The invention relates generally to the field of dry cooling apparatuses which are used to cool or condense steam by passing the steam through coils in contact with ambient air. Additionally the invention may be used to cool fluids.
Various types of devices are in wide use in industry in order to cool a warm or hot material such as steam. For example, many industrial applications generate steam which is desirable to cool and condense before re-circulating back as water. Various apparatuses generally known as cooling towers or air cooled condensers have been used for this purpose. One category of these cooling towers are so-called dry cooling towers which contain some form of heat exchanger that is supported in the structure so that air is passed over the heat exchanger. In some examples known as air-cooled condensers, the steam is fed to so-called coil bundles or condenser panels, which can be for example panels having a number of parallel tubes in contact with the ambient air. As the steam passes through these coil panels, the steam gives off heat and eventually is condensed back into water which can be removed. The steam is desired to be cooled to a point where it will condense back into water, and can be removed from the condenser panels as water.
Some air-cooled condensers have been designed in a modular fashion, with the coil panels being oriented vertically on one or more perimeter outsides of the tower. Air is drawn into the tower by a central fan and this is drawn through the panels. In another arrangement, the coils are internal to the tower and are arranged in an A-shaped fashion so that steam enters a central header pipe that travels downward through the panels where it is condensed and removed by a header pipe at the bottom of each of the angled A-shaped panels.
In order to facilitate air travel through either arrangement of the tower, it has been known to provide fans, typically one large fan associated with each module in a modular system. In the perimeter type system, the fan is located above the vertical panels and thus is down stream of the panels, pulling the air through the panels in what is called induced draft. In the A-profile type arrangement, the fan deck is placed below the angled A-profile panels and pushes the air through the A-profile panels. Thus, the fan is upstream of the panels and pushes the air through the panels in what is described as a force draft.
The known designs have many desirable properties. However, it is always desirable to reduce the size cost and/or energy consumption of dry cooling towers.
Some embodiments of the present invention provide apparatuses and methods for providing dry cooling, utilizing a tower structure having coil panels located on at least part of the perimeter of the tower, as well as angled coils disposed inside at least a portion of the tower. The system may be provided by several modules, with some of the modules having perimeter panels, and at least some of the modules having interior coil panels as well. Further, in some embodiments, an interior air baffle may be provided to separate the air flow in a perimeter panel from that of an interior panel.
An air-cooled condenser receives and condenses steam where at least one first module has a four-sided profile in plan view, a pair of vertical first condenser tube bundle panels, with one respective vertical tube bundle panel located on each of two adjacent sides of the first module. The air-cooled condenser also receives and condenses steam in a second module which has a four-sided profile in plan view, a vertical second tube bundle panel located on one side of the second module, and an interior third tube bundle panel disposed inside of the second module.
Yet another embodiment describes an air-cooled condenser which receives and condenses steam and has at least one first cooling means, having a four-sided profile in plan view, and having a pair of vertical first condenser tube bundle panels, with one respective vertical tube bundle panel located on each of two adjacent sides of the first cooling means. The air-cooled condenser has a second cooling means, with a four-sided profile in plan view and a vertical second tube bundle panel located on one side of the second cooling means, and also has an interior third tube bundle panel disposed inside of the second cooling means.
A further embodiment includes an air-cooled condenser to receive and condense steam having at least one first module with a four-sided profile in plan view, a pair of vertical first condenser tube bundle condensing means wherein one respective vertical tube bundle condensing means is located on each of two adjacent sides of the first module. Still another embodiment describes the air-cooled condenser as having a second module, a four-sided profile in plan view, and a vertical second tube bundle condensing means located on one side of the second module, and an interior third tube bundle condensing means disposed inside of the second module.
In still another embodiment, a method is provided where the air-cooled condenser receives and condenses steam by drawing air through at least one first module having a four-sided profile in plan view and a pair of vertical first condenser tube bundle panels, with one respective vertical tube bundle panel located on each of two adjacent sides of the first module. The air-cooled condenser also draws air through a second module, having a four-sided profile in plan view, a vertical second tube bundle panel located on one side of the second module, and an interior third tube bundle panel disposed inside of the second module. Steam is supplied to the first and second modules.
Another embodiment provides an air-cooled condenser for receiving and condensing steam, using at least two cooling modules, each comprising four sides, with at least two of the sides supporting a tube bundle panel, wherein the modules are adjacent each other and air flow through the modules is separated by a common vertical cladding wall.
There has thus been outlined, rather broadly, certain embodiments of the invention in order that the detailed description thereof herein may be better understood, and in order that the present contribution to the art may be better appreciated. There are, of course, additional embodiments of the invention that will be described below and which will form the subject matter of the claims appended hereto.
In this respect, before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not limited in its application to the details of construction and to the arrangements of the components set forth in the following description or illustrated in the drawings. The invention is capable of embodiments in addition to those described and of being practiced and carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein, as well as the abstract, are for the purpose of description and should not be regarded as limiting.
As such, those skilled in the art will appreciate that the conception upon which this disclosure is based may readily be utilized as a basis for the designing of other structures, methods and systems for carrying out the several purposes of the present invention. It is important, therefore, that the claims be regarded as including such equivalent constructions insofar as they do not depart from the spirit and scope of the present invention.
Some embodiments of the present invention provide apparatuses and methods for providing dry cooling, and, for example steam condensation, utilizing a tower structure having coil panels located on at least part of the perimeter of the tower, as well as angled coils disposed inside at least a portion of the tower. The system may be provided by several modules, with some of the modules having perimeter panels, and at least some of the modules having interior coil panels as well. Further, in some embodiments, an interior air baffle may be provided to separate the air flow in a perimeter panel from that of an interior panel. Some preferred embodiments will now be described with reference to the drawing figures, in which like reference numbers refer to like parts throughout.
Turning to
The cooling system 10 includes a steam supply system which includes two main supply pipes 16, one for each street. The main supply pipe 16 decreases in diameter as it gets farther from the supply in order to maintain a relatively constant supply velocity, as will be described further below. The main supply pipe 16 is connected to a number of perimeter headers 18, each of which supplies the steam to a respective set of perimeter coil panels 20. The coil panels 20 are grouped together next to each other to form larger coil panel sets. Each coil panel 20 has a number of parallel tubes, and in one embodiment the tubes may have fins or other heat transfer aids. The main steam pipe 16 also supplies steam to a number of interior steam headers 22 which supply steam to respective interior coil panels 24. The construction of coil tube panels 20 and 24 for air-cooled condensers itself is well known and thus is not described further. Any suitable coil panel design may be utilized in accordance with these embodiments.
The arrangement and placement of the coil panels 20 and 24 are generally as follows. Each of the end modules 12 is square and thus is four-sided in plan view. Each end module 12 has two of its sides, its outer two sides, supporting vertical outer perimeter coil panels 20. The interior of the corner modules is otherwise open, and has at its top an exit fan (not shown) surrounded by an upper fan shroud 30.
In the illustrated embodiment, the interior two sides of each module 12 feature vertical cladding 36 which runs the entire height of the module up to the fan shroud. Thus, each of the corner modules 12 is isolated from any neighboring corner modules 12 or intermediate modules 14. Substantially all the air flow into a corner module 12 is through a coil panel 20, and all of the air exits out of the fan shroud 30. Air is not intermixed inside the modules 12 with air from other modules.
Turning next to the interior modules 14, these modules are also square and hence four-sided. The single outer perimeter side of the modules 14 has a vertical tube panel 20 which is similar in configuration to the exterior perimeter tube panels 20 of the corner modules 12. The perimeter side of the interior modules 14 may also have some upper and lower cladding 32 and 34, and the module 14 also has a fan (not shown) disposed in a fan shroud 30. However, as discussed further, the cladding 34 is either omitted or reduced on site to permit airflow underneath the coil panels 20. The intermediate modules 14 also feature an angled tube panel 24, as shown in
It will be appreciated that in the case of the intermediate modules 14, two air paths are provided. A first air path is air which enters the tube bundle 20, passes through the tube bundle 20, and is exhausted by the fan. A second air path is air which enters through the lower opening 37, passes through the tube bundle 24, and is exhausted by the fan.
In some preferred embodiments, it is desirable to separate these air streams by a sloped internal cladding 40, as shown. In the example of
Each of the intermediate modules 14 is also isolated from each other, and from the corner modules 12, by having vertical cladding on each of its three interior sides. In the example shown, each of the intermediate modules 14 has two of its sides isolated by vertical cladding 36, and its fourth side isolated by vertical cladding 38. The vertical cladding 38 is structurally the same as the vertical cladding 36, but is identified by a separate reference number for clarity.
It will be appreciated that the illustrated embodiment provides a induced draft tower, in that the air is drawn by the fan through the coil panels as opposed to being pushed through the coil panels. This design is sometimes more efficient than a forced draft system.
Further, the illustrated example provides a system wherein the outer corner modules take advantage of their two-sided perimeter in order to have two coil panels. The interior modules 14, which have only one exposed side for a coil panel, nevertheless are able to gain square footage of heat exchange surface approximately equal to two panels worth of square footage, by providing one vertical panel in the perimeter wall, and a second panel inclined and inside of the intermediate module. Thus, a fan which is scaled for a corner module, and is designed to draw air through the square footage of two panels, can also essentially be used in an intermediate module 14, where it will also draw air through tube panels (one on the perimeter and one on the inside).
It will be appreciated that this arrangement can provide many benefits. For example, each of the square modules can be expected to provide essentially the same heat transfer load, using essentially the same fan and power requirement. Further, using only two types of modules, a complete system can be designed using parallel streets with any number of corner and intermediate modules. That is, although the example uses eight modules, four of each type, it will readily be appreciated that a longer system could be designed simply by inserting more intermediate modules in line. Further, while a two-street system is often preferred, a single street can be constructed from the disclosed modules.
From the two embodiments shown, it will further be appreciated that a wide variety of numbers of corner modules and/or intermediate modules may be arranged in a wide range of geometric configurations. Both of the illustrated embodiments utilize two streets touching each other, other shapes are possible, and for example two modules each having coil panels on three of their sides could be placed next to each other in a single street with a single internal vertical cladding separating the two modules.
In the two illustrated embodiments, the modules themselves are square or substantially square in plan view. However, any of the modules may be elongated into a rectangular shape. One such rectangular shape for a module would be to place two perimeter coil panels on a single side of the module. In the case of an interior module, the module can be made rectangular by having two perimeter coil panels and two interior coil panels.
In the illustrated embodiment of
References in the specification and claims to the word “rectangular” are intended to cover four-sided arrangements including squares, and where the four-sided arrangements are elongated (i.e., having some sides longer than the other sides). Although rectilinear or orthogonal four-sided modules are shown, it will be appreciated that the modules can be in the form of angled parallelograms if desired.
The many features and advantages of the invention are apparent from the detailed specification, and thus, it is intended by the appended claims to cover all such features and advantages of the invention which fall within the true spirit and scope of the invention. Further, since numerous modifications and variations will readily occur to those skilled in the art, it is not desired to limit the invention to the exact construction and operation illustrated and described, and accordingly, all suitable modifications and equivalents may be resorted to, falling within the scope of the invention.