The present invention relates generally to an aerosol delivery system, and in particular to a modular aerosol delivery system configured to adapt and support medicament container assemblies having different configurations.
Pressurized Metered Dose Inhalers (PMDI's) are an important delivery mechanism for various medicaments. For example, patients have certain conditions that can be treated with medicaments dispersed in an aerosol and administered to the patient by inhalation. In one format, the aerosol with medicaments is maintained under pressure in a container, and is dispensed in metered, or measured, dosages with an inhalation device, such as an actuator boot. In other arrangements and configurations, the aerosol with medicaments is administered by way of a holding chamber, which can be further incorporated into a ventilator system.
In some circumstances, it can be important for the patient or caregiver to be able to ascertain the number of metered doses remaining in the container, either by an indication of the number remaining therein or by knowledge of the number already dispensed therefrom, such that the patient or caregiver is not caught unaware with an empty container when in need of the medicament. As a result, it is known to secure various indicating devices to the container and/or to the dispenser housing interfacing with the canister. The indicating devices are configured to count and display indicia informing the patient or caregiver about the number of doses used or remaining in the container.
In one example of such a device, as shown for example and without limitation in U.S. Pat. No. 6,431,168, the dose indicator is secured to the container. As such, the corresponding dispenser housing must be shaped to receive a container assembly, which includes the container and dose counter secured thereto. One problem with such a configuration, however, is that the dispenser housing may not be suitably shaped and/or configured to receive and properly actuate a different container assembly, for example a container having a different medication, and which may or may not be equipped with a dose counter or a differently shaped dose counter. This can be particularly troublesome, for example, where the dispenser housing is incorporated into a ventilator circuit and cannot be easily removed therefrom. As such, it may be difficult to administer different types of medication through the same dispenser housing, but instead requires the caregiver to disassemble and reconfigure the ventilator circuit for each type of medication.
For at least these reasons, an improved medication delivery assembly, which can accommodate and actuate different medicament container assemblies, is desirable.
In a first aspect of the invention, a kit for assembling a medication delivery device includes a dispenser housing having a support block with a well and an orifice communicating with the well. The dispenser housing includes a peripheral wall defining a cavity. A first container assembly includes a valve stem shaped to be received by the well in the support block. The first container assembly has a first exterior shape and is reciprocally moveable along a longitudinal axis defined by the valve stem. The first exterior shape is shaped to be received in the cavity. A second container assembly includes a valve stem shaped to be received by the well in the support block. The second container assembly has a second exterior shape and is reciprocally moveable along a longitudinal axis defined by the valve stem. The second exterior shape is different than the first exterior shape. An insert member is adapted for mounting to the dispenser housing in the cavity and defines an interior space shaped to receive the second exterior shape of the second container. Both the first container assembly and the second container assembly, the latter in combination with the insert member, are adapted to be mounted in the dispenser housing. The first container assembly in combination with the insert member is not adapted to be mounted in the dispenser housing.
In another aspect, a medication delivery device includes a dispenser housing having a support block with a well and an orifice communicating with the well. The dispenser housing includes a first peripheral wall defining a cavity. An insert member is disposed in the cavity of the dispenser housing. The insert member has a second peripheral wall nesting with the first peripheral wall, and a floor defining an interior space. The floor has an opening aligned with the well of the dispenser housing. A medicament container includes a canister and a valve stem, which extends through the opening in the floor and is received in the well in the support block. The canister is reciprocally moveable relative to the valve stem along a longitudinal axis defined by the valve stem.
In yet another aspect, a method for assembling a medication delivery device includes providing first and second identical dispenser housings each having a support block with a well and an orifice communicating with the well. Each of the dispenser housings has a peripheral wall defining a cavity. The method further includes providing a first container assembly having a valve stem shaped to be received by the well in the support block of the first dispenser housing. The first container assembly has a first exterior shape shaped to be received in the cavity of the first dispenser housing, and includes a dose counter. The method further includes inserting the first container assembly in the cavity of the first dispenser housing and disposing the valve stem in the support block of the first dispenser housing. The method also includes providing a second container assembly having a valve stem shaped to be received by the well in the support block of the second dispenser housing. The second container assembly has a second exterior shape different than the first exterior shape. The method further includes disposing an insert member in the cavity of the second dispenser housing. The insert member includes an interior space shaped to receive the second exterior shape of the second container. The method further includes inserting the second container assembly in the interior space of the insert member and disposing the valve stem of the second container assembly in the support block of the second dispenser housing.
In yet another aspect, a ventilator system includes a dispenser housing in fluid communication with an oxygen intake line and a patient interface. The dispenser housing includes a support block having a well and an orifice communicating with the well. The dispenser housing has a peripheral wall defining a cavity. An insert member is adapted for mounting to the dispenser housing in the cavity and defines an interior space. The insert member has a floor with an opening adapted to be aligned with the well of the dispenser housing when the insert member is mounted to the dispenser housing.
In yet another aspect, a method for assembling a medication delivery device includes providing a dispenser housing having a support block with a well and an orifice communicating with the well. The dispenser housing includes a peripheral wall defining a cavity. A first container assembly is inserted in the cavity of the dispenser housing. The method includes removing the first container assembly from the cavity of the dispenser housing, disposing an insert member in the cavity of the dispenser housing, and inserting a second container assembly in the insert member.
In yet another aspect, a medication delivery device includes a first end piece having an input port and a first quick release connector component and a second end piece having an exit port and a second quick release connector component. The first and second quick release connector components are releasably engageable with the first and second end pieces defining an interior space therebetween. A collapsible chamber has opposite ends connected to the first and second end pieces. The collapsible chamber is moveable between a collapsed position and an extended position, wherein an entirety of the collapsible chamber is received in the interior space defined by the first and second pieces when in the collapsed position.
The various aspects and embodiments of the present invention provide significant advantages relative to the prior known devices. In particular, a single dispenser housing can be used to accommodate differently shaped and configured medicament container assemblies. As such, there is no need to manufacture and inventory multiple, complicated and expensive dispenser housings. Instead, a simple and inexpensive insert member can be used to reconfigure the dispenser housing. In addition, this allows the user, such as the caregiver, to use the same dispenser housing to dispense different types of medication, or medications coming in different types of containers. This can be important, for example and without limitation, when the dispenser housing is difficult to remove from a delivery system such as a ventilator system. The collapsible chamber permits the chamber to be collapsed, so as to minimize the size of the device while protecting the chamber from tampering or other damage.
The present disclosure is directed to medication delivery devices, including ventilator circuit aerosol delivery systems. The disclosed ventilator circuit aerosol delivery systems include implementations to be used with intermittent flow ventilators and implementations to be used with continuous flow ventilators. As described in more detail below, by implementing systems to separate an inspired gas flow from an expired gas flow at the entrance to an endotracheal tube, or a tracheotomy tube, and integrating a Wye connector into an MDI ventilator assembly, the MDI ventilator assembly may be moved from the inspired limb and connected directly to the endotracheal tube, or a tracheotomy tube. By connecting the MDI ventilator assembly directly to the endotracheal tube, or tracheotomy tube, aerosolized drugs may be more effectively administered to a patient without “dead space area” where gases exhaled from a patient remain between each breath such that the same gases are inhaled by the patient upon their next breath. Various delivery systems are disclosed for example and without limitation in U.S. Publication No. US 2005-39746A1, entitled Ventilator Circuit and Method for the User Thereof and filed Feb. 9, 2004, U.S. Publication No. US 2006-0254579A1, entitled Ventilator Circuit and Method for the Use Thereof and filed Apr. 24, 2006, and U.S. application Ser. No. 12/105,881, entitled Aerosol Delivery System and filed Apr. 18, 2008, the entire disclosures of which are hereby incorporated herein by reference.
Now referring to the embodiment of
Referring again to
In operation, the system is pressurized to inflate the lungs of the patient, such as a neonate. The positive pressure comes from an oxygen supply 34 connected to a resuscitation bag 36. Manual resuscitation, for example and without limitation bagging, can begin immediately after birth, for example, to maintain a neonate's breathing. A pressurized metered dose inhaler (pMDI) 50 is actuated or fired in between breaths, with the drug being held in the inhalation interior space 16 of the chamber until the next breath. As the resuscitation bag is squeezed, the flow through the inhalation valve 22 and increase in pressure forces the drug from the inhalation interior space 16 of the chamber through the patient port 10 to the patient, for example through the endotracheal tube 51. As the resuscitation bag 36 reinflates, it creates a negative pressure that pulls air through the exhalation interior space 18 as the exhalation valve 24 is opened, with any drug remaining in the inhalation interior space 16 staying there due to the separation of the inhalation and exhalation interior spaces 16, 18. The next breath forces the remaining drug through the patient port 10 to the patient through the patient interface component. The dispenser housing can be used with a flow inflating resuscitation bag, as described hereinabove, or with a self-inflating resuscitation bag. The self-inflating resuscitation bag includes a non-rebreathing valve that prevents the bag from pulling exhaled gases from the patient, and in particular from the chamber. Instead, the patient exhales into the device and the expiratory gases exit to the atmosphere through the non-breathing valve. With this device, the dispenser housing still separates the exhaled gases because a pressure differential is maintained with a higher pressure at the patient end of the device.
While the embodiments of
The disclosed ventilator circuit aerosol delivery system is suitable for use with intermittent flow ventilators and continuous flow ventilators, and including without limitation both mechanical and manual ventilators such as resuscitation bags. As used herein throughout, the term “including” does not means limited to, but rather is without limitation. Implementations of the disclosed ventilator circuit aerosol delivery systems provide the ability to connect the MDI ventilator assembly directly to the endotracheal tube, or a tracheotomy tube, due to an integrated Wye connector or the ability to separate inhalation flow and exhalation flow at the entrance to an endotracheal breathing tube or a tracheotomy tube. Connecting the MDI ventilator assemblies directly to the endotracheal tube, or tracheotomy tube, provides the ability to more efficiently administer aerosolized drugs to a patient without “dead space area” where gases exhaled from a patient remain between each breath such that the same gases are inhaled by the patient upon their next breath. For this reason, the MDI ventilator assembly may be left in a ventilator circuit even when the MDI ventilator assembly is not being used to administer an aerosolized drug to a patient so that it is no longer necessary to break a ventilator circuit each time an aerosolized drug is administered to a patient.
Preferably, the housing 2, or it various components 4, 6, 8 individually or in combination, are made of a clear plastic, although it can be non-transparent in certain embodiments. In one implementation, the housing 2, or its various components individually or in combination, may be made from an antistatic material such that a surface resistivity of the housing 2 is less than about 10E12 ohm/sq., and preferably between about 10E10 and about 10E12 ohm/sq. Examples of antistatic housings are disclosed in U.S. patent application Ser. No. 10/821,260, filed Apr. 8, 2004, the entirety of which is hereby incorporated by reference. Further examples of housings used in MDI ventilator assemblies are disclosed in U.S. patent application Ser. No. 10/774,751, filed Feb. 9, 2004 and published as U.S. Publication No. US 2005-39746A1 (entitled Ventilator Circuit and Method for the User Thereof), and U.S. patent application Ser. No. 11/410,270, filed Apr. 24, 2006 U.S. and published as U.S. Publication No. US 2006-0254479A1 (entitled Ventilator Circuit and Method for the User Thereof), the entire disclosures of which are hereby incorporated herein by reference.
It should be appreciated that the housing 2 may additionally define a temperature probe port, a pressure port, and a holder. In one implementation, both the temperature probe port and the pressure port are positioned on the inhalation port. However, in other implementations, one or both of the temperature probe port and the pressure port may be positioned on other portions of the housing such as the exhalation port. It should be understood that the ports, including without limitation the temperature and pressure ports, can be used to monitor other parameters, such as the presence of CO2 or other gases.
Referring to
Referring to
Referring to
In an alternative embodiment, shown in
Referring to the embodiment of
Referring to
Referring to
Since the second exterior shape 84 of the second container assembly is different than the first exterior shape 72 of the first container assembly, and in particular has a smaller overall cross-sectional area taken perpendicular to the longitudinal axis defined by the valve stem 54, the second container assembly 80 may feel sloppy relative to the socket 52 when mounted to the support block 42 due to the excess room between the exterior surface of the canister 50, and the end portion in particular, and the interior surface of the peripheral wall 48 of the dispenser housing.
To improve the fit of the second container assembly 84, an insert member 98, 398 is provided, as show in
As shown in
In operation, the user, such as caregiver, can use different container assemblies 70, 80, having different exterior shapes 72, 84, with the same dispenser housing 2, 102. For example and without limitation, the caregiver can first dispose the first container assembly 70 with dose counter 60 in the dispenser housing 2, 102, and in particular the socket 52, and actuate the first container assembly a predetermined number of times, including for example a single actuation. The dose counter 60 records the predetermined number of actuations. The caregiver can then remove the first container assembly 70 without having to remove the dispenser housing 2, for example, from a ventilator circuit, or alternatively without having locate another actuator 102 for use with another container assembly. Subsequently, for example if a different medication is required, the caregiver can install an insert member 98, 398 into the dispenser housing 2, 102 and then insert a second container assembly 80, for example a canister 50 without a dose counter, into the insert member 98, 398 and engage the support block 42 of the dispenser housing with the valve stem 54 of the canister. The insert member 98 can be installed in the dispenser housing with a snap-fit, a press fit or any other suitable mechanism for securing the insert member. For example, as shown in
It is intended that the foregoing detailed description be regarded as illustrative rather than limiting, and that it be understood that it is the following claims, including all equivalents, that are intended to define the spirit and scope of this invention.
This application is a continuation of U.S. application Ser. No. 12/603,700, filed Oct. 22, 2009, which application claims the benefit of U.S. Provisional Application Ser. No. 61/107,435, filed Oct. 22, 2008, the entire disclosures of which are hereby incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61107435 | Oct 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12603700 | Oct 2009 | US |
Child | 14074432 | US |