The presently disclosed subject matter relates generally to the processing of biological materials and more particularly to modular active surface devices microfluidic system for microfluidic systems and methods of making same
Microfluidic systems can include an active surface, which can be, for example, any surface or area (typically inside a reaction or assay chamber) that is used for processing biological materials. However, there can be considerable cost and complexity associated with providing an active surface within microfluidic systems. Further, there can be certain barriers to testing the active surface performance within the microfluidic system. Therefore, new approaches are needed to simplify the process of providing an active surface in a microfluidic system.
To address the foregoing problems, in whole or in part, and/or other problems that may have been observed by persons skilled in the art, the present disclosure provides compositions and methods as described by way of example as set forth below.
In one embodiment, a modular active surface device for processing biological materials is provided comprising:
a first active surface atop a first active surface substrate;
at least one reaction chamber comprising fluid ports, wherein the fluid ports comprise one or more input ports and one or more output ports; and
one or more additional layers selected from the group consisting of one or more adhesive layers, one or more stiffening layers for facilitating handling, and one or more peel-off sealing layers;
wherein the first active surface atop the first active surface substrate forms at least one surface of the reaction chamber; and further wherein the modular active surface device is configured to integrate into a microfluidics cartridge. In another embodiment, the modular active surface device further comprises a mask mounted atop the first active surface, wherein the mask defines the area, height, and volume of the reaction chamber. In another embodiment, the modular active surface device further comprises a second substrate mounted atop the mask, wherein a surface of the second substrate faces the first active surface. In another embodiment, the surface of the second substrate that faces the first active surface comprises a second active surface, and further wherein the first active surface and the second active surface are separated by a space.
In another embodiment, the active surfaces of the modular active surface device are configured to manipulate a fluid inside the reaction chamber. In another embodiment, the active surfaces comprise one or more elements selected from the group consisting of static surface-attached microposts, actuated surface-attached microposts, a microscale texture, a microscale topography, a system for physical perturbation of the first active surface, an electrical, electronic, and/or electromagnetic system, and an optically active surface. In another embodiment, the system for physical perturbation of the first active surface is configured to perturb the first active surface by vibration or deformation. In another embodiment, the optically active surface comprises elements selected from the group consisting of lenses, LEDs, and one or more materials that interact with external light sources. In another embodiment, manipulation of the fluid inside the reaction chamber is selected from the group consisting of generating fluid flow, altering the flow profile of an externally driven fluid, fractionating a sample into constituent parts, establishing one or more concentration gradients, and eliminating one or more concentration gradients.
In another embodiment, the active surface substrates of the modular active surface device are rigid or semi-rigid plastic substrates. In another embodiment, the active surfaces are micropost active surface layers comprising surface-attached microposts. In another embodiment, the surface-attached microposts are arranged in arrays.
In another embodiment, the surface-attached microposts of the modular active surface device are configured for actuation in the presence of an actuation force. In another embodiment, the actuation force is selected from the group consisting of a magnetic field, a thermal field, a sonic field, an optical field, an electrical field, and a vibrational field.
In another embodiment, the micropost active surfaces in the reaction chamber of the modular active surface device are configured for mixing operations, binding operations, and cell processing operations. In another embodiment, the cell processing operations are selected from the group consisting of: cell concentration, cell collection, cell filtration, cell washing, cell counting, cell recovery, cell lysis, and cell de-clumping.
In another embodiment, the modular active surface device is configured to integrate into a microfluidics cartridge that comprises a recessed region configured to receive the modular active surface device. In another embodiment, the microfluidics cartridge further comprises fluid lines set to correspond to the fluid port, wherein when microfluidics device receives the modular active surface device, the microfluidics device and the modular active surface device are fluidly coupled. In another embodiment, the modular active surface device further comprises an adhesive layer for bonding to the microfluidics cartridge.
In another embodiment, the modular active surface device comprises microposts formed of an active surface material. In another embodiment, the active surface material is polydimethylsiloxane (PDMS). In another embodiment, the microposts range in length from about 1 μm to about 100 μm. In another embodiment, the microposts range in diameter from about 0.1 μm to about 10 μm. In another embodiment, the microposts have a cross-sectional shape selected from the group consisting of circular, ovular, square, rectangular, and triangular. In another embodiment, the microposts are oriented substantially normal to the plane of the substrate. In another embodiment, the microposts are oriented at an angle α with respect to normal of the plane of the substrate. In another embodiment, the microposts are oriented at a pitch of from about 0 μm to about 50 μm. In another embodiment, the microposts are oriented at a pitch of from about 0 μm to about 50 μm.
In another embodiment, the mask layer of the modular active surface device comprises an opening for forming the reaction chamber, an antechamber, a fluid path between the antechamber and the opening. In another embodiment, the antechamber of the modular active surface device comprises dried reagent and/or a dried reagent pellet configured to dissolve when a sample fluid is added to the antechamber, thereby enabling a mixture of sample fluid and reagent to flow into the reaction chamber.
In another embodiment, the fluid path of the modular active surface device has a serpentine path configured to provide adequate time for the dried reagent and/or dried reagent pellet to dissolve completely before reaching the reaction chamber.
In another embodiment, the modular active surface device comprises multiple antechambers and separate fluid paths between each antechamber and the opening. In another embodiment, the modular active surface device comprises multiple antechambers and a single fluid path between the multiple antechambers and the opening. In another embodiment, the flow of fluids from the multiple antechambers into the single fluid path is controlled by the opening and closing of valves between the multiple antechambers and the single fluid path, and the opening and closing of the valves are controlled by a control instrument.
In another embodiment, the modular active surface device comprises a plurality of reaction chambers arranged in an array. In another embodiment, the plurality of reaction chambers comprises eight reaction chambers arranged in a 2×4 array.
In another embodiment, a wafer-scale manufacturing process is provided for producing any of the modular active surface devices described above, comprising the steps of:
In another embodiment, a wafer-scale manufacturing process is provided for producing any of the modular active surface devices described above, comprising the steps of:
In another embodiment of the wafer-scale manufacturing process, the active surface material-filled substrate is a 6-inch or a 12-inch diameter substrate. In another embodiment, the active surface material is polydimethylsiloxane (PDMS).
Other compositions, methods, features, and advantages of the invention will be or will become apparent to one with skill in the art upon examination of the following figures and detailed description. It is intended that all such additional compositions, methods, features, and advantages be included within this description, be within the scope of the invention, and be protected by the accompanying claims.
The features and advantages of the present invention will be more clearly understood from the following description taken in conjunction with the accompanying drawings, which are not necessarily drawn to scale, and wherein:
The presently disclosed subject matter now will be described more fully hereinafter with reference to the accompanying Drawings, in which some, but not all embodiments of the presently disclosed subject matter are shown. Like numbers refer to like elements throughout. The presently disclosed subject matter may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements. Indeed, many modifications and other embodiments of the presently disclosed subject matter set forth herein will come to mind to one skilled in the art to which the presently disclosed subject matter pertains having the benefit of the teachings presented in the foregoing descriptions and the associated Drawings. Therefore, it is to be understood that the presently disclosed subject matter is not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims.
General Definitions
As used herein, the terms “surface-attached post” or “surface-attached micropost” or “surface-attached structure” are used interchangeably. Generally, a surface-attached structure has two opposing ends: a fixed end and a free end. The fixed end may be attached to a substrate by any suitable means, depending on the fabrication technique and materials employed. The fixed end may be “attached” by being integrally formed with or adjoined to the substrate, such as by a microfabrication process. Alternatively, the fixed end may be “attached” via a bonding, adhesion, fusion, or welding process. The surface-attached structure has a length defined from the fixed end to the free end, and a cross-section lying in a plane orthogonal to the length. For example, using the Cartesian coordinate system as a frame of reference, and associating the length of the surface-attached structure with the z-axis (which may be a curved axis), the cross-section of the surface-attached structure lies in the x-y plane.
Generally, the cross-section of the surface-attached structure may have any shape, such as rounded (e.g., circular, elliptical, etc.), polygonal (or prismatic, rectilinear, etc.), polygonal with rounded features (e.g., rectilinear with rounded corners), or irregular. The size of the cross-section of the surface-attached structure in the x-y plane may be defined by the “characteristic dimension” of the cross-section, which is shape-dependent. As examples, the characteristic dimension may be diameter in the case of a circular cross-section, major axis in the case of an elliptical cross-section, or maximum length or width in the case of a polygonal cross-section. The characteristic dimension of an irregularly shaped cross-section may be taken to be the dimension characteristic of a regularly shaped cross-section that the irregularly shaped cross-section most closely approximates (e.g., diameter of a circle, major axis of an ellipse, length or width of a polygon, etc.).
A surface-attached structure as described herein is non-movable (static, rigid, etc.) or movable (flexible, deflectable, bendable, etc.) relative to its fixed end or point of attachment to the substrate. To facilitate the movability of movable surface-attached structures, the surface-attached structure may include a flexible body composed of an elastomeric (flexible) material, and may have an elongated geometry in the sense that the dominant dimension of the surface-attached structure is its length—that is, the length is substantially greater than the characteristic dimension. Examples of the composition of the flexible body include, but are not limited to, elastomeric materials such as hydrogel and other active surface materials (for example, polydimethylsiloxane (PDMS)).
The movable surface-attached structure is configured such that the movement of the surface-attached structure relative to its fixed end may be actuated or induced in a non-contacting manner, specifically by an applied magnetic or electric field of a desired strength, field line orientation, and frequency (which may be zero in the case of a magnetostatic or electrostatic field). To render the surface-attached structure movable by an applied magnetic or electric field, the surface-attached structure may include an appropriate metallic component disposed on or in the flexible body of the surface-attached structure. To render the surface-attached structure responsive to a magnetic field, the metallic component may be a ferromagnetic material such as, for example, iron, nickel, cobalt, or magnetic alloys thereof, one non-limiting example being “alnico” (an iron alloy containing aluminum, nickel, and cobalt). To render the surface-attached structure responsive to an electric field, the metallic component may be a metal exhibiting good electrical conductivity such as, for example, copper, aluminum, gold, and silver, and well as various other metals and metal alloys. Depending on the fabrication technique utilized, the metallic component may be formed as a layer (or coating, film, etc.) on the outside surface of the flexible body at a selected region of the flexible body along its length. The layer may be a continuous layer or a densely grouped arrangement of particles. Alternatively, the metallic component may be formed as an arrangement of particles embedded in the flexible body at a selected region thereof.
As used herein, the term “actuation force” refers to the force applied to the microposts. For example, the actuation force may include a magnetic, thermal, sonic, or electric force. Notably, the actuation force may be applied as a function of frequency or amplitude, or as an impulse force (i.e., a step function). Similarly, other actuation forces may be used without departing from the scope of the present subject matter, such as fluid flow across the micropost array (e.g., flexible microposts that are used as flow sensors via monitoring their tilt angle with an optical system).
Accordingly, the application of an actuation force actuates the movable surface-attached microposts into movement. For example, the actuation occurs by contacting cell processing chamber with the control instrument comprising elements that provide an actuation force, such as a magnetic or electric field. Accordingly, the control instrument includes, for example, any mechanisms for actuating the microposts (e.g., magnetic system), any mechanisms for counting the cells (e.g., imaging system), the pneumatics for pumping the fluids (e.g., pumps, fluid ports, valves), and a controller (e.g., microprocessor).
As used herein, a “flow cell” is any chamber comprising a solid surface across which one or more liquids can be flowed, wherein the chamber has at least one inlet and at least one outlet.
The term “micropost array” is herein used to describe an array of small posts, extending outwards from a substrate, that typically range from 1 to 100 micrometers in height. In one embodiment, microposts of a micropost array may be vertically-aligned. Notably, each micropost includes a proximal end that is attached to the substrate base and a distal end or tip that is opposite the proximal end. Microposts may be arranged in arrays such as, for example, the microposts described in U.S. Pat. No. 9,238,869, entitled “Methods and systems for using actuated surface-attached posts for assessing biofluid rheology,” issued on Jan. 19, 2016; the entire disclosure of which is incorporated herein by reference. U.S. Pat. No. 9,238,869 describes methods, systems, and computer readable media for using actuated surface-attached posts for assessing biofluid rheology. One method described in U.S. Pat. No. 9,238,869 is directed to testing properties of a biofluid specimen that includes placing the specimen onto a micropost array having a plurality of microposts extending outwards from a substrate, wherein each micropost includes a proximal end attached to the substrate and a distal end opposite the proximal end, and generating an actuation force in proximity to the micropost array to actuate the microposts, thereby compelling at least some of the microposts to exhibit motion. This method further includes measuring the motion of at least one of the microposts in response to the actuation force and determining a property of the specimen based on the measured motion of the at least one micropost.
U.S. Pat. No. 9,238,869 also states that the microposts and micropost substrate of the micropost array can be formed of polydimethylsiloxane (PDMS). Further, microposts may include a flexible body and a metallic component disposed on or in the body, wherein application of a magnetic or electric field actuates the microposts into movement relative to the surface to which they are attached. In this example, the actuation force generated by the actuation mechanism is a magnetic and/or electrical actuation force.
Following long-standing patent law convention, the terms “a,” “an,” and “the” refer to “one or more” when used in this application, including the claims. Thus, for example, reference to “a subject” includes a plurality of subjects, unless the context clearly is to the contrary (e.g., a plurality of subjects), and so forth.
Throughout this specification and the claims, the terms “comprise,” “comprises,” and “comprising” are used in a non-exclusive sense, except where the context requires otherwise. Likewise, the term “include” and its grammatical variants are intended to be non-limiting, such that recitation of items in a list is not to the exclusion of other like items that can be substituted or added to the listed items.
For the purposes of this specification and appended claims, unless otherwise indicated, all numbers expressing amounts, sizes, dimensions, proportions, shapes, formulations, parameters, percentages, quantities, characteristics, and other numerical values used in the specification and claims, are to be understood as being modified in all instances by the term “about” even though the term “about” may not expressly appear with the value, amount or range. Accordingly, unless indicated to the contrary, the numerical parameters set forth in the following specification and attached claims are not and need not be exact, but may be approximate and/or larger or smaller as desired, reflecting tolerances, conversion factors, rounding off, measurement error and the like, and other factors known to those of skill in the art depending on the desired properties sought to be obtained by the presently disclosed subject matter. For example, the term “about,” when referring to a value can be meant to encompass variations of, in some embodiments, ±100% in some embodiments ±50%, in some embodiments ±20%, in some embodiments ±10%, in some embodiments ±5%, in some embodiments ±1%, in some embodiments ±0.5%, and in some embodiments ±0.1% from the specified amount, as such variations are appropriate to perform the disclosed methods or employ the disclosed compositions.
Further, the term “about” when used in connection with one or more numbers or numerical ranges, should be understood to refer to all such numbers, including all numbers in a range and modifies that range by extending the boundaries above and below the numerical values set forth. The recitation of numerical ranges by endpoints includes all numbers, e.g., whole integers, including fractions thereof, subsumed within that range (for example, the recitation of 1 to 5 includes 1, 2, 3, 4, and 5, as well as fractions thereof, e.g., 1.5, 2.25, 3.75, 4.1, and the like) and any range within that range.
Modular Active Surface Devices for Microfluidic Systems and Methods of Making Same
In some embodiments, the presently disclosed subject matter provides modular active surface devices for microfluidic systems and methods of making same. Namely, the presently disclosed modular active surface devices and methods provide drop-in modules for easily integrating into any fluidics cartridges or systems of the end users. Because the presently disclosed modular active surface devices are provided separately from the end users' fluidics cartridges, the cost and complexity of providing the active surface can be separated from that of, for example, low cost plastic fluidics cartridges.
As used herein “active surface” means any surface or area that can be used for processing samples including, but not limited to, biological materials, fluids, environmental samples (e.g., water samples, air samples, soil samples, solid and liquid wastes, and animal and vegetable tissues), and industrial samples (e.g., food, reagents, and the like). The active surface can be inside a reaction or assay chamber. For example, the active surface can be any surface that has properties designed to manipulate the fluid inside the chamber. Manipulation can include, for example, generating fluid flow, altering the flow profile of an externally driven fluid, fractionating the sample into constituent parts, establishing or eliminating concentration gradients within the chamber, and the like. Surface properties that might have this effect can include, for example, post technology—whether static or actuated. The surface properties may also include microscale texture or topography in the surface, physical perturbation of the surface by vibration or deformation; electrical, electronic, and/or electromagnetic system on or in the surface; optically active (e.g., lenses) surfaces, such as embedded LEDs or materials that interact with external light sources; and the like.
The presently disclosed modular active surface devices include an active surface atop an active surface substrate, wherein the active surface atop the active surface substrate forms at least one surface of a reaction (or assay) chamber. Accordingly, the modular active surface devices for processing biological materials provide a reaction (or assay) chamber that has at least one active surface therein. The presently disclosed modular active surface devices can be provided in a variety of configurations and with a variety of features depending on the end-user requirements. In a simplest example, the modular active surface device includes the active surface mounted atop the active surface substrate, a mask mounted atop the active surface wherein the mask defines the area, height, and volume of the reaction chamber, and another substrate mounted atop the mask wherein this substrate provides the facing surface to the active surface. In other examples, both facing surfaces of the reaction chamber include the active surfaces with a space therebetween. Further, the modular active surface device can include other layers, such as, but not limited to, adhesive layers, stiffening layers for facilitating handling, and peel-off sealing layers.
In one example, the active surface is a micropost array layer (hereafter called the “micropost active surface layer”) and the active surface substrate is a rigid or semi-rigid plastic substrate. In this example, the micropost array layer includes an array of surface-attached microposts (i.e., the micropost array). The micropost active surface can be provided in the reaction (or assay) chamber of the modular active surface devices. The application of a magnetic or electric field actuates the surface-attached microposts into movement. For example, the actuation occurs by contacting the reaction (or assay) chamber of the modular active surface devices with elements that provide an actuation force as described elsewhere herein, such as a magnetic or electric field. In this example, the micropost active surface in the reaction (or assay) chamber can be used for any purpose, such as, but not limited to, mixing operations, binding operations, cell processing operations (e.g., cell concentration, cell collection, cell filtration, cell washing, cell counting, cell recovery, cell lysis, and cell de-clumping), and the like.
Further disclosed herein is a large-scale manufacturing process by which the presently disclosed modular active surface devices can be mass produced and packaged. The large-scale manufacturing process can be, for example, a wafer-scale manufacturing process, a platter-scale manufacturing process, a roll-to-roll laser die cutting process, and the like. Once fabricated, individual modular active surface devices are shipped as drop-in modules to be installed in, for example, microfluidics cartridges or microfluidics systems. In another example, the individual modular active surface devices are shipped as drop-in modules to be installed in cartridges with gaseous input. In one example of a large-scale manufacturing process, a wafer is provided that includes row and columns of devices. The wafer is processed and then diced into individual modular active surface devices. In one example, the manufacturing process features a plasma bonding process to bond a micropost active surface to a plastic active surface substrate.
An aspect of the presently disclosed modular active surface devices for microfluidic systems and methods is that it provides a simple process for adding an active surface to a microfluidic cartridge or microfluidic system. For example, as compared with conventional microfluidic systems, this simplification may include, but is not limited to, reduced assembly costs, reduced number of mechanical components, the reduction or elimination of barriers to testing the active surface performance within the microfluidic system, and so on.
Modular active surface device 100 is designed to drop-into a corresponding fluidics cartridge, such as fluidics cartridge 200. In this example, fluidics cartridge 200 includes a recessed region 210 for receiving modular active surface device 100. Namely, modular active surface device 100 is sized to be fitted into recessed region 210 of fluidics cartridge 200. Further, the positions of fluid ports 112 of modular active surface device 100 are set to correspond to fluid lines 212 in fluidics cartridge 200. In this way, modular active surface device 100 can be fluidly coupled to fluidics cartridge 200. An adhesive (e.g., a peel off adhesive layer, not shown) can be provided on the underside of modular active surface device 100 for easy installation and bonding to the surfaces of fluidics cartridge 200.
For illustration purposes only, the modular active surface device 100 and fabrication process described herein is based on micropost technology. Namely, as described herein, the active surface layer 110 is a “micropost” active surface layer 110 that includes a micropost array. However, modular active surface device 100 is not limited to a “micropost” active surface layer. This is exemplary only. Other types of active surfaces are possible.
Micropost active surface layer 110 including an arrangement of microposts 122 on substrate 124 is based on, for example, the microposts described in the U.S. Pat. No. 9,238,869, as described elsewhere herein. An actuation force is generated in proximity to the micropost array that compels at least some of the microposts 122 to exhibit motion.
In one example, microposts 122 and substrate 124 of micropost active surface layer 110 can be formed of an active surface material, for example PDMS. Further, microposts 122 may include a flexible body and a metallic component disposed on or in the body, wherein application of a magnetic or electric field actuates microposts 122 into movement relative to the surface to which they are attached.
Referring still to
Additionally, the pitch of microposts 122 within the array can vary, for example, from about 0 μm to about 50 μm. Further, the relative positions of microposts 122 within the array can vary. For example,
In the example shown in
Some determining characteristics of active surface substrate 130 can include, for example, optical transparency, thickness, rigidity, flexibility, whether passive or active (e.g., electrodes, magnets, LEDs, micropost actuation mechanisms, micropost motion detection mechanisms, etc.), and/or function. Function can be, for example, magnetic applications (e.g., generating a magnetic field via embedded wires or coils, magnetic sensors such as a Hall Effect sensors), optical sensor applications, and/or illumination applications.
Further, a plasma bonding process is disclosed herein for bonding micropost active surface layer 110, which is an active surface material such as PDMS, to active surface substrate 130, which is plastic. This plasma bonding process has certain advantages over using an adhesive to bond the active surface material micropost active surface layer 110 to the plastic active surface substrate 130. More details of this plasma bonding process are shown and described hereinbelow with reference to
Mask layer 140 that is mounted atop micropost active surface layer 110 can be, for example, a plastic mask. The thickness of mask layer 140 can be from about 50 μm to about 1,000 μm in one example, or is about 150 μm in another example. Again, openings in mask layer 140 can define certain features of modular active surface devices 100, such as the area, height, and volume of reaction chamber 105. Examples of other features that can be formed using mask layer 140 are shown hereinbelow with reference to
Substrate 150 that is mounted atop mask layer 140 can be, for example, a plastic, glass, or silicon substrate. In this example, substrate 150 performs two functions (1) to work in combination with micropost active surface layer 110 to form reaction chamber 105 and (2) to protect microposts 122 of micropost active surface layer 110 when modular active surface device 100 is handled. In one example, substrate 150 is formed of polyethylene terephthalate (PET). The thickness of the PET substrate 150 can be from about 100 μm to about 500 μm in one example, or is about 380 μm (15 mils) in another example. Together, the stack of micropost active surface layer 110, then mask layer 140, then substrate 150 form reaction chamber 105, wherein mask layer 140 serves as the spacer between micropost active surface layer 110 and substrate 150 that determines the height of reaction chamber 105. In some embodiments, the surface of substrate 150 facing reaction chamber 105 can be functionalized. In one example, substrate 150 can be a microarray. A microarray can be, for example, a 2D array of capture elements immobilized on a solid substrate that assays large amounts of biological material using high-throughput screening miniaturized, multiplexed and parallel processing, and detection methods.
Additionally, an adhesive layer 142 is provided on one side of mask layer 140 for bonding to micropost active surface layer 110. In one example, adhesive layer 142 is ARcare 90445, which has a clear peelable liner. An adhesive layer 144 is provided on the other side of mask layer 140 for bonding to substrate 150. In one example, adhesive layer 144 is ARcare 90106, which has a white peelable liner. Adhesive layer 142 and adhesive layer 144 are “pressure sensitive” adhesives, meaning they require pressure only (no solvents, heat, UV, etc.) to make the bond. In another embodiment, mask layer 140 can exist as a single layer of transfer adhesive (i.e., an adhesive layer that is sticky on both top and bottom surfaces).
For shipping and handling, the outermost layers/surfaces of modular active surface device 100 are protected by a thin textured laminate; namely, protective layers 152. Each of the protective layers 152 is a liner with an adhesive that adheres strongly to the liner and weakly to modular active surface device 100. Protective layers 152 provide a sealed structure when diced from the wafer. One or both protective layers 152 can be peeled off for installing modular active surface device 100 into, for example, a receiving fluidics cartridge 200. For example, the protective layer 152 on the outer surface of substrate 150 can be peeled away in order to bond the substrate 150-side of modular active surface device 100 to the end user's substrate. Further, the protective layer 152 on the outer surface of active surface substrate 130 can be peeled away when access to reaction chamber 105 is needed; namely, to expose fluid ports 112. Additionally, when in use, modular active surface device 100 can have any orientation depending on the end user's system. Namely, modular active surface device 100 can be oriented substrate 150-side up or active surface substrate 130-side up.
In the example shown in
The modular active surface devices 100 shown in
In an initial step of the fabrication process of the presently disclosed modular active surface devices 100, the micropost active surface layer 110 is provided with its microposts 122 embedded in a substrate, as described herein and in U.S. Pat. No. 9,238,869. For example,
In one example, substrate 310 is a polycarbonate (PC) substrate in which the active surface material microposts 122 are embedded (for example, wherein the active surface material may include, but is not limited to PDMS). Other materials may be used to form flexible microposts 122. Active surface material-filled substrate 300 means that the PC substrate 310 is “filled” with the active surface material microposts 122, for example PDMS microposts. Substrate 310 is a “sacrificial” substrate that will be removed in subsequent process steps in the fabrication of the modular active surface devices 100. Active surface material-filled substrate 300 can be, for example, a 6-inch or 12-inch diameter substrate.
Next,
Next,
Next,
Next,
Next,
Mask layer 140 is adhered (pressure-fitted) to the micropost 122-side of released active surface wafer 500. Because released active surface wafer 500 has a continuous field or array of released microposts 122, the structural members that form mask layer 140 will crush certain microposts 122 atop released active surface wafer 500, leaving intact only those free-standing microposts 122 landing inside openings 146 of mask layer 140.
Next,
At a step 610, a active surface material-filled substrate is provided. For example and referring now again to
At a step 615, the active surface wafer 400 is formed by bonding the active surface material-side of the active surface material-filled substrate 300 to another substrate using a plasma bonding process. For example and referring now again to
At a step 620, a plurality of through-holes are formed in active surface wafer 400 to form a cut active surface wafer 400. For example and referring now again to
At a step 625, the released active surface wafer 500 is formed by releasing the microposts 122 of the cut active surface wafer 400 as shown, for example, in
At a step 630, a mask is provided and installed atop the released active surface wafer 500. For example and referring now again to
At a step 635, both sides of the masked active surface wafer are sealed. For example and referring now again to
At a step 640, the masked and sealed active surface wafer is diced into multiple individual modular active surface devices 100 using, for example, a laser cutting process, as shown for example, in
In one example, in the presently disclosed modular active surface devices 100, the active surface material substrate 124-portion of micropost active surface layer 110 can be bonded to, for example, the plastic (e.g., Melinex®) active surface substrate 130 using an adhesive, such as ARclad® IS-7876. However, an adhesive bond runs risk of failing during the process of releasing microposts 122 in step 625 of method 600 of
For example, according to method 700 a plasma bonding process is used to bond the active surface material substrate 124-portion of micropost active surface layer 110 to the plastic (e.g., Melinex®) active surface substrate 130. The benefit of using the plasma bonding process of method 700 is that it mitigates the delamination risk of using an adhesive bond. That is, the plasma bond can tolerate the process of releasing the microposts 122 that is described in step 625 of method 600 of
At a step 710, an active surface material-filled substrate is provided. For example and referring now again to
At a step 715, a substrate is provided to which the active surface material substrate 124-portion of micropost active surface layer 110 can be bonded. In one example, the substrate (e.g., active surface substrate 130) is the semi-rigid Melinex® brand polyester film available from DuPont Teijin Films (Chester, Va.). The thickness of the Melinex® active surface substrate 130 can be from about 100 μm to about 500 μm in one example, or is about 250 μm in another example. The substrate (e.g., active surface substrate 130) can be, for example, a 6-inch or 12-inch diameter substrate.
At a step 720, a thin silicon oxide layer is deposited on one surface of the substrate (e.g., active surface substrate 130) provided in step 715. For example, the silicon oxide layer is formed atop the plastic active surface substrate 130 using a plasma-enhanced chemical vapor deposition (PECVD) process. In one example, the silicon oxide layer is about 0.1 μm thick. Essentially, in this step, a thin film of glass is deposited on a plastic substrate. Further, because, for example, the Melinex® substrate cannot handle high temperatures, a low-temperature PECVD process (e.g., from about 30° C. to about 70° C.) is used.
At a step 725, the silicon oxide layer is plasma-treated. For example, the silicon oxide layer on the plastic active surface substrate 130 (e.g., the Melinex® substrate) is plasma-treated using standard processes.
At a step 730, the active surface material substrate 124-portion of micropost active surface layer 110 is put into contact with the silicon oxide layer of the active surface substrate 130 (e.g., the Melinex® substrate).
At a step 735, a plasma activation process is performed to bond the active surface material substrate 124-portion of micropost active surface layer 110 to the silicon oxide layer of the active surface substrate 130 (e.g., the Melinex® substrate).
Generally, in method 600 of
Any features can be integrated into the presently disclosed modular active surface devices 100. For example,
Referring now to
In the examples shown in
Other variations and features of the presently disclosed modular active surface devices 100 may include, but are not limited to, the following. Any surface in reaction chamber 105, including the microposts 122 themselves, can be modified, for example, to promote binding of a target analyte, to promote binding of something to select out for purifying the sample, modified like a microarray, and so on. There can be homogeneous modification or local modification (e.g., dots).
In another example, a completed modular active surface device 100 can be delivered to the user and then surface modifications can be performed in the field. For example, modular active surface device 100 can be delivered with blister packs. Then, the blister packs are used to release a surface modification chemical and rinsed when surface modification is complete.
Modular active surface devices 100 can support certain storage requirements. For example, modular active surface devices 100 (or at least the reaction chamber 105-portion) can be held under vacuum or in nitrogen (N2).
Liquid reagents can be provided in modular active surface devices 100 by, for example, flooding reaction chamber 105 after sealing and then, delivered to end user in this state. In another example, prior to sealing mask layer 140 (see
Pellet reagents can be used in modular active surface devices 100, as shown, for example, in
Further, the quality and relative bond strengths of adhesives used in modular active surface devices 100 can be varied. For example, want to be able to peel off protective layers 152 without delaminating other layers of the modular active surface devices 100. In this example, the bond strength of protective layers 152 is weaker than that of adhesives/bonds at other layers. The types of adhesives chosen may be based on materials, chemical, and/or specimen compatibility. Further, certain adhesive layers may undergo degasification.
Further, in some embodiments, modular active surface devices 100 can be provided to the end users absent, for example, the Melinex® active surface substrate 130. Namely, micropost active surface layer 110 absent the Melinex® active surface substrate 130. Then, the end user performs method 700 to bond micropost active surface layer 110 to their own plastic active surface substrate 130.
Concluding Remarks
All publications, patent applications, patents, and other references mentioned in the specification are indicative of the level of those skilled in the art to which the presently disclosed subject matter pertains. All publications, patent applications, patents, and other references are herein incorporated by reference to the same extent as if each individual publication, patent application, patent, and other reference was specifically and individually indicated to be incorporated by reference. It will be understood that, although a number of patent applications, patents, and other references are referred to herein, such reference does not constitute an admission that any of these documents forms part of the common general knowledge in the art.
Although the foregoing subject matter has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be understood by those skilled in the art that certain changes and modifications can be practiced within the scope of the appended claims.
This application is a 35 U.S.C. § 371 U.S. national phase entry of International Application No. PCT/US2018/038234 having an international filing date of Jun. 19, 2018, which claims priority to U.S. provisional application Ser. No. 62/522,536, filed Jun. 20, 2017, the entire disclosures of which are hereby fully incorporated herein by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2018/038234 | 6/19/2018 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/236833 | 12/27/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
8926906 | Packirisamy et al. | Jan 2015 | B2 |
9433940 | Williams et al. | Sep 2016 | B2 |
20070003444 | Howell et al. | Jan 2007 | A1 |
20090236226 | Yuen | Sep 2009 | A1 |
20110104817 | Kang et al. | May 2011 | A1 |
20140001146 | Superfine et al. | Jan 2014 | A1 |
20150087544 | Putnam et al. | Mar 2015 | A1 |
20170113221 | Hoffman et al. | Apr 2017 | A1 |
Number | Date | Country |
---|---|---|
2016136273 | Sep 2016 | WO |
2017049279 | Mar 2017 | WO |
Entry |
---|
International Search Report and Written Opinion issued in counterpart PCT Application No. PCT/US2018/038234 dated Sep. 10, 2018 (eleven (11) pages). |
Number | Date | Country | |
---|---|---|---|
20200254454 A1 | Aug 2020 | US |
Number | Date | Country | |
---|---|---|---|
62522536 | Jun 2017 | US |