The present invention relates generally to modular air conditioning systems. More specifically, the present invention relates to an air conditioning system that is formed to include an outdoor unit and at least one indoor unit, wherein the units are interconnected using a hose that is user serviceable and modular in a manner that allows reconfiguration and user serviceability as was previously unknown in the art.
In the prior art there is a wide variety of devices available for cooling desired locations such as a room in a home. In the most general terms, these cooling devices draw heat from the room into a coolant working fluid. Once the fluid has absorbed the heat, it is then routed to a location that is remote from the room so that the heat absorbed into the fluid can be discharged from the fluid into the remote location, typically outdoors. Such cooling devices, also known as room air conditioners, may be categorized as window air conditioners, where the unit resides in a window with the cooling unit on the interior and the heat discharge unit on the outside, split air conditioners, where the location of unit containing the air cooling unit and the heat discharging outdoor unit are separated from one another or unitary air conditioners, wherein the air cooling unit and the heat discharging outdoor unit are fixed relative to one another within a single housing.
One of the difficulties encountered with prior art window air conditioners and unitary air conditioners is noise. Since the entire unit is contained within a single housing the fans, pumps and fluid compressors are all positioned in a concentrated, self contained unit. As a result, such units are typically noisy to operate. Further, since the heat absorbing and heat discharging units are both positioned in the same housing, accommodations need to be made with respect to positioning of the units so that they do not operate as a closed loop within the room to be cooled. This is done in the case of a window air conditioner by placing it in a window with the cooling portion on the interior and the heat discharge portion at the exterior, creating the additional problem of blocking a window. Similarly, freestanding unitary devices must be positioned so that an air discharge duct leads to the exterior of the room and allows heat to be discharged via the duct.
In contrast to unitary air conditioners, split air conditioners provide for the interior cooling portion and the heat discharge assembly to be separated from one another in order to overcome some of the above noted issues. In split air conditioning systems, the noisiest portion of the air conditioning system is placed outdoors in a location that is remote from the room to be cooled. One type of split air conditioner is a saddle mount air conditioner. A saddle mount air conditioner typically includes a low profile service channel disposed between an indoor, air cooling unit and an outdoor, heat discharging unit to permit air, condensate water, coolant, and electricity to pass between each unit. The service channel may be placed on the sill of a window so that the indoor unit and the outdoor unit straddle the sill such that they are significantly below the horizontal level of the sill. Other larger split units require that, after installation of the interior and exterior units, connective piping be installed and charged with refrigerant. Such installations require professional technicians to complete and charge the refrigerant piping, thereby greatly increasing the cost of the installation.
Even larger air conditioning systems employ large chiller or cooling tower devices that serve to cool a working fluid at an exterior location. The working fluid is then distributed to a heat exchanger to cool a secondary cooling loop or directly through a large piping network wherein flow is controlled to multiple zones to provide selective cooling at the end location. Such systems provide multiple zone control but require the permanent installation of a large and complex arrangement of pipes and automatic control valves.
In any of the above noted installations, there is very little an end user can do to service or reconfigure the air conditioning system. While a user may install and remove a window mount or unitary air conditioner, the problem of noise within the space exists. When opting for a split or chiller based system the user must make due with the system as installed because of the large network of piping or the fact that the refrigerant lines contain high pressure refrigerant which must be handled by a licensed installer.
Still another difficulty with these prior types of installations is that they lack significant control over the directionality of the cooling. While such devices have vanes or fins to direct the cooled air to some degree, the cooling is still limited to a region that surrounds the device. Since the installation of the device is generally fixed, either because the unit sits in a window or the interior portion of a split system is permanently affixed to a wall, redirection of the cooling effect is nearly impossible. In addition, such systems are generally paired in a manner that provides a single cooling coil (evaporator) with a single heat dissipation coil (condenser) thereby eliminating the possibility of modularity or the addition of extra evaporators in connection with a single condenser and compressor.
In view of the above-described shortcomings associated with traditional style window and split system air conditioners, there is a need for a modular air conditioner that operates on the basic principal of a split system yet allows user serviceability and modular components such that the system is flexible. There is a further need for a modular air conditioning system that includes at least one indoor cooling unit that has an integrated cold store therein such that the temperature of the cold store is maintained by a circulating coolant fluid through hose connections with an outdoor heat dissipation unit.
In this regard, the present invention provides for a modular air conditioner that operates on the basic principal of a split system yet allows user serviceability and modular components such that the system is flexible. In accordance with the present invention a modular air conditioning system is provided that is optimized for efficiently cooling the occupants of a room. The system generally includes an outdoor unit, at least one indoor unit and a user serviceable hose that extends between the outdoor and indoor units. The outdoor unit contains a compressor, an air-cooled condenser, a coolant to fluid heat exchanger, a fan and various other components such as controls. While the indoor unit contains a fan, a fluid pump, a cold fluid storage tank and a fluid to air heat exchanger. Finally, the hose is a detachable hose that includes three lumens therein that act as a cold fluid supply, a fluid return and wiring for power and control signals.
In operation, the outdoor unit operates using a traditional heat pump/air conditioning cycle to reduce the temperature of the coolant or working fluid, which in turn extracts heat from a circulating fluid via the coolant to fluid heat exchanger. The cooled circulating fluid is then circulated, via the hose, between the outdoor and indoor units wherein the cooled fluid reduces the overall temperature of the cold fluid storage tank. When cooling is needed in the indoor space, cold fluid from the cold fluid storage tank is circulated through the fluid to air heat exchanger where the fan circulates room air across the heat exchanger producing a cooling effect. This arrangement allows the room cooling function and the fluid cooling function to be decoupled from one another in a temporal sense in that the control system only operates the outdoor unit when the temperature of the circulating fluid rises above a certain set point.
To further enhance the modularity of the system, the indoor and/or outdoor units are arranged such that they include multiple hose connection points so that multiple indoor units can be connected to a single outdoor unit. Such connections may be made directly from each of the indoor units to the outdoor units or in a daisy chain arrangement. Additionally, the indoor unit may include such functionality as heat sensors and servo directed louvers to direct cooling airflow to hotspots in a room (read here room occupants). Further, the indoor unit may be configured to collect condensate and deposit it back into the cold fluid loop. The outdoor unit can then be configured to eject some fluid from the loop should the fluid capacity of the loop be exceeded by the addition of condensate.
Accordingly, it is an object of the present invention to provide a modular air conditioner that operates on the basic principal of a split system yet allows user serviceability and modular components such that the system is flexible. It is a further object of the present invention to provide a modular air conditioning system that includes at least one indoor cooling unit that has a detachable cold storage therein such that the temperature of the cold store is maintained by a circulating coolant fluid through hose connections with an outdoor heat dissipation unit. It is still a further object of the present invention to provide a modular air conditioning system that includes at least one indoor cooling unit that has a detachable cold storage unit therein such that the cooling operation conducted by the indoor and outdoor units are temporally separated thereby allowing operation of the system at its highest efficiency.
These together with other objects of the invention, along with various features of novelty that characterize the invention, are pointed out with particularity in the claims annexed hereto and forming a part of this disclosure. For a better understanding of the invention, its operating advantages and the specific objects attained by its uses, reference should be had to the accompanying drawings and descriptive matter in which there is illustrated a preferred embodiment of the invention.
In the drawings which illustrate the best mode presently contemplated for carrying out the present invention:
Now referring to the drawings, the modular climate control system is shown and generally illustrated in the figures. As can be seen at
As was stated above, the present invention provides a modular air conditioning system that is optimized for efficiently cooling the occupants of a room. Turning to the exterior unit 16 in more detail, the exterior unit contains a system 20 for controlling the temperature of a working fluid. The system 20 for controlling the temperature may be a heat pump or a traditional compressor. In the case of a heat pump the system 20 can provide add or remove heat to/from the working fluid. In contrast, if only a traditional compressor is provided, the system 20 removes heat from the working fluid. Further, the exterior unit 16 includes a fluid to fluid heat exchanger 18 that allows the exchange of heat between the working fluid on one side of the heat exchanger 18 and the circulating fluid on the other side of the heat exchanger 18. A fan and various other components such as controls may also be included in the exterior unit 16.
The interior unit 10 contains at least a fan 14 and a fluid to air heat exchanger 12. More preferably, the interior unit 10 also includes a fluid pump and a circulating fluid storage tank that will operate as described below in more detail.
Finally, the circulation hose 22 is a detachable hose that extends between the interior 10 and exterior units 16. Preferably, as can be seen at
It can be appreciated by one skilled in the art that within the scope of the present invention we have described an outdoor unit, however, it should be appreciated that the outdoor unit may be positioned indoors as well at a location wherein the user is not concerned about the potential for heat gain. Further, it is anticipated within the scope of the present invention that the air-cooled condenser may be a fluid cooled condenser and more particularly a condenser that is cooled using ground source water.
As illustrated at
The cooled circulating fluid 34 is then circulated, via the circulation hose 22, between the exterior 16 and interior 10 units. As was illustrated at
It is of further note that the circulating fluid is a non-toxic, low freezing point coolant such as salt brine of water mixed with polyethylene glycol. This can be contrasted with the prior art systems that circulated a refrigerant such as Freon or R-10 between the indoor and outdoor units. The arrangement of the present invention allows a user to selectively connect an indoor unit with an outdoor unit using a modular hose arrangement thereby eliminating a great deal of complexity and cost. Further, this arrangement allows for freedom in placing the indoor unit as need for maximum cooling effect and occupant comfort. More preferably, the circulation hoses 22 are attached to the indoor 10 and outdoor 16 units using a quick release style coupler 42. Still more preferably the quick release couplers 42 include a valving therein that prevents leakage of circulating fluid 34 when the circulation hoses 22 are disconnected.
To further enhance the modularity of the system, the indoor and/or outdoor units are arranged such that they include multiple hose connection points so that multiple indoor units can be connected to a single outdoor unit. Such connections may be parallel or made directly from each of the indoor units 10 to the outdoor unit 16 as shown in
It should be further appreciated by one skilled in the art that the arrangement of the present invention could operate equally well as a heating system. In operation the only change that would need to be made is that the outdoor unit would be run as a heat pump rather than as an air conditioner. In this manner rather than cooling the circulating fluid, the outdoor would heat the circulating fluid. Optionally, the indoor units may instead include a supplemental heating arrangement such as an electrical heating coil.
It can therefore be seen that the present invention provides a modular air conditioner that operates on the basic principal of a split system yet allows user serviceability and modular components such that the system is flexible. Further the present invention provides a modular air conditioning system that includes at least one indoor cooling unit that has an integrated cold storage therein such that the temperature of the cold store is maintained by a circulating coolant fluid through user serviceable hose connections with an outdoor heat dissipation unit. For these reasons, the present invention is believed to represent a significant advancement in the art, which has substantial commercial merit.
While there is shown and described herein certain specific structure embodying the invention, it will be manifest to those skilled in the art that various modifications and rearrangements of the parts may be made without departing from the spirit and scope of the underlying inventive concept and that the same is not limited to the particular forms herein shown and described except insofar as indicated by the scope of the appended claims.
This application is a continuation of U.S. application Ser. No. 12/724,036, filed Mar. 15, 2010, which is related to and claims priority from earlier filed U.S. Provisional Patent Application No. 61/159,960, filed Mar. 13, 2009.
Number | Name | Date | Kind |
---|---|---|---|
2320436 | Hull | Jun 1943 | A |
2436713 | Cody | Feb 1948 | A |
2895699 | Louis | Jul 1959 | A |
3176474 | Abbott | Apr 1965 | A |
3491549 | Oglesby | Jan 1970 | A |
3554476 | Gaylor, Jr. | Jan 1971 | A |
4393662 | Dirth | Jul 1983 | A |
4440639 | Galuska | Apr 1984 | A |
4641503 | Kobayashi | Feb 1987 | A |
4809516 | Jones | Mar 1989 | A |
5027614 | Mori et al. | Jul 1991 | A |
5167131 | Karkhanis | Dec 1992 | A |
5245835 | Cohen et al. | Sep 1993 | A |
5355688 | Rafalovich et al. | Oct 1994 | A |
5445213 | Im | Aug 1995 | A |
5467812 | Dean et al. | Nov 1995 | A |
5507337 | Rafalovich et al. | Apr 1996 | A |
5582025 | Dubin | Dec 1996 | A |
5682752 | Dean | Nov 1997 | A |
6138987 | Lee | Oct 2000 | A |
6286316 | Waldrop et al. | Sep 2001 | B1 |
6318108 | Holstein et al. | Nov 2001 | B1 |
6343482 | Endo et al. | Feb 2002 | B1 |
6389834 | LeClear et al. | May 2002 | B1 |
6482332 | Malach | Nov 2002 | B1 |
6525505 | Bay et al. | Feb 2003 | B2 |
6840056 | Tanaka | Jan 2005 | B2 |
6983621 | Cur | Jan 2006 | B2 |
7121105 | Rais | Oct 2006 | B1 |
8281614 | Koo et al. | Oct 2012 | B2 |
9303895 | Grant | Apr 2016 | B1 |
10012450 | Riendeau | Jul 2018 | B2 |
10401043 | Li | Sep 2019 | B2 |
10775054 | Bradford et al. | Sep 2020 | B2 |
10845133 | Romanin et al. | Nov 2020 | B2 |
11143467 | Lynn et al. | Oct 2021 | B2 |
11173575 | Rutkowski et al. | Nov 2021 | B2 |
11253958 | Rutkowski et al. | Feb 2022 | B2 |
20020026800 | Kasai et al. | Mar 2002 | A1 |
20030110789 | Cur et al. | Jun 2003 | A1 |
20050092474 | Seidel | May 2005 | A1 |
20060107683 | Song et al. | May 2006 | A1 |
20060157225 | Martin et al. | Jul 2006 | A1 |
20080087031 | Park et al. | Apr 2008 | A1 |
20090071181 | Spanger | Mar 2009 | A1 |
20100229585 | Bradford et al. | Sep 2010 | A1 |
20140020421 | Gallo | Jan 2014 | A1 |
20160341498 | Lynn et al. | Nov 2016 | A1 |
20170297768 | Gamboa | Oct 2017 | A1 |
20190107338 | Romanin et al. | Apr 2019 | A1 |
20200124296 | Baumann et al. | Apr 2020 | A1 |
20200197844 | Stednitz | Jun 2020 | A1 |
20200222832 | Holbach et al. | Jul 2020 | A1 |
20200238451 | Rutkowski et al. | Jul 2020 | A1 |
20200238452 | Rutkowski et al. | Jul 2020 | A1 |
20200356123 | Sloo et al. | Nov 2020 | A1 |
20210078118 | Li et al. | Mar 2021 | A1 |
20210190330 | Martinez Galvan | Jun 2021 | A1 |
Number | Date | Country |
---|---|---|
2409963 | May 2003 | CA |
1779965 | May 2007 | EP |
3608007 | Feb 2021 | EP |
H01163534 | Jun 1989 | JP |
20010094180 | Oct 2001 | KR |
10-2009-0088319 | Aug 2009 | KR |
10-2020-0137311 | Dec 2020 | KR |
2100733 | Dec 1997 | RU |
2019114943 | Jun 2019 | WO |
2022006296 | Jan 2022 | WO |
Entry |
---|
International Search Report and Written Opinion dated Sep. 2, 2021, Patent Application No. PCT/US2021/039932, 7 pages. |
International Search Report and Written Opinion dated Nov. 26, 2020, Patent Application No. PCT/US2020/050199, 7 pages. |
International Search Report and Written Opinion dated Feb. 20, 2023, Patent Application No. PCT/US2022/078555, 9 pages. |
International Search Report and Written Opinion dated Feb. 21, 2023, Patent Application No. PCT/US2022/078561, 13 pages. |
International Search Report and Written Opinion dated Feb. 22, 2023, Patent Application No. PCT/US2022/078562, 12 pages. |
Number | Date | Country | |
---|---|---|---|
20200363075 A1 | Nov 2020 | US |
Number | Date | Country | |
---|---|---|---|
61159960 | Mar 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12724036 | Mar 2010 | US |
Child | 16987735 | US |