enabling the absorbent pad to hold and reserve greater quantities or doses of the substance to be delivered, for a longer period of time.
In some embodiments of the invention, the delivery rate of a substance from the transdermal patch can be adjusted due to the use of an absorbent pad via the manipulation of the thickness of the absorbent material, or through the selection of materials with increased or decreased absorbency power, thereby enabling the absorbent pad to liberate the substance at differing delivery rates form the patch.
In some embodiments of the transdermal patch the use of an absorbent pad provides enhanced resistance to incidental contact between the stored substance and other materials or compounds within the patch construction which could contaminate or degrade the substance, including adhesives used in the fabrication of the patch or to adhere the patch to the patients skin surface.
In some embodiments, the invention further includes, a means of providing regulated and controlled doses of insulin and other medications for the treatment of diabetes, involving a wearable ultrasonic transmitter which is connected to a transdermal patch wherein the patch has been loaded with insulin or other medication for the treatment of diabetes. The combination device acts to regulate the dose delivered to a diabetic patient for the purpose of reducing and controlling serum glucose levels in the diabetic patient.
In some embodiments, the invention includes a combination system that includes a wearable ultrasonic transmitter which is connected to a transdermal patch for the purpose of providing regulated and controlled doses of insulin and other medications for the treatment of diabetes, wherein the insulin loaded patch is used either in conjunction with or in replacement of oral diabetic medication, for night time use, daytime use or both, for the purpose of reducing and controlling serum glucose levels in a diabetic patient.
The invention further includes an enhanced ultrasonic drug delivery transdermal patch suitable for ultrasonic drug delivery, containing an absorbent compound as a means for storing a substance, including but not limited to medication, drugs or nutrient compounds within the patch, wherein the absorbent compound is made to be more resonance compatible with the frequency and intensity of the ultrasonic transmission by pre-treating the absorbent compound to improve its sonic attenuation properties by reducing the quantity of air or gas trapped within the absorbent by: Freezing the absorbent material, and Vacuum drying the absorbent material and/or by Pre-treating the material with sonic energy to remove any impurities within the absorbent material, prior to the application of the substance to the material.
The invention further includes embodiments of a means of instilling a sonic memory into materials used as the semi-permeable film layer of a transdermal patch, wherein the materials are subjected to ultrasound at the desired reactant frequency and intensity levels, while being formulated and cast into a film or membrane state, for a period of time as to make that film or membrane activate its reverse osmosis properties or pore dilation in response to a ultrasonic signal of the same amplitude, frequency and intensity level used during the formulation process.
The invention further includes a modified transdermal delivery device which incorporates a mesh screen at the bottom of the transdermal delivery device, which contacts to the skin, for the purpose of avoiding drug pooling, improving drug absorption, and the speed of absorption of the drug.
The invention further includes a flexible transdermal patch delivery device which incorporates a mesh screen at the bottom of the transdermal delivery device, which contacts the skin, for the purpose of avoiding drug pooling, improving drug absorption, and increasing the speed of absorption of the drug.
The invention further includes embodiments of a transdermal delivery cap or patch-cap delivery device which incorporates a mesh screen at the bottom of the device, which contacts the skin, for the purpose of avoiding drug pooling, improving drug absorption, and increasing the speed of absorption of the drug.
The invention further includes a drug delivery device employing a modified transdermal patch, wherein the modified transdermal patch includes one or more absorbent pads for absorbing a substance, wherein the absorbent material is suitable as a means for storing a substance, including but not limited to a medication, drug or nutrient compound within the patch,
The invention further includes a drug delivery device employing a modified transdermal patch, wherein the modified transdermal patch includes at least two absorbent pads which are stacked upon each other. This embodiment can provide for increased absorption of a substance enabling the patch to (1) hold a greater quantity of the drug, (2) extend the useful life of the patch, (3) Enhance the quantity of the dose which can be released from the patch, by either passive of active methods of drug release.
The invention further includes embodiments of a drug delivery device employing a modified transdermal patch, wherein the modified transdermal patch includes at least one absorbent pad which has a greater thickness to the absorbent material, providing for increased absorption of a substance and enabling the patch to (1) hold a greater quantity of the drug, (2) extend the useful life of the patch, (3) enhance the quantity of the dose which can be released from the patch, by either passive of active methods of drug release.
The absorbent pads in the embodiments of the invention may include material including, but are not limited to, the following materials:
Co-Polymer formulations of Poly methacrylic acid and Poly ethylene glycol Co-Polymer formulations of Poly acrylic acid and Poly (N-isopropylacrylamide) Hyrdogels, e.g. Polyacrylamide, poly(propylene oxide Pluronic polyols family of gel materials, e.g. Pluronic-chitosan hydrogels Silica gels
In addition the pads may include any other natural or synthetic material, which will act to absorb the drug, compound and be able to release the drug upon ultrasonic excitation.
Having described the invention in the above detail, those skilled in the art will recognize that there are a number of variations to the design and functionality for the device, but such variations of the design and functionality are intended to fall within the present disclosure.
This application is related to, claims priority under, and claims the benefit of the following provisional applications filed in the United States Patent and Trademark Office: “MODIFIED TRANSDERMAL DELIVERY PATCH WITH MULTIPLE ABSORBENT PADS”, Bruce K. Redding, Jr., filed on Jul. 3, 2014, and having Ser. No. 61/998,623: “MODIFIED TRANSDERMAL DELIVERY DEVICE OR PATCH AND METHOD OF DELIVERING INSULIN FROM SAID MODIFIED TRANSDERMAL DELIVERY DEVICE”, Bruce K. Redding, Jr., filed on Jul. 3, 2014, and having Ser. No. 61/998,622; “METHOD FOR GLUCOSE CONTROL IN DIABETICS”, Bruce K. Redding, Jr., filed on Jul. 3, 2014, and having Ser. No. 61/998,624; “ULTRASONIC TRANSDUCERS SUITABLE FOR ULTRASONIC DRUG DELIVERY VIA A SYSTEM WHICH IS PORTABLE AND WEARABLE BY THE PATIENT”, Bruce K. Redding, Jr., filed on Jul. 7, 2014, and having Ser. No. 61/998,683; “METHOD FOR THE ATTENUATION ENHANCEMENT OF ABSORBENT MATERIALS USED IN BOTH PASSIVE AND ACTIVE TRANSDERMAL DRUG DELIVERY SYSTEMS”, Bruce K. Redding, Jr., filed on Jul. 9, 2014, and having Ser. No. 61/998,788; “MODIFICATION OF PHARMACEUTICAL PREPARATIONS TO MAKE THEM MORE CONDUCIVE TO ULTRASONIC TRANSDERMAL DELIVERY”, Bruce K. Redding, Jr., filed on Jul. 9, 2014, and having Ser. No. 61/998,790; “METHOD AND APPARATUS FOR MEASURING THE DOSE REMAINING UPON A TRANSDERMAL DRUG DELIVERY DEVICE”, Bruce K. Redding, Jr., filed on Aug. 1, 2014, and having Ser. No. 61/999,589; “METHOD AND APPARATUS FOR EFFECTING ALTERNATING ULTRASONIC TRANSMISSIONS WITHOUT CAVITATION”, Bruce K. Redding, Jr., filed on Feb. 2, 2015, and having Ser. No. 62/125,837. This application hereby incorporates herein by reference the subject matter disclosed in the abstracts, written descriptions, the drawings and claims, in their entireties of the following provisional applications filed in the United States Patent and Trademark Office: “MODIFIED TRANSDERMAL DELIVERY PATCH WITH MULTIPLE ABSORBENT PADS”, Bruce K. Redding, Jr., filed on Jul. 3, 2014, and having Ser. No. 61/998,623: “MODIFIED TRANSDERMAL DELIVERY DEVICE OR PATCH AND METHOD OF DELIVERING INSULIN FROM SAID MODIFIED TRANSDERMAL DELIVERY DEVICE”, Bruce K. Redding, Jr., filed on Jul. 3, 2014, and having Ser. No. 61/998,622; “METHOD FOR GLUCOSE CONTROL IN DIABETICS”, Bruce K. Redding, Jr., filed on Jul. 3, 2014, and having Ser. No. 61/998,624; “ULTRASONIC TRANSDUCERS SUITABLE FOR ULTRASONIC DRUG DELIVERY VIA A SYSTEM WHICH IS PORTABLE AND WEARABLE BY THE PATIENT”, Bruce K. Redding, Jr., filed on Jul. 7, 2014, and having Ser. No. 61/998,683; “METHOD FOR THE ATTENUATION ENHANCEMENT OF ABSORBENT MATERIALS USED IN BOTH PASSIVE AND ACTIVE TRANSDERMAL DRUG DELIVERY SYSTEMS”, Bruce K. Redding, Jr., filed on Jul. 9, 2014, and having Ser. No. 61/998,788; “MODIFICATION OF PHARMACEUTICAL PREPARATIONS TO MAKE THEM MORE CONDUCIVE TO ULTRASONIC TRANSDERMAL DELIVERY”, Bruce K. Redding, Jr., filed on Jul. 9, 2014, and having Ser. No. 61/998,790; “METHOD AND APPARATUS FOR MEASURING THE DOSE REMAINING UPON A TRANSDERMAL DRUG DELIVERY DEVICE”, Bruce K. Redding, Jr., filed on Aug. 1, 2014, and having Ser. No. 61/999,589; “METHOD AND APPARATUS FOR EFFECTING ALTERNATING ULTRASONIC TRANSMISSIONS WITHOUT CAVITATION”, Bruce K. Redding, Jr., filed on Feb. 2, 2015, and having Ser. No. 62/125,837.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US16/60848 | 11/7/2016 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62285668 | Nov 2015 | US |