Modified weight training equipment

Information

  • Patent Grant
  • 11260257
  • Patent Number
    11,260,257
  • Date Filed
    Wednesday, January 31, 2018
    6 years ago
  • Date Issued
    Tuesday, March 1, 2022
    2 years ago
Abstract
A weight object configured to be lifted from a ground surface includes a first portion made of high-durometer material, a second portion made of elastomeric material having equal to or durometer than the first portion, and a handle for holding the weight object and lifting the object from the ground surface, where the second portion includes spaced holes within the elastomeric material for absorbing noise generated when the weight object is dropped on the ground surface. Alternatively, a weight object which is configured to be lifted from a ground surface, including at least one layer of elastomeric material having spaced holes therein for absorbing noise generated when the weight object is dropped on the ground surface, and an opening configured to receive a handle.
Description
BACKGROUND
1. Field

The following description relates to modified weight training equipment. For example, weight training equipment may include one or more shock absorber regions for increasing shock absorption and reducing noise during use.


2. Description of Related Art

One drawback of the prior art weight training equipment, including bumper plate design, is that there is a tradeoff between the noise made when the weights are dropped on a floor and the amount of bounce the weights show after they hit the floor. Low durometer elastomers (e.g. 70) used in such equipment are relatively quiet, but they have a high bounce which can lead to injury. High durometer elastomers (e.g. 90) have a low bounce, but can make a very loud noise (over 130 dB) when dropped. Another drawback is that high durometer weights cause damage to the floor upon impact, especially in a training facility where tremendous force is exerted in small areas of the floor, causing cracks that necessitate frequent and costly repairs. Thus, there is a need for a weight design that has both low bounce and low noise when dropped, and is more gentle on the surface receiving the impact.


SUMMARY

This summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.


In an aspect, a weight object configured to be lifted from a ground surface includes a first portion made of high-durometer material, a second portion made of elastomeric material having lower durometer than the first portion, and a handle for holding the weight object and lifting the object from the ground surface, where the second portion includes spaced holes within the elastomeric material for absorbing noise generated when the weight object is dropped on the ground surface.


The second portion may be an outer portion of the weight object that comes into contact with the ground surface.


The second portion may be an inner portion of the weight object that does not come into contact with the ground surface.


The handle may include a handgrip.


The first and second portions may together be shaped as a bumper plate and the handle may include a bar passing through an opening in the plate.


At least one of the spaced holes may pass completely through the elastomeric material.


At least one of the spaced holes may pass partially through the elastomeric material.


Several of the spaced holes may pass partially through the elastomeric material of which adjacent spaced holes open in opposite directions.


The second portion may be shaped as a ring and the spaced holes may be evenly spaced around the ring.


A shape of the spaced holes may be at least one of hexagonal, circular, square, triangular, and trapezoidal.


The first and second portions together may be shaped as a bumper plate, and the second portion may be on the outer side of the bumper plate enveloping the first portion.


In another aspect, a weight object shaped as a bumper plate configured to be lifted from a ground surface includes at least one elastomeric material including spaced holes therein for absorbing noise generated when the weight object is dropped on the ground surface, and an opening configured to receive a handle for lifting the weight object.


The at least one elastomeric material may include at least two elastomeric materials each having spaced holes therein for absorbing noise.


The at least one elastomeric material may have at least two rows of spaced holes for absorbing noise.


The at least one elastomeric material may have spaced holes therein is positioned on the periphery of the bumper plate, which periphery makes contact with the ground surface when the object is dropped.


The at least one elastomeric material may include at least two elastomeric materials each having a different durometer.


A shape of the spaced holes may be at least one of hexagonal, circular, square, triangular, and trapezoidal.


At least one of the spaced holes may pass completely through the elastomeric material.


At least one of the spaced holes may pass partially through the elastomeric material.


The weight object may further include a handle inserted in the opening for holding the weight object and lifting the object from the ground surface.


Several of the spaced holes may pass partially through the elastomeric material of which spaced holes open in opposite directions.


The weight object may include a contact surface coming in contact with the ground surface when the object is dropped or is rested, and when the object is rested at least one hole in the at least one elastomeric material may extend parallel to the ground surface.


The weight object may include a contact surface coming in contact with the ground surface when the object is dropped or is rested, and when the object is rested at least one hole in the at least one elastomeric material may extend perpendicular to the ground surface.


In yet another aspect, a weight object shaped as a bumper plate and configured to be lifted from a ground surface includes a first portion positioned in a center of the bumper plate and made of elastomeric material, a second portion positioned on a periphery of the bumper plate and made of elastomeric material, where a periphery of the first portion includes a shaped groove formed circumferentially around the periphery, and the second portion is molded into the first portion with a projection shaped to match the shaped groove in the first portion, and at least one of the first and second portions comprises spaced holes within the elastomeric material for absorbing noise generated when the weight object is dropped on the ground surface.


The shaped groove in the first portion and the corresponding projection of the second portion may be T-shaped.


At least one of the spaced holes may pass completely through the elastomeric material.


At least one of the spaced holes may pass partially through the elastomeric material.


Several of the spaced holes may pass partially through the elastomeric material, of which adjacent spaced holes open in opposite directions.


The first and second portions may include different durometer elastomeric materials.





BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing summary, as well as the following detailed description, will be better understood when read in conjunction with the appended drawings. For the purpose of illustration, certain examples of the present description are shown in the drawings. It should be understood, however, that the invention is not limited to the precise arrangements and instrumentalities shown. The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate an implementation of systems, apparatuses, and methods consistent with the present description and, together with the description, serve to explain advantages and principles consistent with the invention.



FIG. 1 is a diagram illustrating a front perspective view of a conventional bumper plate.



FIG. 2 is a diagram illustrating a front perspective view of an example of a quiet bumper plate.



FIG. 3 is a diagram illustrating a front perspective view of another example of a quiet bumper plate.



FIG. 4 is a diagram illustrating a side perspective view of an example of a quiet dumbbell.



FIG. 5 is a diagram illustrating a side perspective view of another example of a quiet dumbbell.



FIG. 6 is a diagram illustrating a side perspective view of an example of a quiet kettlebell.



FIG. 7 is a diagram illustrating a front perspective view of another example of a quiet kettlebell.



FIG. 8 is a diagram illustrating a side perspective view of a crescent shock absorber.



FIG. 9A is a front view of yet another example of a quiet bumper plate with two shock absorber regions and a perspective view of a barbell with two such quiet bumper plates; FIG. 9B is a side perspective view of the quiet bumper plate of FIG. 9A with cross-sections illustrating the holes in the shock absorbing region(s).



FIG. 10 is a diagram illustrating a front view of an additional example of a quiet bumper plate and a perspective view of a barbell with two quiet bumper plates.



FIG. 11 is a diagram illustrating a front view of another additional example of a quiet bumper plate and a perspective view of a barbell with two quiet bumper plates.



FIG. 12 is a diagram illustrating a front view of a further example of a quiet bumper plate and a perspective view of a barbell with two quiet bumper plates.



FIG. 13 is a diagram illustrating a quiet bumper plate formed by a two-part molding process of one or more materials.





The relative size and depiction of individual elements, features and structures may be exaggerated for clarity, illustration, and convenience.


DETAILED DESCRIPTION

The following detailed description is provided to assist the reader in gaining a comprehensive understanding of the methods, apparatuses, and/or systems described herein. Accordingly, various changes, modifications, and equivalents of the systems, apparatuses and/or methods described herein will be suggested and thus apparent to those of ordinary skill in the art. Also, descriptions of well-known functions and constructions may be omitted for increased clarity and conciseness.


In addition, it is to be understood that the phraseology and terminology employed herein are for the purpose of description and should not be regarded as limiting. For example, the use of a singular term, such as, “a” is not intended as limiting of the number of items. Also the use of relational terms, such as but not limited to, “top,” “bottom,” “left,” “right,” “upper,” “lower,” “down,” “up,” “side,” are used in the description for clarity and are not intended to limit the scope of the invention or the appended claims. Further, it should be understood that any one of the features can be used separately or in combination with other features. Other systems, methods, features, and advantages of the invention will be or become apparent to one with skill in the art upon examination of the detailed description. It is intended that such additional systems, methods, features, and advantages be included within this description, be within the scope of the present invention, and be protected by the accompanying claims.


As used herein, the term “about” means plus or minus 10% of a given value unless specifically indicated otherwise. As used herein, the term “shaped” means that an item has the overall appearance of a given shape even if there are minor variations from the pure form of said given shape. A pass through hole or a hole that passes completely through, is one that provides an opening in a solid body through which something, such as air, can pass. A pass through hole opens on opposite sides of the solid body or surface. A hole that passes partially through opens only on one side of the solid body or surface. A “groove” is a cut or depression on a material surface that is not surrounded by the material. A “layer” is a sheet, quantity or thickness of material forming a solid body or surface. In this disclosure, the term “quiet” will also be used to designate modified weights (i.e., bumper plates, dumbbells, kettlebells, etc) in accordance with different examples of the present invention that tend to exhibit low noise upon impact.



FIG. 1 is a front perspective view of a prior art bumper plate 100. A bumper plate is a disk shaped weight that is mounted on a bar bell for weight training. The bumper plate includes an outer rim 102, body 104, hub 106 and collar 108. The collar describes a central bar hole 110. The interface between the rim and body includes an undercut 114. Thus the thickness of the body may be somewhat less than the thickness of the rim. The interface between the body and the hub includes a step 116. Thus the hub may have a larger thickness than the body. The larger thicknesses of the rim and hub relative to the body allow for raised indicia 120 to be molded into the body. The hub and rim protect said indicia when the bumper plate lies flat on the ground. The undercut also acts as a handle to make it easier to lift the bumper plate. The outer edge of the rim includes a bevel 112. This makes it easier to pick up the bumper plate when it is lying flat on the ground.


A typical bumper plate may have a radius 122 in the range of 8.75 inches to 8.86 inches (222.25 mm to 225.044 mm). Radius of 8.86 inches (222.25 mm) is a standard size for competition. The bar hole radius 126 is about 1 inch (25.4 mm). The hub radius 124 is about 4.26 inches (108.204 mm). The rim height 132 is about 1.77 inches (44.958 mm). The undercut is about 0.43 inches (10.922 mm). The rim thickness 136 may be in the range of 1.4 inches to 3.75 inches (35.56 mm to 95.25 mm) depending upon the weight of the bumper plate.


The bumper plate may be made of solid rubber, bonded crumb rubber, polyurethane or other elastomer. The durometer of the elastomer may be in the range of 70 to 90. The collar may be made of metal. The hub may include a metal disk plate for extra weight.



FIG. 2 is a front perspective view of a modified bumper plate 200 in one example of the present invention. The bumper plate in FIG. 2 is disk shaped with a shock absorber region 220 in the rim 202. The shock absorber region 220 includes a first circumferential row of first holes 222. In one example, the holes 222 pass transversely through the rim and are evenly spaced. In a different example, the holes 222 do not pass completely through the rim but go through only partially. The holes 222 in this example are hexagonal, but any shape may be used. Some shapes which may be used for the hole include, but are not limited to, circle, square, triangle, trapezoidal among any other shapes including irregular shapes. In this example, the internal corners of the hexagons are rounded to reduce material cracking. A suitable internal radius of curvature of the internal corners 242 is in the range of 0.02 inches to 0.05 inches (0.05 mm to 1.27 mm). The elastomeric material between the holes 222 forms radial walls 224. The holes 222 and surrounding radial walls 224 act as shock absorbers when the bumper plate is dropped on the ground thus reducing the noise emitted without unduly increasing bounce. For bumper plates with a radius of about 8.75 inches (222.25 mm) or greater, a suitable first hole width 226 is in the range of 0.5 inches to 0.75 inches (12.7 mm to 19.05 mm). A suitable hole spacing 228 is in the range of 0.75 inches to 1.5 inches (19.05 mm to 38.1 mm). A suitable wall width 230 is in the range of 0.13 inches to 0.5 inches (3.301 mm to 12.7 mm). A suitable wall height 232 is in the range of 0.5 inches to 1 inch (12.7 mm to 25.4 mm). A suitable spacing for other shapes can vary and be experimentally determined as discussed below.


In accordance with the example illustrated in FIG. 2, a second circumferential row of second holes 234 may be provided adjacent to the row of first holes. As illustrated, the second holes 234 pass transversely through the disk, although in a different example may penetrate only partially. The second holes 234 form a plurality of circumferential walls 236 with the first holes 222. The second row of holes 234 and respective walls provide additional shock absorbing capability.


Additional rows of holes may be provided, as desired. The holes 222, 234 do not have to be the same shape or size within a given row. A suitable overall height of the shock absorber 238 region taken up by the rows of holes 222, 234 may be in the range of 0.5 inches to 1.5 inches (12.7 mm to 38.1 mm) for standard size equipment or vary in range for alternative designs.


Sufficient clearance 254 should be provided between the first holes 222 and the outer radial surface of the disk 256 to form a skin 252. A suitable skin thickness is typically in the range of 0.06 inches to 0.25 inches (1.524 mm to 6.35 mm). Larger thicknesses can be used for stronger skins depending on the selected material. The outer radial surface may also include radial projections (not shown) that can act as additional shock absorbers. For example, the shock absorber region 238 may be positioned on the outermost 2.5 inches to 3 inches (63.5 mm to 76.2 mm).


The quiet bumper plate may include a rim 202, body 204, hub 206 and collar 208. An undercut 212 may be provided at the interface of the rim and body. A step 214 may be provided at the interface of the body and hub. The dimensions of the rim, body, hub, collar, undercut and step may be similar to the dimensions of the corresponding features of the prior art bumper plate of FIG. 1. The undercut and step recess the body relative to the rim and hub so that raised indicia 216 may be provided in the body. A bevel (not shown) may also be provided on the outer corner of the rim. As noted, the outer dimensions of the plate preferably are similar to those of standard equipment but can vary in different settings.


In order to keep the same plate radius and weight as the prior art and/or standard for competition, the thickness 244 of the plate a may be increased to account for the loss of material from the holes 222, 234. Higher density materials may be also be added in different examples. An example is the use of metal plates provided at the hub or internal to the bumper plate to increase overall density without unduly increasing thickness.


The quiet bumper plate may be made of an elastomer, such as rubber, pressed crumb rubber, poly urethane or mixtures thereof. Durometers may be in the range of 60 to 90. Lower durometer elastomers may be used in bumper plates designated for home use. This will help keep the noise to levels acceptable in homes. A different durometer may be used in the shock absorber region relative to the rest of the quiet bumper plate.



FIG. 3 is a front perspective view of an alternative quiet bumper plate 300. This is similar to the quiet bumper plate of FIG. 2 except the shock absorber region 302 includes first holes 304 with an elongated inverted trapezoidal shape. The first holes 304 are evenly spaced circumferentially. Radial walls 306 are formed between the holes 304. The radial walls 306 have a relatively wide base and narrow top.



FIG. 4 is a side perspective view of a quiet dumbbell 400. The dumbbell includes a conventional hexagonal weight dumbbell 404 with a shock absorber 402 provided around each weight. The dumbbell 404 may be made of metal and the shock absorber 402 may be made of an elastomer. The holes in the shock absorber are similar to the holes in the quiet bumper plate of FIG. 2, or may be adjusted to comport with the overall dimensions of the dumbbell.



FIG. 5 is a side perspective view of an alternative quiet dumbbell 500. The dumbbell includes a conventional hexagonal weight dumbbell 404 with a shock absorber 502 provided around each weight. The dumbbell 404 may be made of metal and the shock absorber 502 may be made of an elastomer. The holes in the shock absorber are similar to the holes in the quiet bumper plate of FIG. 3, or may be adjusted to comport with the dimensions of the dumbbell. The shock absorbers for either quiet dumbbell (FIG. 4 or FIG. 5) may have one or more flat outer surfaces for storage and stacking (not shown). In a specific example, the shock absorbing elastomeric layer can be configured so that the weight can retain the shape of a conventional hexagonal weight dumbbell.



FIG. 6 is a side perspective view of a modified kettlebell 600. The kettlebell 600 includes a conventional kettlebell 604 with several shock absorber crescents 602 provided around the weight. The kettlebell 600 may be made of metal and the shock absorber crescents may be made of an elastomer. The holes in the shock absorber crescents are similar to the holes in the quiet bumper plate of FIG. 2 or modified as necessary to correspond to the dimensions of the kettlebell. The crescents may be attached to the kettlebell by any known means, such as welding, gluing, pre-molding or other means. Six to eight crescents are provided radially and join at the bottom of the kettlebell. Sufficient number of crescents are applied so that the metal kettlebell within the crescents does not hit the ground when dropped.



FIG. 7 is a front perspective view of an alternative modified kettlebell 700. The kettlebell includes a conventional kettlebell 604 with several shock absorber crescents 702 provided around the weight. The kettlebell 604 may be made of metal and the shock absorber crescents 702 may be made of an elastomer. The holes in the shock absorber crescents are similar to the holes in the quiet bumper plate of FIG. 3 or adjusted to the dimensions of the device. The crescents may be attached to the kettlebell by any known means, such as welding, gluing, or pre-molding. In this example, six to eight crescents are provided radially and join at the bottom of the kettlebell though more or less crescents may be used. As in other examples discussed herein, the holes may extend through only partially through the shock absorber crescents. Alternative designs for a quiet kettlebell that does not use absorber crescents may include a heavy inner portion and an elastomeric outer portion provided with shock absorbing holes of different dimensions and arrangements. In such embodiments, the holes can be formed extending radially toward the center of the kettlebell or at an angle. In alternative embodiments to those illustrated in FIGS. 6 and 7, the ends of crescents 602 and 702 facing the top of the kettlebell may gradually taper to avoid sharp edges (not shown). In yet another embodiment, instead of crescents, the shock absorbing portion of the kettlebell can be configured as a layer of elastomeric material with holes therein that envelops the metal core of the kettlebell.



FIG. 8 is a side perspective view of a crescent shock absorber 800 made according to the current invention. The crescent has a thickness 810 of about 1 inch (25.4 mm). It has a height 812 of about 1 inch. It has an arcuate shape with a crescent angle 806 of about 90°. The radius of curvature to the inside surface 808 is about 8.75 inches (222.25 mm). Thus, the crescent would conform to the outer curvature of the prior art bumper plate of FIG. 1. A single row of evenly spaced hexagonal first holes 811 is provided. The hole spacing 814, in one example, may be about 1 inch (25.4 mm). The hole width 816 is about 0.63 inches (16.002 mm). The radial walls between the holes each have a width 818 of about 0.38 inches (9.652 mm). The skin thickness 822 is about 0.13 inches (3.302 mm). A first half of a reclosable 3M™ DualLock™ fastener 804 is provided on the inside surface of the crescent in a specific implementation. The first half was mated to the corresponding second half of the DualLock fastener that was bonded to the outer radial surface of a conventional bumper plate similar to the one shown in FIG. 1. The crescent was formed by molding a thermoplastic elastomeric compound, Stantoprene™ 101-64 (item 802). The rated durometer of the Stantoprene was Shore A 69.


In an example, a test was conducted with a conventional barbell weighing 135 lb. The barbell had a bumper plate on each end of the style shown in FIG. 1. The barbell was dropped from a height of 4′10 inches (147.32 cm) onto a rubber stall mat covering a poured concrete floor. The noise of the impact was measured with a decibel meter. 136 dB was recorded when the barbell was dropped without any crescent shock absorbers on the bumper plates.


Another test was conducted with four crescent shock absorbers attached to the outer radial surfaces of the bumper plates on the barbell using the DualLock fasteners. The crescents wrapped around the outer surface of each bumper plate. The drop test was repeated. The noise recorded was only 95 dB with minor increase in bounce. It will be appreciated that the testing procedure described above can be used to help design modified weight training equipment with desired characteristics. For example, running the described tests on different hole designs can determine the hole configuration that is optimal for a desired noise level.



FIG. 9 is a diagram illustrating a front view of yet another example of a quiet bumper plate and a perspective view of a barbell with the quiet bumper plate.


Referring to FIG. 9A, another example of a quiet bumper plate 900 is illustrated that is similar to the quiet bumper plate of FIG. 2 except there are at least two shock absorber regions 902, 908. FIG. 9B is a side perspective view of the quiet bumper plate of FIG. 9A with cross-sections illustrating the holes in the shock absorbing regions. The first region 902 includes a first circumferential row of holes 904 and possibly a second circumferential row of holes 906, and the second region 908 includes a third circumferential row of holes 910 and possibly a fourth circumferential row of holes 912. In addition, referring to FIG. 9A, the weight object may include a handle 920 which is inserted in an opening 916 (see FIG. 9B) of each quiet bumper plate 900.


In a preferred embodiment, the dimensions of the first circumferential row of holes 904 and the third circumferential row of holes 910 may be the same, and may have the same dimensions as described in reference to the first holes 222 of the quiet bumper plate 200 of FIG. 2. The dimensions of the optional second circumferential row of holes 906 and the fourth circumferential row of holes 912 may be the same, and may have the same dimensions as described in reference to the second holes 234 of the quiet bumper plate 200 of FIG. 2. Other dimensions including the internal radius of curvature of the internal corners of the holes 904, 906, 910, 912, hole spacing, wall width, wall height, overall height of each shock absorber region 902, 908 taken up by two rows of holes, and the skin thickness may be the same as the dimensions provided in the example of FIG. 2. In a preferred example, the distance between the outer rim of the bumper plate 900 and the outermost edge of the second shock absorber region 908 may be 5 inches to 7.5 inches (127 mm to 190.5 mm), where the outermost edge of the second shock absorber region 908 is defined by a circle contacting the point of each holes 910 which is closest to the outer rim of the bumper plate 900. As disclosed with reference to FIG. 2, the quiet bumper plates of FIGS. 9A, 9B may be made of elastomeric material, such as rubber, pressed crumb rubber, polyurethane or mixtures thereof, and different durometer elastomeric material may be used in the shock absorber region(s) relative to the rest of the quiet bumper plate. Further, as in FIG. 2 a quiet bumper plate has a collar (see 208) having an opening configured to receive a handle for lifting the weight object. See, for example, FIG. 9A for a perspective view of a barbell, a bar inserted in corresponding openings for lifting two quiet bumper plates.


In this example, by moving the holes toward the center of the plate, vibration and force that is transmitted from the ground when the plate is dropped can be better controlled. By moving the holes toward the center, this allows the two solid sections of the plate to move somewhat independently from each other when a large force is applied such as when a barbell is dropped. The resulting reduction of force would reduce the stress on the flooring below, thus reducing overall noise as well as damage to flooring. The second shock absorber region 908 and corresponding holes 910, 912 would also reduce the forces put on the collar and exerted from the collar, thus reducing the likelihood of a failure point. As before, holes can go through for ease of manufacture or go partially through to provide higher structural integrity. In the case of partial pass-through holes, adjacent holes in a row may alternate in a pattern where every other hole faces (i.e. are open in) one direction, and the alternate adjacent holes face (i.e. are open in) the other direction. This hole arrangement may be applied to all embodiments described in this application (i.e., FIGS. 3-11), and is intended to improve the structural integrity of the shock absorbing portions of the respective weights.



FIG. 10 is a diagram illustrating a front view of an additional example of a quiet bumper plate and a perspective view of a barbell with the quiet bumper plate.


Referring to FIG. 10, another example of a quiet bumper plate 1000 is illustrated that is similar to the quiet bumper plate of FIG. 9 except there is only the inner shock absorber region 1002. This region 1002 includes a first circumferential row of holes 1004 and an optional second circumferential row of holes 1006.


In a preferred embodiment, the dimensions of the first circumferential row of holes 1004 may be the same as described in reference to the first holes 222 of the quiet bumper plate 200 of FIG. 2. The dimensions of the second circumferential row of holes 1006 may be the same as described in reference to the second holes 234 of the quiet bumper plate 200 of FIG. 2. Other dimensions including the internal radius of curvature of the internal corners of the holes 1004, 1006 hole spacing, wall width, wall height, overall height of the shock absorber region 1002 taken up by the two rows of holes, and the skin thickness may be the same as the dimensions provided in the example of FIG. 2, or vary as desired. In a preferred example, the distance between the outer rim of the bumper plate 1000 and the outermost edge of the shock absorber region 1002 may be 5 inches to 7.5 inches (127 mm to 190.5 mm), where the outermost edge of the shock absorber region 1002 is defined by a circle contacting the point of each holes 1004 which is closest to the outer rim of the bumper plate 1000.


Further, it should be appreciated that the sizes and dimensions of holes may vary according to optimal dimensions determined through testing. That is, testing procedure can be used to help design modified bumper plates, or more generally weights, with desired characteristics. For example, running the described tests on different hole designs can determine the hole configuration that is optimal for a desired noise level and/or weight equipment.


In this example, by moving the row of shock absorbing holes 1004, 1006 to the center of the plate, this may increase durability over variations where the shock absorbency is on the outer ring.



FIG. 11 is a diagram illustrating a front view of another example of a quiet bumper plate and a perspective view of a barbell with the quiet bumper plate.


Referring to FIG. 11, another example of a quiet bumper plate 1100 is illustrated. This example is similar to the quiet bumper plate of FIG. 10 except the inner shock absorber region 1102 is closer to the collar of the bumper plate 1100. This region 1102 includes a first circumferential row of holes 1104 and an optional second circumferential row of holes 1106.


In a preferred embodiment, the dimensions of the first circumferential row of holes 1104 may be the same as described in reference to the first holes 222 of the quiet bumper plate 200 of FIG. 2, or may vary as desired or dictated by design. The dimensions of the second circumferential row of holes 1106 may be the same as described in reference to the second holes 234 of the quiet bumper plate 200 of FIG. 2. Other dimensions including the internal radius of curvature of the internal corners of the holes 1104, 1106 hole spacing, wall width, wall height, overall height of the shock absorber region 1102 taken up by the two rows of holes, and the skin thickness may be the same as the dimensions provided in the example of FIG. 2, or may vary as desired or dictated by design. In a preferred example, the distance between the outer rim of the bumper plate 1100 and the outermost edge of the shock absorber region 1102 may be 6 inches to 7.5 inches (152.4 mm to 190.5 mm), where the outermost edge of the shock absorber region 1102 is defined by a circle contacting the point of each holes 1104 which is closest to the outer rim of the bumper plate 1100.


In this example, by moving the row of shock absorbing holes 1104, 1106 to the collar of the plate, this may increase durability over variations where the shock absorbency is on the outer ring. By moving the row of shock absorbing holes 1104, 1106 to where the bar passes through the plate this could also reduce the forces that cause damage to the collar. It will be appreciated that the bar hole alone or in combination with the bar can be used as a handle to hold and lift the plate off the ground.



FIG. 12 is a diagram illustrating a front view of a further example of a quiet bumper plate 1200 and a perspective view of a barbell with the quiet bumper plate. The bumper plate 1200 of FIG. 12 is a variation of the bumper plate 200 illustrated in FIG. 2 in which a high-density foam is added to the open spaces of the shock absorbing holes on the outer ring. In this example, by adding the foam to the open spaces of the shock absorbing holes, all the benefits of the bumper plate 200 of FIG. 2 are retained with the added benefits of reduced noise reduction and compression and increased durability.


While this example illustrates foam being added to all holes, a number of different variations may be provided. For example, foam may be added to only the first row of circumferential holes and not the second row of circumferential holes. In contrast, the foam may be added to only the second row of circumferential holes and not the first row of circumferential holes. Further, foam may be added to only half of the holes in any type of arrangement such as every other hole or only on one side of the bumper plate 1200. This example may be applied to all embodiments illustrated; that is, foam may be used to fill holes in all embodiments described throughout the application. Other materials may also be used to fill the holes such as elastomeric, gel, or other materials.


In another aspect, flat sheets of elastomers with shock absorber regions may be used as protective mats. The shock absorber regions may be similar to the ones described above. Thus when a weight is dropped on the mat, the mat will suppress noise without unduly increasing bounce. The shock absorber mats may be made by extrusion.



FIG. 13 is a diagram illustrating a quiet bumper plate formed by a two-part molding process of one or more materials.


Referring to FIG. 13, a method of manufacturing a quiet bumper plate 1300 and a quiet bumper plate 1300 formed using such a method are described. According to this example, the center section 1310 of the plate 1300 may be molded to the outside ring 1320 in a two-part molding process. This manufacturing process would allow the center section 1310 of the plate 1300 to be molded in a higher density rubber allowing for reduced bounce and greater durability.


For example, the center section 1310 may be formed of rubber having a density in the range of 50 durometers to 70 durometers, preferably in the range of 55 durometers to 70 durometers, and most preferably in the range of 59 durometers to 69 durometers. The outside ring 1320 may be formed of rubber having a density in the range of 70 durometers to 90 durometers, preferably in the range of 75 durometers to 90 durometers, and most preferably in the range of 79 durometers to 89 durometers. Higher density or harder bumper plates (as measured by a durometer) bounce less and are more durable than lower density plates. Accordingly, at least one advantage of a higher density outside ring 1320 includes providing a more durable and less bouncy bumper plate while maintaining the shock absorption advantages of a lower durometer center section 1310.


In another example, the center section 1310 may be formed of rubber having a higher density than the rubber forming the outside ring 1320. In other words, unlike the previous example, the lower density section may be formed on the outside while the higher density section is formed on the inside. In a further example, the center section 1310 and the outside ring 1320 may be formed of different density materials or different materials altogether including any one or more of a rubber, a polymer, a metal, other elastomers, or other materials.


In an example, a method of manufacturing the bumper plate 1300 includes molding the center section 1310 of the plate 1300 with an inverted T-shaped groove 1315 formed circumferentially around the entirety of the outer ring, as illustrated in the cross-sectional view of the bumper plate 1300. After the center section 1310 has cured or is partially cured, the outer section 1320 could be molded with a T-shaped projection 1325 formed circumferentially around the entirety of the outer section 1320 which corresponds to the T-shaped groove 1315 of the center section 1310. In this example, the outer section 1320 is also molded to include a first row of circumferential holes 1330 and a second row of circumferential holes 1335. This results in the bumper plate 1300 having the same arrangement of holes as provided in the bumper plate 200 of the example in FIG. 2 but the bumper plate 1300 being formed on one or more materials having different characteristics. While this example describes a T-shaped groove 1315 and a T-shaped projection 1325, it should be appreciated that a number of other shapes may be used for the groove and projection such as corresponding squares, triangles, U-shapes, among any other shapes. In addition, while this example describes the grooves and projections around the entire circumference of the bumper plate 1300, it should be appreciated that the grooves and projections may be formed around one or more partial sections around the bumper plate 1300.


Further, while this example results in the bumper plate 1300 having the same arrangement of holes as provided in the bumper plate 200 of the example in FIG. 2, it should be appreciated that any of the described and envisioned examples may also be formed according to this method. That is, the inner section may also be molded with holes to result in a bumper plate 900 as provided in the example in FIG. 9, or the inner section only may be molded with holes to result in a bumper plate 1000, 1010 as provided in the examples of FIGS. 10 and 11. In addition, in all of these examples, the resulting bumper plate 1300 may include holes that are filled with foam as described in connection with the description provided for FIG. 12.


Sound tests were conducted using an example prototype of the above described bumper plates as illustrated in FIG. 2.


The test parameters used were as follows:


Brands of Bumpers: Rogue Echo—88 Durometer Bumper Plates


System Weight: 95 lbs (2×45 lb bumpers, 1×5 lb wooden Dowel)


Barbell: Wooden Dowel 2″


Flooring: Standard ¾″ Rubber Stall Mat On Concrete


Collars: Clout Fitness Collars


dB Meter distance from barbell: 4


The results for this test are described below in Table 1. Referring to Table 1, the Rogue Echo results are dB values without use of the prototype, the Stealth 1 Stip SWL Prototype results are dB values with use of the prototype. Delta refers to the difference in values with and without use of the prototype, other values including percent decrease, average percent decrease, average dB decrease, and percent of noise eliminated are based on the calculated delta values.
















TABLE 1






Rogue
Stealth 1 Strip

%
Average %
Average dB
% of Noise



Echo
SWL Prototype
Delta
Decrease
Decrease
Decrease
ELIMINATED






















34″ Waist
97.1
84.4
−12.7
−13%
−11%
−10.9
90%



102.6
96.5
−6.1
 −6%






102.7
88.6
−14.1
−14%







82.8
*Not Factored In






56″ Shoulder
97.8
91.0
−6.8
 −7%
−15%
−14.7
90-99%


Front Rack
103.3
85.4
−17.9
−17%






98.4
84.0
−14.4
−15   






97.5
77.9
−19.6
−20%






103.4
*Not Factored In







79.5″
110.6
95.2
−15.4
−14%
−13%
−14.7
90-99%


Overhead
105.9
95.2
−10.7
−10%






111.3
93.5
−17.8
−16%






100.4
95.6
−4.8
 −5%






111.3
86.3
−25.0
−22%









One of skill in the art will recognize that the described examples are not limited to any particular equipment size. Further one of skill in the art will recognize that the bumper plates, dumbbells, kettlebells, and shock absorbers described herein are not limited to any type of material. As a non-limiting example, the bumper plates are formed primarily from rubber. One skilled in the art will recognize that other diameters, types and thicknesses of preferred materials can be utilized when taking into consideration preferred shock absorption characteristics and different applications that can be determined and optimized, for example, via sound testing as described above.


An additional configuration is envisioned as part of all embodiments discussed above. The modification is based on the “sealing” of the outward facing holes, similar to a familiar sealing of a honeycomb. The sealing may be achieved with a membrane that covers the outward facing openings, thus protecting them from dirt without affecting the overall design and/or efficiency of the holes. Methods for sealing the outward facing holes to this end will be apparent to a person having ordinary skill in the art. This may include but is not limited to sealing using an additional elastomeric or non-elastomeric material, such as a transparent or opaque rubber, plastic or polymeric material but not limited thereto.


It will be appreciated by those skilled in the art that changes could be made to the embodiments described above without departing from the broad inventive concept thereof. It is understood, therefore, that the invention disclosed herein is not limited to the particular embodiments disclosed, and is intended to cover modifications within the spirit and scope of the present invention.

Claims
  • 1. A modified bumper plate comprising a rim, an elastomeric body, and a collar with an opening in the center, further comprising: at least one elastomeric material having durometer hardness equal to or lower than that of the elastomeric body and forming at least part of the rim, the at least one elastomeric material forming a first shock absorber region in the rim comprising spaced pass-through holes therein configured to absorb noise generated when the modified bumper plate is dropped on a hard surface;wherein exit openings of at least some of the spaced pass-through holes are arranged along two or more circles around the center of the collar, andwherein the opening in the center of the collar is configured to receive an end of a bar for lifting the modified bumper plate.
  • 2. The modified bumper plate of claim 1, wherein the first shock absorber region in the rim formed by the at least one elastomeric material having spaced pass-through holes therein is positioned on a periphery of the modified bumper plate, wherein the periphery is configured to make contact with the hard surface when the modified bumper plate is dropped.
  • 3. The modified bumper plate of claim 1, wherein a shape of the spaced pass-through holes is at least one of hexagonal, circular, square, triangular, trapezoidal or irregular.
  • 4. The modified bumper plate of claim 1 wherein spaced pass-through holes in one of the two or more circles are larger than spaced pass-through holes in the other of the two or more circles.
  • 5. The modified bumper plate of claim 1, wherein the first shock absorber region in the rim of the modified bumper plate comprises a contact surface configured to come in contact with the hard surface when the modified bumper plate is dropped or is rested, and when the modified bumper plate is rested at least one of the spaced pass-through holes in the at least one elastomeric material extends parallel to the hard surface.
  • 6. The modified bumper plate of claim 1, wherein the radius of the modified bumper plate is greater than or equal to 222.25 mm.
  • 7. The modified bumper plate of claim 1, further comprising at least one additional hole that passes partially through the at least one elastomeric material.
  • 8. The modified bumper plate of claim 1, wherein the opening in the center of the collar configured to receive an end of a bar for lifting the modified bumper plate is about one inch (25.4 mm) in radius.
  • 9. The modified bumper plate of claim 1, wherein the at least one elastomeric material is one or more of rubber, pressed crumb rubber, polyurethane or mixtures thereof.
  • 10. The modified bumper plate of claim 1, wherein at least some of the spaced pass-through holes are greater than 12.7 mm wide in cross-section.
  • 11. The modified bumper plate of claim 1, wherein the at least one elastomeric material has durometer hardness in the range of 60 to 90.
  • 12. The modified bumper plate of claim 1, wherein the first shock absorber region in the rim comprising spaced pass-through holes therein has a radial dimension in the range of 0.5 inches to 1.5 inches (12.7 mm to 38.1 mm).
  • 13. The modified bumper plate of claim 1, wherein the spaced pass-through holes are separated from each other by an elastomeric wall having thickness in the range of 0.13 inches to 0.5 inches (3.301 mm to 12.7 mm).
  • 14. A collection of modified bumper plates of claim 1, the collection comprising two or more pairs of modified bumper plates, wherein modified bumper plates in each pair have the same weight and at least two pairs of modified bumper plates in the collection have different weights.
  • 15. A barbell comprising a bar and at least one pair of modified bumper plates of claim 1, the modified bumper plates of each pair being of equal weight and being attached on opposite ends of the bar, wherein each end of the bar is dimensioned to fit in the opening in the center of the collar of each modified bumper plate.
  • 16. A modified bumper plate comprising a rim, an elastomeric body, and a collar with an opening in the center, further comprising: at least one elastomeric material having durometer hardness equal to or lower than that of the elastomeric body and forming at least part of the rim, the at least one elastomeric material forming a first shock absorber region in the rim comprising spaced pass-through holes therein configured to absorb noise generated when the modified bumper plate is dropped on a hard surface;wherein exit openings of at least some of the spaced pass-through holes are arranged along one or more circles around the center of the collar, andwherein the opening in the center of the collar is configured to receive an end of a bar for lifting the modified bumper plate, and wherein the at least one elastomeric material forms a second shock absorber region in the elastomeric body, said second shock absorber region comprising spaced pass-through holes configured to absorb noise with exit holes arranged along one or more circles around the center of the collar.
  • 17. The modified bumper plate of claim 16, wherein the first shock absorber region is positioned on a periphery of the modified bumper plate, wherein the periphery is configured to make contact with the hard surface when the modified bumper plate is dropped.
  • 18. The modified bumper plate of claim 16, wherein at least one of said first shock absorber region in the rim and said second shock absorber region in the elastomeric body comprises two concentric circles of exit hole openings of spaced pass-through holes configured for absorbing noise.
  • 19. The modified bumper plate of claim 16, wherein a shape of the spaced pass-through holes of each of the first and second shock absorber regions is at least two of hexagonal, circular, square, triangular, trapezoidal or irregular.
  • 20. The modified bumper plate of claim 17, wherein spaced pass-through holes in the second shock absorber region in the elastomeric body are positioned about 5 inches to 7.5 inches (127 mm to 190.5 mm) away from a periphery of the modified bumper plate configured to make contact with the hard surface when the modified bumper plate is dropped.
  • 21. A modified bumper plate comprising a rim, a body, and a collar with an opening in the center, further comprising: at least one elastomeric material having durometer hardness equal to or lower than that of the elastomeric body and forming at least part of the rim, the at least one elastomeric material forming a first shock absorber region in the rim comprising spaced pass-through holes therein configured to absorb noise generated when the modified bumper plate is dropped on a hard surface;wherein exit openings of at least some of the spaced pass-through holes are arranged along one or more circles around the center of the collar, andwherein the opening in the center of the collar is configured to receive an end of a bar for lifting the modified bumper plate, and wherein the spaced pass-through holes are positioned about 0.06 inches to 0.25 inches (1.524 mm to 6.35 mm) away from a periphery of the modified bumper plate configured to make contact with the hard surface when the modified bumper plate is dropped.
US Referenced Citations (204)
Number Name Date Kind
1033056 Richert Jul 1912 A
3606410 Inserra Sep 1971 A
3790922 Normann Feb 1974 A
D279495 Barbeau Jul 1985 S
D280433 Lincir Sep 1985 S
D287387 Oliver et al. Dec 1986 S
4639979 Polson Feb 1987 A
4738446 Miles Apr 1988 A
4773641 Metz Sep 1988 A
4817944 Anderson et al. Apr 1989 A
4893810 Lee Jan 1990 A
D314422 Adorjan Feb 1991 S
5033740 Schwartz et al. Jul 1991 A
5108066 Lundstrom Apr 1992 A
5137502 Anastasi Aug 1992 A
5163887 Hatch Nov 1992 A
D346433 Cooper Apr 1994 S
D354322 Vodhanel, Jr. Jan 1995 S
D355007 Rojas et al. Jan 1995 S
5692996 Widerman Dec 1997 A
D394685 Eckmann May 1998 S
D405484 Rojas et al. Feb 1999 S
D406183 Zovich Feb 1999 S
D409266 Rojas et al. May 1999 S
D409695 Rojas et al. May 1999 S
6014078 Rojas et al. Jan 2000 A
D421076 Lincir Feb 2000 S
D424140 Lincir May 2000 S
D424639 Rojas et al. May 2000 S
D428947 Harms et al. Aug 2000 S
D433468 Rojas et al. Nov 2000 S
D433469 Rojas et al. Nov 2000 S
D433720 Rojas et al. Nov 2000 S
D433721 Rojas et al. Nov 2000 S
D434090 Wallace et al. Nov 2000 S
D437015 Rojas et al. Jan 2001 S
D439290 Rojas et al. Mar 2001 S
D441412 Rojas et al. May 2001 S
D441812 Rojas et al. May 2001 S
D442239 Rojas et al. May 2001 S
D442240 Rojas et al. May 2001 S
D442654 Buchanan May 2001 S
D445153 Lincir Jul 2001 S
D445154 Lincir Jul 2001 S
D445854 Harms et al. Jul 2001 S
D446265 Lincir Aug 2001 S
D446559 Lincir Aug 2001 S
D448055 Lien et al. Sep 2001 S
D450361 Harms et al. Nov 2001 S
D451158 Lincir Nov 2001 S
D451159 Rojas et al. Nov 2001 S
D451160 Rojas et al. Nov 2001 S
6319176 Landfair Nov 2001 B1
D454167 Lincir Mar 2002 S
6436015 Frasco et al. Aug 2002 B1
D463001 Buchanan Sep 2002 S
D474517 Harms May 2003 S
D476383 Chen Jun 2003 S
D480969 Owens Oct 2003 S
D483083 Allshouse et al. Dec 2003 S
6681822 Adams Jan 2004 B2
6702723 Landfair Mar 2004 B2
6736765 Wallace May 2004 B2
6746380 Lien et al. Jun 2004 B2
D494451 Winig et al. Aug 2004 S
D496414 Harms et al. Sep 2004 S
6837833 Elledge Jan 2005 B2
D502514 Buchanan et al. Mar 2005 S
6875161 Brice Apr 2005 B1
D504923 Harms et al. May 2005 S
D511366 Brown Nov 2005 S
6991590 Vigiano Jan 2006 B2
D516639 Hamilton Mar 2006 S
D519584 Brice et al. Apr 2006 S
7174934 Hill, III Feb 2007 B2
7198591 Lien Apr 2007 B2
7207929 Hamilton Apr 2007 B2
7300389 Lien et al. Nov 2007 B2
D562415 Xu et al. Feb 2008 S
D562919 Hillson Feb 2008 S
D566207 Cao Apr 2008 S
D566208 Alessandri et al. Apr 2008 S
D566209 Alessandri et al. Apr 2008 S
D568423 Y'shua et al. May 2008 S
D572320 Davies, III Jul 2008 S
D573207 Davies, III Jul 2008 S
D573208 Davies, III Jul 2008 S
7517305 Lien Apr 2009 B2
D606133 Lien Dec 2009 S
7625322 Krull Dec 2009 B1
D609526 Tuttle Feb 2010 S
D611524 Lawrence, III Mar 2010 S
7704196 Lien et al. Apr 2010 B2
D615605 Frasco et al. May 2010 S
D628248 Januszek Nov 2010 S
7828702 Lien et al. Nov 2010 B2
D631142 Angell Jan 2011 S
D637697 Steiner May 2011 S
D639874 Hillson Jun 2011 S
D643075 Childs Aug 2011 S
8113253 Arakawa Feb 2012 B2
D660928 Guarrasi May 2012 S
D662558 Lovegrove et al. Jun 2012 S
8282138 Steiner Oct 2012 B2
D673230 Qin Dec 2012 S
8434533 Albert May 2013 B2
D684224 Davies, III Jun 2013 S
D688759 Davies, III Aug 2013 S
D692969 Davies, III Nov 2013 S
D695128 Ozsinmaz Dec 2013 S
D722348 Kessler Feb 2015 S
9005088 Sides, Jr. Apr 2015 B2
D732613 Davies, III Jun 2015 S
D736884 Lovley, II et al. Aug 2015 S
9109616 Ballentine Aug 2015 B1
9149994 Martin Oct 2015 B2
D749177 Childs Feb 2016 S
D749889 Magistro Feb 2016 S
D751157 Irwin et al. Mar 2016 S
D751940 Vaughan et al. Mar 2016 S
9358414 Dephouse Jun 2016 B2
9364704 Kuka Jun 2016 B1
D763658 Grasselli et al. Aug 2016 S
D764608 Jones Aug 2016 S
D766384 Jones Sep 2016 S
9440404 Martin Sep 2016 B2
D771205 Davies, III Nov 2016 S
9504869 Gavigan Nov 2016 B2
D777266 Davies, III Jan 2017 S
D780859 Ramsey et al. Mar 2017 S
D780860 Jones Mar 2017 S
D780861 Jones Mar 2017 S
D788886 Salzer Jun 2017 S
9682268 Breitkreulz et al. Jun 2017 B2
D795971 Patti Aug 2017 S
9751270 Thompson Sep 2017 B2
D798968 Lien Oct 2017 S
D799939 Lowitz Oct 2017 S
D802689 Lien Nov 2017 S
D810849 Chong Feb 2018 S
D821175 Grasselli et al. Jun 2018 S
10010741 Rothschild Jul 2018 B2
10040259 Lister et al. Aug 2018 B2
D831134 Hillson Oct 2018 S
D834115 Gilbert Nov 2018 S
D842399 Arceta Mar 2019 S
D842941 Brezovar Mar 2019 S
D843524 Henniger Mar 2019 S
10226659 Stilson Mar 2019 B2
D851711 Brezovar Jun 2019 S
D852637 Becerra Jul 2019 S
D854636 Nelson Jul 2019 S
D856447 Dunahay Aug 2019 S
D862617 Henniger et al. Oct 2019 S
D865881 Muir et al. Nov 2019 S
10537777 Tash et al. Jan 2020 B1
10773117 Goldberg et al. Sep 2020 B1
20030083179 Landfair May 2003 A1
20030162637 Smithberg Aug 2003 A1
20040077466 Wallace et al. Apr 2004 A1
20040092370 Lincir May 2004 A1
20040166997 Vigiano Aug 2004 A1
20050026754 Lien et al. Feb 2005 A1
20060073948 Lincir Apr 2006 A1
20060293155 Hamilton Dec 2006 A1
20070027007 Frasco Feb 2007 A1
20070138351 Wu Jun 2007 A1
20070142188 Lien Jun 2007 A1
20070184943 Davies Aug 2007 A1
20080153678 McClusky Jun 2008 A1
20080200316 Shillington Aug 2008 A1
20080287271 Jones Nov 2008 A1
20090048079 Nalley Feb 2009 A1
20090118105 Schiff May 2009 A1
20090192025 Minerva Jul 2009 A1
20090239719 Patti Sep 2009 A1
20090258766 Patti Oct 2009 A1
20090270233 Cao Oct 2009 A1
20100022359 Lin Jan 2010 A1
20100125030 Shifferaw May 2010 A1
20110021327 Lien Jan 2011 A1
20120094810 Anderson Apr 2012 A1
20120234444 Palin Sep 2012 A1
20130165300 Richards Jun 2013 A1
20140024504 Potts et al. Jan 2014 A1
20140162850 Chen Jun 2014 A1
20140194258 Shorter Jul 2014 A1
20140200119 Sides, Jr. Jul 2014 A1
20140221174 Lin Aug 2014 A1
20140256521 Davies, III Sep 2014 A1
20140274595 Patti Sep 2014 A1
20150011369 Peritz Jan 2015 A1
20150165258 Januszek Jun 2015 A1
20150231441 Davies, III Aug 2015 A1
20160051856 Breitkreutz et al. Feb 2016 A1
20170113088 Hollingshead Apr 2017 A1
20170149269 Rojas et al. May 2017 A1
20170151460 Jennings et al. Jun 2017 A1
20170258661 Bradford Sep 2017 A1
20170304671 Hill Oct 2017 A1
20180028857 Rothschild et al. Feb 2018 A1
20180272175 Henniger Sep 2018 A1
20190038927 Wilhelm et al. Feb 2019 A1
20190232100 Rothschild Aug 2019 A1
Foreign Referenced Citations (12)
Number Date Country
3191234 Jun 2001 CN
2506298 Aug 2002 CN
2512467 Sep 2002 CN
201248992 Jun 2009 CN
303340060 Aug 2015 CN
303896560 Oct 2016 CN
206777676 Dec 2017 CN
304438760 Jan 2018 CN
003110402-0001 Jul 2016 EM
007065669-0001 Oct 2019 EM
1038081 May 1998 ES
2459056 Jan 1981 FR
Non-Patent Literature Citations (22)
Entry
Mehdi, “How to make your own bumper plates on a budget,” May 22, 2011, retrieved from the internet: http://straighttothebar.com/articles/2007/09/how_to_make_your_own_bumper_pl/ (Year: 2011).
Rogue, “Rogue 6-Shooter Urethane Olympic Grip Plates”, 5 pages, Web Archive date of Jul. 14, 2017, retrieved from the Internet: https://www.roguefitness.com/rogue-6-shooter-urethane-olympic-grip-plates (Year: 2017).
Mykin Inc, “Rubber Hardness Chart”, 1 page, Web Archive date of Nov. 5, 2017, retrieved from the Internet: https://mykin.com/rubber-hardness-chart (Year: 2017).
International Search Report dated May 24, 2019 of International application No. PCT/US2019/015813.
Written Opinion dated May 24, 2019 of International application No. PCT/US2019/015813.
Product listing for Rogue LB Competition Plates, From: http://web.archive.org/web/20180724000915/https:/www.roguefitness.com/rogue-competition-plates, dated Jul. 24, 2018, accessed Nov. 22, 2021.
Product listing for Rogue Dumbbell Bumpers, From: http://web.archive.org/web/20180830044526/https:/www.roguefitness.com/rogue-dumbbell-bumpers, dated Aug. 30, 2018, accessed Nov. 22, 2021.
Product listing for Rogue Olympic Plates, from: http://web.archive.org/web/20190402011443/https://www.roguefitness.com/rogue-olympic-plates, dated Apr. 2, 2019, accessed Nov. 22, 2021.
CAP Barbell Weight Plates listing from http://web.archive.org/web/20180103173524/http://capbarbell.com/strength/weight-plates, dated Jan. 3, 2018, accessed Nov. 22, 2021.
Viavito Tri Grip Vinyl Standard Weight Plates: Published Mar. 17, 2016 [online], site visited Nov. 22, 2021. Available from Internet URL: https://www.amazon.co.uk/dp/B01D3U5RXI/ref=cm_sw_r_tw_dp_U x_epf5DblB78TVQ (Year: 2016).
Bodypower 10kg Tri Grip Vinyl Standard (1 Inch) Weight Disc Plates: Published Jun. 10, 2013 [online], site visited Nov. 22, 2021. Available from Internet URL: https://www.amazon.co.uk/dp/B00E4WH2NS/rcf=cm_sw_r_tx_dp_U_x_Fpf5DbMHT60MN (Year: 2013).
BodyRip Olympic Polygonal Weight Plates: Published Feb. 3, 2015 [online], site visited Nov. 22, 2021. Available from Internet URL: https://www.amazon.co.uk/dp/B00T4GM5W2/ref=cm_sw_r_tw_dp_U_x_ASg5DbMR69J5P (Year: 2015).
BodyRip Polygonal Weight Plates 1 x 10kg BodyRip: Published Feb. 7, 2014 [online], site visited Nov. 22, 2021. Available from Internet URL: https://www.amazon.co.uk/dp/B00IARQAWW/ref=cm_sw_r_tw_dp_U_x_5If5DbXR685AX (Year: 2014).
PCT/US2019/064237 International Search Report & Written Opinion dated Mar. 10, 2020.
Product listing for 2″ Deep Dish Olympic Weight Plates, from <https://yorkbarbell.com/product/deep-dish-olympic-plate>, accessed Nov. 22, 2021.
Product listing for Apollo Athletics Deep Dish Olympic Plates, from https://www.showmeweights.com/apollo-athletics-deep-dish-olympic-plates.html, accessed Nov. 30, 2021.
Photo of York Olympic Standard Barbell Weight Plates, from https://extemal-preview.redd.it/GeIL30DNpQ8Rv7XulvfzNyPzFSSdljn9crrZ4i5T5-4.jpg?auto=webp&s=d87da24a6c3837e0e90f9c88b366c7781fb9f150, dated Jul. 7, 2020.
A Guide to Buying Steel Powerlifting Plates & Discs, from https://www.garage-gyms.com/steel-powerlifting-weight-plates-discs-guide-review/, dated Nov. 16, 2017.
Screen capture of Rogue Elephant Bar Deadlift—Full Live Stream | Arnold Strongman Classic 2020, from <https://www.youtube.com/watch?v=CuYsT9GeUmc&feature=emb_rel_pause>, dated Mar. 7, 2020.
Body Solid Rubber Grip Olympic Sets, from https://www.bodysolid.com/home/osr/rubber_grip_Olympic_sets, dated Nov. 30, 2021.
Hampton Fit Weight Plates, from https://www.hamptonfit.com/product-category/plates/, dated Nov. 30, 2021.
York Barbell Weight Plates & Sets, from https://yorkbarbell.com/product-category/weight-plates/page/2/, dated Nov. 30, 2021.
Related Publications (1)
Number Date Country
20190232100 A1 Aug 2019 US