Modular antitachyarrhythmia therapy system

Abstract
This document discusses, among other things, a modular antitachyarrhythmia therapy system. In an example, a modular antitachyarrhythmia system includes at least two separate modules that coordinate delivery an antitachyarrhythmia therapy, such as defibrillation therapy. In another example, a modular antitachyarrhythmia therapy system includes a sensing module, an analysis module, and a therapy module.
Description
TECHNICAL FIELD

This patent document pertains generally to arrhythmia therapy devices and methods, and more particularly, but not by way of limitation, to modular implantable devices that are configured to deliver an antitachyarrhythmia therapy.


BACKGROUND

Implantable arrhythmia therapy devices such as pacers and defibrillators typically include a power source such as a battery, an electrode, and a controller. A lead carrying the electrode typically has a proximal end that is coupled to a housing that contains the power source and controller, and a distal end that is located in, on, or around the heart. A lead can be introduced into a heart chamber, for example.


A pacing lead typically includes at least one electrode that is configured to deliver a pacing pulse, and a conductor that couples the electrode to a signal generator. Some pacing leads also include a sensing electrode and a second conductor that couples the sensing electrode to a sensing circuit.


A defibrillation lead typically includes an anode and a cathode. For example, a typical defibrillation lead includes two coils that are coupled to anode and cathode portions of a battery. A vector is defined between the anode and cathode. The effectiveness of a defibrillation therapy is affected by the configuration of the anode and cathode, and the vector defined by the anode and cathode.


In some patients, the presence of one or more implanted leads restricts on the patient's range of motion. Moreover, in a growing patient, such as a child, the patient may outgrow a lead. In some growing patients, it can be necessary to periodically explant a pacer or defibrillator and replace the device or implant longer or different leads.


Improved implantable arrhythmia therapy devices are needed.


SUMMARY

In an example, a modular implantable device or system includes an implantable first and an implantable second circuit physically separate from the first circuit. The implantable first circuit includes a sensor to sense a physiologic parameter and a wireless transmitter circuit to send a wireless communication that includes information derived from the physiologic parameter. The implantable second circuit includes a wireless receiver circuit to receive the wireless communication and an antitachyarrhythmia therapy circuit to deliver a responsive antitachyarrhythmia therapy.


In another example, a modular implantable device or system includes an implantable first circuit, an implantable second circuit, physically separate from the first circuit, and an implantable third circuit, physically separate from the second circuit. The implantable first circuit includes a sensor to sense a physiologic parameter, and a communication or driver circuit to send a communication that includes information about the physiologic parameter. The implantable second circuit includes a receiver circuit to receive the communication from the first implantable circuit, a controller circuit to analyze the information about the physiologic parameter, and a wireless transmitter circuit to send a wireless therapy instruction. The implantable third circuit includes a wireless receiver to receive the wireless therapy instruction, and an antitachyarrhythmia therapy circuit to deliver an antitachyarrhythmia therapy.


In another example, a modular implantable device includes an implantable first defibrillation circuit module configured to deliver a first defibrillation shock, an implantable second defibrillation circuit module, physically separate from the first defibrillation circuit module, configured to deliver a second defibrillation shock concurrent with the first defibrillation shock, and a controller circuit configured to direct coordinated delivery of the first and second defibrillation shocks.





BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings, which are not necessarily drawn to scale, like numerals describe substantially similar components throughout the several views. The drawings illustrate generally, by way of example, but not by way of limitation, various embodiments discussed in the present document.



FIG. 1A is an illustration of a modular antitachyarrhythmia system that includes two antitachyarrhythmia therapy modules.



FIG. 1B is a schematic illustration of the system shown in FIG. 1A.



FIG. 2A is an illustration of a modular antitachyarrhythmia system that includes a sensing module, an analysis module, and a therapy module.



FIG. 2B is a schematic illustration of the system shown in FIG. 2A.



FIG. 3A is an illustration of a modular antitachyarrhythmia system that includes a sensing module, an analysis module, and a two therapy modules.



FIG. 3B is a schematic illustration of the system shown in FIG. 3A.



FIG. 4A is an illustration of a modular antitachyarrhythmia system that includes a sensing module and two antitachyarrhythmia therapy modules.



FIG. 4B is a schematic illustration of the system shown in FIG. 4A.



FIG. 5A is an illustration of a modular antitachyarrhythmia system that includes a therapy module and two sensing/analysis modules.



FIG. 5B is a schematic illustration of the system shown in FIG. 5A.



FIG. 6A is an illustration of a modular antitachyarrhythmia system that includes a sensing/therapy module and an analysis module.



FIG. 6B is a schematic illustration of the system shown in FIG. 6A.



FIG. 7A is an illustration of a modular antitachyarrhythmia system that includes a sensing module and an analysis/therapy module.



FIG. 7B is a schematic illustration of the system shown in FIG. 7A.



FIG. 8A is an illustration of a system that includes a plurality of sensing modules.



FIG. 8B is a schematic illustration of the system shown in FIG. 8A.



FIG. 9 is a schematic illustration of an embodiment of an antitachyarrhythmia therapy circuit.





DETAILED DESCRIPTION

Overview


An antitachyarrhythmia system, such as a defibrillation system, includes at least two physically separate modules that communicate with each other through a wireless communication. Numerous example systems are shown in FIGS. 1A to 8B. A module is a component that is used with other components, from which it is physically separate when implanted in the body. For example, in FIG. 1A, module 105 is used with module 110 and is physically separate from module 110.


Examples of wireless communication techniques include a radio frequency (RF) signal, inductive coupling, or conduction through the body. Wireless communications between modules include, for example, information about or derived from a physiologic parameter detected by a sensor, or one or more instructions to deliver, schedule, synchronize, or coordinate delivery of an antitachyarrhythmia therapy. In one example, wireless communication between modules avoids or reduces the use of leads. In some examples, all of the modules are physically disjoint, i.e. there are not physical connections between them. FIGS. 1A-4A show examples of physically disjoint modules. In other examples, some of the modules are physically disjoint, and others are connected. For example, the systems shown in FIGS. 5A and 6A include at least one leadless module and at least one module coupled to a lead.


In an example, a modular antitachyarrhythmia system permits growth of a patient. For example, a system implanted in a child can expand as a child grows, i.e. the modules can still operate as they become farther apart as the child grows because the modules are not tied together with leads. In another example, a modular antitachyarrhythmia system provides free range of motion to a patient.


Modular antitachyarrhythmia systems, such as the systems shown in FIGS. 1A-8B, can be used in one or more of a variety of applications. In one example, unique flux fields are created by strategically positioning modules containing electrodes. For example, defibrillation vectors can be tailored by carefully positioning modules. The example illustrated in FIG. 1A shows two separate defibrillation modules implanted near the heart. FIG. 2A shows two separate defibrillation modules implanted in the heart. In some examples, leadless modules with electrodes are implantable in locations that would be practically impossible using tethered systems, such as certain portions of the peripheral vasculature. In an example, a module is sized and shaped for implantation in the pulmonary vasculature, such as in the pulmonary vasculature bed, or in the renal vasculature. In an example, one or more modules is implanted subcutaneously or submuscularly. In an example, a module is sized and shaped for implantation in the intraclavicle space inferior to the clavicle. In another example, a module is sized and shaped for implantation on or around the solar plexus. In another example, a module is sized and shaped for submuscular, intramuscular, intracardiac, or intravascular implantation. In an example, an intravascular or intracardiac module avoids occluding a blood vessel or interfering with valve heart valves.


In an example, modules are implanted in locations that allow for near-field sensing of an intrinsic electrical heart signal. In one example, separate modules are positioned in or around specific locations of the heart or peripheral vasculature so that local intrinsic signals can be sensed at specific locations. In an example, a module is sized and shaped for implantation in a right ventricular apex. In an example, a module is sized and shaped for endocardial implantation, for example in a right atrium or right ventricle. In an example, a module is sized and shaped for implantation in a right atrial appendage. In an example, a module is sized and shaped for implantation in the coronary sinus, in vessels extending from the coronary sinus, or in other venous vasculature. In an example, a module is sized and shaped for implantation on an epicardial surface, such as on a left atrium or left ventricle epicardial surface.


In other examples, a module that is depleted or dysfunctional is replaced, while one or more other modules are left intact. In one example, a module implanted in the heart is left in place, while a module implanted outside the heart is replaced or upgraded. A subcutaneously implanted module, for example, is replaceable with a relatively noninvasive procedure.


Some examples of a modular antitachyarrhythmia system can also be changed over time as needed by replacing or adding one or more modules. For example, analysis or therapy programming circuits can be replaced or upgraded. In another example, pacing capability can be added by adding a pacing module. Modules can be added as a disease progresses or changes.


In another example, a modular antitachyarrhythmia therapy system is implanted in a growing patient, such as a child. In an example, dissemination of the total volume of the modular system over more than one anatomic location enables local organ growth and overall body growth without compromising the functionality of the system. In an example, the reduction or elimination of leads enables organ growth or overall body growth, as the distance between components is allowed to change as the patient grows.


In an example implant method, the components of a system are implanted at predetermined anatomical locations in a patient. In an example, the components are then tested using a standardized protocol. In an example, the standardized protocol is integrated into an external programmer or other adjunct device.


Examples of Modular Antitachyarrhythmia Systems



FIG. 1 is an example of a modular antitachyarrhythmia therapy system 100. In one example, the antitachyarrhythmia system 100 includes two separate antitachyarrhythmia therapy modules 105, 110 that cooperate to deliver a coordinated therapy. Module 105 includes two electrodes 106, 107 and module 110 includes two electrodes 111, 112. In an example, the modules 105, 106 each include a hermetically sealed electronics unit. In an example, the hermetically sealed electronics unit includes a housing and a header, and the electrodes 106, 107, 111, 112 are located on the housing, on the header, or are contained in a lead that is coupled to a module header. In an example, module 105 delivers an antitachyarrhythmia therapy from electrode 106 through a portion of the heart 101 to electrode 107, and module 110 delivers an antitachyarrhythmia therapy from electrode 111 through a portion of the heart 101 to electrode 112. In an example, the modules communicate with each other through wireless communication. In an example, the modules 105, 110 coordinate or synchronize an antitachyarrhythmia therapy through the wireless communication.


In an example, one or both of the modules 105, 110 are implanted in the heart. In another example, one or both of the modules is implanted in the body but outside of the heart. In an example, at least one of the modules is sized and shaped for implantation in a peripheral cardiac vessel, such as the coronary sinus. In an example, a module includes a fixation helix that connects the module to heart tissue.


In an example, a module is sized and shaped to be wedged into a vessel, such as in renal vasculature or pulmonary vasculature. In an example, a module is sized and shaped to be wedged into a vessel having a diameter that decreases in diameter along the length of the vessel, and wedging the module into the vessel fixes the module in place. In an example, the module occludes a portion of venous vasculature.


In another example, a module is sized and shaped for implantation in coronary vasculature, such as in the coronary sinus. In an example, the module is driven in place using a lead.


In an example, the modules 105, 110 shown in FIG. 1A are both fully functional defibrillators, i.e. both modules includes sensing, analysis, and therapy circuitry. In another example, the modules operate in a master/slave relationship. In one example, module 105 operates as a master and includes analysis circuitry that directs delivery of an antitachyarrhythmia therapy through electrodes 111, 112, in module 110.



FIG. 1B shows a schematic illustration of one example of the system illustrated in FIG. 1A. In this example, module 105 includes sense circuit 115, controller circuit 120, antitachyarrhythmia therapy circuit 125, and communication circuit 130. In an example, the communication circuit 130 includes telemetry circuitry, such as an RF or inductive transceiver. In another example, the communication circuit uses a human or animal body as a conductive medium for a wireless communication. Sense circuit 115 detects one or more physiological parameters, such as cardiac performance data. In an example, sense circuit 115 includes a sense amplification circuit to detect at least one intrinsic electrical heart signal. Controller circuit 120 analyzes physiological data detected by the sense circuit 115, determines whether a tachyarrhythmia is present, and determines at least one responsive antitachyarrhythmia therapy, such as a defibrillation shock therapy or antitachyarrhythmia pacing therapy. Antitachyarrhythmia therapy circuit 125 delivers the antitachyarrhythmia therapy determined by the controller circuit 120.


Antitachyarrhythmia circuit 125 includes the electrodes 106, 107 shown in FIG. 1A. In an example, the antitachyarrhythmia circuit includes a pulse generator coupled to the electrodes, as shown in FIG. 9A. In an example, the pulse generator includes a battery, a capacitor, and circuitry for charging the capacitor and delivering a defibrillation therapy.


In an example, module 110 is a second fully function defibrillator that includes a sense circuit 135, a controller circuit 140, an antitachyarrhythmia therapy circuit 145, and a communication circuit 150. Controller circuit 140 analyzes physiological data detected by the sense circuit 135, determines whether a tachyarrhythmia is present, and determines at least one responsive antitachyarrhythmia therapy, which is delivered through the antitachyarrhythmia circuit 145. The modules 105, 110 communicate with each other through the communication circuits 130, 150, such as to coordinate, schedule, or synchronize therapy.


In an example master/slave system, one of the modules 105, 110 also determines a therapy to be delivered through one of the modules 105, 110. In an example, module 110 operates as a slave module. In one example, module 110 does not include an analysis circuit. In this example, controller circuit 120 of module 105 determines a therapy based upon data received from sense circuit 135 and directs the antitachyarrhythmia therapy circuit 145 in the other module 110 to deliver a responsive therapy. In another example, module 110 includes neither a sense circuit nor an analysis circuit, and a therapy is determined from data provided by sense circuit 115 in module 105. In another example, module 110 includes an analysis circuit, but module 105 determines an appropriate antitachyarrhythmia therapy and directs delivery of the therapy through module 110.


In an example, a pacing circuit is also provided in one or both of the antitachyarrhythmia modules. In another example, a physically separate pacing module including pacing circuitry and communication circuitry is provided, with the separate pacing module configured for communication with one or both of the modules 105, 110.


In an example, a therapy for a patient is tailored by strategically positioning the antitachyarrhythmia modules 105, 110 in anatomical locations to obtained desired vectors. In an example, the modules are implanted outside the heart, as shown in FIG. 1A. Alternatively, one or both modules are implanted in the heart. In an example, the modules 105, 110 are implantable in a location that can be difficult to reach with an electrode tethered to a lead. In an example, one of the modules 105, 110 is implanted in or on the left side of the heart 101. In an example, a module is sized and shaped for implantation in the coronary sinus, in a vessel extending from the coronary sinus, or on an epicardial or pericardial surface. In an example, a module is affixed using a T-bar and a modified suture technique. In an example, the T-bar has an opening through which a needle is inserted.


The left side of the heart is relatively difficult to reach with an endocardial defibrillation lead because of the complex vasculature through which such a lead would be inserted to reach the left side of the heart. In an example, implantation of a module avoids occlusion of a blood vessel or interference with a heart valve.


Another example of a modular antitachyarrhythmia therapy system is shown in FIG. 2A. The example antitachyarrhythmia system 200 includes three separate modules 205, 210, 215 that respectively perform therapy, sensing, and analysis. Sensing module 210 includes a sensor that detects at least one physiologic parameter, such as an intrinsic electrical heart signal or blood pressure. In another example, sensing module 210 is implanted on or around the heart. Analysis module 215 wirelessly receives information from sensing module 210 and processes the information to determine whether a tachyarrhythmia is present and determine an appropriate antitachyarrhythmia therapy. Analysis module 215 directs therapy module 205 to deliver an antitachyarrhythmia therapy through electrodes 206, 207. In an example, therapy module 205 delivers an antitachyarrhythmia therapy from electrode 206 through a portion of the heart 201 to electrode 207.



FIG. 2B shows a schematic illustration of the system illustrated in FIG. 2A. In this example, sensing module 210 includes sensor circuit 230, which detects one or more physiological parameters, such as an intrinsic electrical heart signal. Sensing module 210 also includes a communication circuit 235 that wirelessly sends information about the one or more sensed parameters to the analysis module 215. In one example, the communication circuit 235 includes telemetry circuitry, such as an inductive or RF transmitter or transceiver. Analysis module 215 includes controller circuit 240 and a communication circuit 245 that receives information sent by the communication circuit 235 in the sensing module 210. Controller circuit 240 analyzes physiological data provided by the sensing module 210 and determines whether an antitachyarrhythmia is present and, if so, determines an appropriate antitachyarrhythmia therapy, such as a defibrillation shock therapy or antitachyarrhythmia pacing (ATP) therapy. The communication circuit 245 also includes a wireless transmitter, through which a direction is sent to the antitachyarrhythmia therapy module 205 to deliver the antitachyarrhythmia therapy. Antitachyarrhythmia therapy module 205 includes a communication circuit 225 including a wireless receiver that receives the communication from the communication circuit 245 in the analysis module 215. Antitachyarrhythmia therapy module 205 also includes an antitachyarrhythmia therapy circuit 220, which includes or is coupled to the electrodes 206, 207 shown in FIG. 2A. The antitachyarrhythmia therapy circuit 220 delivers the antitachyarrhythmia therapy determined by the controller circuit 240 through the electrodes 206, 207.


In an example, a pacing circuit is also provided in the antitachyarrhythmia module 205, the sensing module 210, or the analysis module 215. In another example, the system includes a separate pacing module including pacing circuitry and communication circuitry.


In an example, a therapy for a patient is obtained by strategically positioning the antitachyarrhythmia therapy module 205 in a particular anatomical location. In an example, the antitachyarrhythmia therapy module 205 is implanted in the heart, as shown in FIG. 2A. In an example, the antitachyarrhythmia therapy module 205 is implanted in the right ventricle. In another example, the module 205 is implantable in or on the left side of the heart. In an example, the sensing module 210 is also placed in a desired location for sensing one or more parameters, such as an intrinsic electrical heart signal. In an example, the analysis module 215 is implanted subcutaneously, which allows the analysis module 215 to be replaced or upgraded without requiring replacement of other separate modules that are implanted deeper in the body. In another example, the analysis module 215 is implanted near the abdomen, as shown in FIG. 2A. Alternatively, the analysis module 215 is implanted subcutaneously, such as on the left side of the upper body near the heart.


Another example of a modular antitachyarrhythmia therapy system 300 is shown in FIG. 3A. The example antitachyarrhythmia system 300 includes a sensing module 320, a separate analysis module 315, and two separate antitachyarrhythmia therapy modules 305, 310 that deliver a coordinated antitachyarrhythmia therapy. Sensing module 320 includes a sensor that detects a physiologic parameter, such as an intrinsic electrical heart signal or blood pressure. Analysis module 315 receives information from sensing module 320 and processes the information to determine an antitachyarrhythmia therapy. Analysis module 315 directs therapy modules 305, 310 to deliver a coordinated antitachyarrhythmia therapy through electrodes 306, 307, 311, 312. In an example, therapy module 305 delivers an antitachyarrhythmia therapy from electrode 306 through a portion of the heart 301 to electrode 307, and therapy module 310 delivers an antitachyarrhythmia therapy from electrode 311 through a portion of the heart 301 to electrode 312.



FIG. 3B shows a schematic illustration of the system illustrated in FIG. 3A. Sensing module 320 includes sensor circuit 355, which detects one or more physiological parameters, such as an intrinsic electrical heart signal. Sensing module 320 also includes a communication circuit 360 that sends information about the one or more sensed parameters to the analysis module 315. In one example, the communication circuit 360 in the sensing module 320 includes telemetry circuitry, such as an inductive or RF transmitter. In another example, the communication circuit 360 includes an inductive or RF transceiver. Analysis module 315 includes controller circuit 345 and communication circuit 350. The communication circuit 350 in the analysis module 315 receives information sent by the communication circuit 360 in the sensing module 320. Controller circuit 345 analyzes physiological data provided by the sensing module 320 and determines an antitachyarrhythmia therapy, such as a defibrillation shock therapy. Antitachyarrhythmia therapy modules 305, 310 include respective communication circuits 330, 340 that receive a communication from the communication circuit 350 in the analysis module 315. Antitachyarrhythmia therapy modules 305, 310 also include respective antitachyarrhythmia circuits 325, 335, which respectively include the electrodes 306, 307, 311, 312 shown in FIG. 3A. Antitachyarrhythmia therapy modules 305, 310 deliver the antitachyarrhythmia therapy determined by the controller circuit 345 through the electrodes 306, 307, 311, 312. In an example, the analysis module coordinates delivery of a therapy by the antitachyarrhythmia modules 305, 310. In another example, the communication circuits 330, 340 in the antitachyarrhythmia modules 305, 310 communicate with each other to coordinate or synchronize an antitachyarrhythmia therapy.


In an example, the analysis module 315 is implanted subcutaneously and can be replaced or upgraded with a relatively minor procedure without altering or disturbing the other modules in the system. In an example, antitachyarrhythmia therapy module 305 is implanted in the heart and antitachyarrhythmia therapy module 310 is implanted outside the heart. In another example, antitachyarrhythmia therapy module 305 is implanted in the left side of the heart and antitachyarrhythmia therapy module 310 is implanted in the right side of the heart. In an example, sensing module 320 or other modules are in or on the heart, or in an epicardial space. In an example, sensing module 320 is implanted in the right side of the heart.


Another example of a modular antitachyarrhythmia therapy system is shown in FIG. 4A. The example antitachyarrhythmia system 400 includes a sensing module 415 and two separate antitachyarrhythmia therapy modules 405, 410. Sensing module 415 includes a sensor that detects a physiologic parameter, such as an intrinsic electrical heart signal or blood pressure. Therapy module 405 includes two electrodes 406, 407 and therapy module 410 includes two electrodes 411, 412. In an example, therapy module 405 delivers an antitachyarrhythmia therapy from electrode 406 through a portion of the heart 401 to electrode 407, and therapy module 410 delivers an antitachyarrhythmia therapy from electrode 411 through a portion of the heart 401 to electrode 412. The modules 405, 410, 415 communicate wirelessly. In an example, the therapy modules 405, 410 coordinate or synchronize a therapy through the wireless communication.



FIG. 4B shows a schematic illustration of the system illustrated in FIG. 4A. Sensing module 415 includes sense circuit 450, which detects one or more physiological parameters, such as an intrinsic electrical heart signal. Sensing module 415 also includes a communication circuit 455 that sends information about the one or more sensed parameters to the other modules. In one example, the communication circuit 455 includes an inductive or RF transmitter. In another example, the communication circuit 455 includes an inductive or RF transceiver. Modules 405, 410 include respective controller circuits 420, 435, antitachyarrhythmia therapy circuits 425, 440 and communication circuits 430, 445. The communication circuits 430, 445 receive information from the communication circuit 455 in the sensing module 415. Controller circuits 420, 435 analyze physiological data provided by the sense circuit 450 and determine an antitachyarrhythmia therapy, such as a defibrillation shock therapy. Antitachyarrhythmia therapy circuits 425, 440 include the respective electrodes 406, 407 and 410, 411. Antitachyarrhythmia therapy circuits 425, 440 deliver an antitachyarrhythmia therapy determined by the respective controller circuit 420, 435 through the respective electrodes 406, 407 and 410, 411. In an example, antitachyarrhythmia modules 405, 410 communicate to coordinate or synchronize delivery of an antitachyarrhythmia therapy.


In an example, separate modules 405, 410, 415 are implanted outside the heart. In another example, one or more of the separate modules 405, 410, 415 are implanted in the heart.


Another example of a modular antitachyarrhythmia therapy system is shown in FIG. 5A. The example system 500 includes a therapy module 505 and a separate sensing/analysis module 510 that performs sensing and analysis. Sensing/analysis module 510 includes a sensor 515 that detects a physiologic parameter and also includes controller circuitry that receives information from the sensor 515 and processes the information to determine whether a tachyarrhythmia is present and, if so, determines an appropriate antitachyarrhythmia therapy. In an example, the controller circuitry is contained in a housing 514 and the sensor 515 is connected to the housing with a lead 516. Analysis module 510 directs therapy module 505 to deliver an antitachyarrhythmia therapy through electrodes 506, 507. In an example, therapy module 505 delivers an antitachyarrhythmia therapy from electrode 506 through a portion of the heart 501 to electrode 507. In an example, antitachyarrhythmia therapy module 505 is implanted outside the heart as shown in FIG. 5A, such as in the subcutaneously below or between the ribs. In another example, antitachyarrhythmia module 505 is implanted in the heart, such as in the right atrium or right ventricle.



FIG. 5B shows a schematic illustration of the system illustrated in FIG. 5A. Sensing/analysis module 510 includes controller circuit 530, sensor circuit 540, and communication circuit 535. Sensor circuit 540 includes the sensor 515 that detects one or more physiological parameters. Controller circuit 530 analyzes physiological data provided by the sensor circuit 540 and determines whether a tachyarrhythmia is present and, if so, determines an appropriate antitachyarrhythmia therapy, such as a defibrillation shock therapy or antitachyarrhythmia pacing (ATP) therapy. A direction, such as a direction to initiate or adjust the antitachyarrhythmia therapy, is sent to the antitachyarrhythmia therapy module 505 through the communication circuit 535. In one example, the communication circuit 535 includes telemetry circuitry, such as an inductive or RF transmitter. In another example, the communication circuit 535 includes an inductive or RF transceiver. Antitachyarrhythmia therapy module 505 includes a communication circuit 525 that receives the communication from the communication circuit 535 in the analysis module 510. Antitachyarrhythmia therapy module 505 also includes an antitachyarrhythmia therapy circuit 520, which includes the electrodes 506, 507 shown in FIG. 5A. Antitachyarrhythmia therapy circuit 520 delivers the antitachyarrhythmia therapy determined by the controller circuit 530 through the electrodes 506, 507.


Another example of a modular antitachyarrhythmia therapy system is shown in FIG. 6A. The example system 600 includes a sensing/therapy module 605 and a separate analysis module 615. Sensing/therapy module 605 includes a sensor 610 that detects a physiologic parameter and also includes therapy circuitry that delivers an antitachyarrhythmia therapy. In an example, sensor 610 is located in the heart. In another example, sensor 610 is located outside the heart. In an example, the therapy circuitry is contained in a housing 614 and the sensor 610 is connected to the housing with a lead 616. The sensing/therapy module 605 communicates wirelessly with an analysis module 615. Analysis module determines whether a tachyarrhythmia is present and, if so, directs sensing/therapy module 605 to deliver an appropriate antitachyarrhythmia therapy through electrodes 606, 607. In an example, therapy module 605 delivers an antitachyarrhythmia therapy from electrode 606 through a portion of the heart 601 to electrode 607. In an example, the sensing/therapy module 605 is implanted outside the heart, as shown in FIG. 6A. In another example, the sensing/therapy module is implanted in the heart.



FIG. 6B shows a schematic illustration of the system illustrated in FIG. 6A. Sensing/therapy module 605 includes sense circuit 625, antitachyarrhythmia therapy circuit 620, and communication circuit 630. The antitachyarrhythmia therapy circuit 620 includes the electrodes 606, 607 shown in FIG. 6A. Sense circuit 625 includes the sensor 610 that detects one or more physiological parameters. Sensing/therapy module 605 sends physiological data through communication circuit 630 to the analysis module. Analysis module 615 includes a controller circuit 635 and a communication circuit 640. Communication circuit 640 receives the communication from the sensing/analysis module 605. In one example, the communication circuits 630, 640 each include an RF transceiver and the circuits communicate through RF signals. Controller circuit 635 analyzes physiological data provided by the sense circuit 640 and determines an antitachyarrhythmia therapy, such as a defibrillation shock therapy or ATP therapy. Analysis module then sends an antitachyarrhythmia therapy instruction through the communication circuit 640 to the antitachyarrhythmia therapy module 605. Antitachyarrhythmia therapy circuit 620 delivers the antitachyarrhythmia therapy determined by the controller circuit 635 through the electrodes 606, 607.


Another example of a modular antitachyarrhythmia therapy system is shown in FIG. 7A. The example system 700 includes a sensing module 710 and an analysis/therapy module 705. Sensing module 710 includes a sensor 711 that detects a physiologic parameter. The sensing module 710 communicates wirelessly with an analysis/therapy module 715. Analysis/therapy module 705 includes controller circuitry that analyzes data provided by the sensing module 710 and determines whether a tachyarrhythmia is present and, if so, determines an appropriate antitachyarrhythmia therapy. Analysis/therapy module 705 also includes therapy circuitry that delivers the antitachyarrhythmia therapy, for example, to a heart 701.



FIG. 7B shows a schematic illustration of the system illustrated in FIG. 7A. Sensing module 710 includes a sense circuit 730 that includes the sensor 711 shown in FIG. 7A. Sensing module 710 also includes a communication circuit 735 that sends information about sensed physiologic parameters to the analysis/therapy module 705. Analysis/therapy module 705 includes controller circuit 720, antitachyarrhythmia therapy circuit 715, and communication circuit 725. Communication circuit 725 receives the communication from the sensing module 710. In one example, the communication circuits 725, 735 each include telemetry circuitry, and the circuits communicate through RF or inductive signals. Controller circuit 720 analyzes physiological data provided by the sense circuit 730 and determines whether a tachyarrhythmia is present and, if so, determines an appropriate antitachyarrhythmia therapy, such as a defibrillation shock therapy or ATP therapy. The controller circuit 720 then sends an antitachyarrhythmia therapy delivery instruction to the antitachyarrhythmia therapy circuit 715. Antitachyarrhythmia therapy circuit 715 delivers the antitachyarrhythmia therapy determined by the controller circuit 720. In an example, the antitachyarrhythmia therapy circuit includes electrodes that are integrated into a housing of the analysis/therapy module that carries its electronics.


In other examples, one of the systems shown in FIGS. 1A-7A includes one or more additional modules. In one example, a system includes a memory module including a memory circuit and communication circuit. In another example, a system includes a pacing module including pacing circuitry. In another example, a system includes a respiratory sensing module including respiratory sensing circuitry. In another example, a system includes a respiratory stimulation module including respiratory stimulation circuitry. In another example, a system includes a chemical sensor module or a chemical or drug delivery module. In an example, a system includes sensors that detect blood chemistry in the heart or in arteries or other vessels. In an example, a system includes one or more sensors detect oxygen saturation and/or pH levels in blood.


In some examples, certain modules are combined into a system that includes at least two separately located modules that wirelessly communicate with each other. In an example, pacing circuitry is included in a defibrillation module or a heart sensing module. In another example, respiration sensing and respiration stimulation are performed by a single module. In another example, chemical sensors or chemical delivery mechanisms are included with antitachyarrhythmia therapy modules or other modules.



FIG. 8A shows an example of a modular implantable system 800 that includes a variety of separate sensor modules. FIG. 8B is a schematic illustration of the system shown in FIG. 8A that shows schematic illustrations of circuits in the modules. The system 800 includes separate modules 802, 804, 806, 812, 814, 816. In an example, each of the separate modules 802, 804, 806, 812, 814, 816 includes a sensor to sense a physiologic parameter and a wireless transmitter circuit to send a wireless communication that includes information about the physiologic parameter. In another example, two or more of the sense circuits are coupled to another module with a lead or are combined in a single module. In one example, module 802 includes a sense amplification circuit 842 (shown in FIG. 8B) to detect an intrinsic electrical heart signal and a wireless transmitter circuit 843 that transmits information about the intrinsic electrical heart signal. In one example, module 804 includes a heart sound sensor 844 to detect a heart sound and a wireless transmitter circuit 845 that transmits information about the heart sound. In one example, module 806 includes a respiration sensor 846 and a wireless transmitter circuit 847 that transmits information about the respiration. In one example, module 808 includes a wireless receiver circuit 849 to receive a diaphragmatic pacing instruction and a diaphragm stimulation circuit 848 to deliver a diaphragmatic pacing pulse. In an alternative example, module 806 and 808 are combined in a single module.


In one example, module 810 includes a pacing stimulation circuit 850 to deliver a pacing pulse and a wireless receiver circuit 851 that receive a pacing instruction. In this example, module 812 includes a blood pressure sensor 852 to detect blood pressure and a wireless transmitter circuit 853 that transmits information about the blood pressure. In an example, module 812 is sized and shaped for implantation in the heart, or in vasculature near the heart. In another example, module 812 is sized and shaped for implantation in pulmonary vasculature, such as in the pulmonary vascular bed. In an example system, the pacing stimulation circuit in module 810 adjusts delivery of a pacing pulse in response to information provided from another module, such as information about the blood pressure provided by module 812. In one example, module 814 includes an atrial sensing circuit 854 that senses an intrinsic electrical atrial signal and a wireless communication circuit 855 that transmits includes information about the atrial signal. In one example, module 816 includes a ventricular sensing circuit 856 that senses an intrinsic electrical ventricular signal, and a wireless transmitter 857 that transmits information about the ventricular signal. In some examples, one or more of modules 802, 804, 806, 812, 814, 816, include circuitry that processes a signal or data obtained from a physiological sensor.


In one example, module 820 includes a wireless receiver or transceiver circuit 821 that receives a wireless communication from one or more of the other modules. Module 820 also includes a controller circuit 822 that uses the information about one or more physiologic parameters received from one or more of the other modules 802, 804, 806, 812, 814, 816, such as to provide diagnostic information or to determine therapy. In an example, the controller circuit 822 uses information about the atrial signal received from module 814. In another example, the controller circuit 822 uses information about the ventricular signal received from module 816. In another example, the controller circuit 822 uses information about both the atrial and ventricular signals. In an example, module 820 also includes an antitachyarrhythmia therapy circuit that delivers a responsive antitachyarrhythmia therapy. In another example, module 820 includes a wireless transmitter circuit 821 that transmits a wireless antitachyarrhythmia therapy instruction to module 830, which includes a communication circuit 834 and antitachyarrhythmia circuitry 832 that delivers an antitachyarrhythmia therapy in accordance with the instruction from module 820. In an example, modules 820 and 830 each include an antitachyarrhythmia therapy circuit. In an example, module 820 is implanted subcutaneously and can be replaced without replacing other modules.


In another example, some of the modules 802, 804, 806, 808, 810, 812, 814, 816, 820, 830 are combined together in a system that includes at least two separate modules that wirelessly communicate with each other. In an example, the modules 802, 804, 812 that respectively sense blood pressure, heart sound, and an intrinsic electrical heart signal are combined into a single module 803 that includes such sensors and a wireless transmitter that transmits information about various physiological parameters detected by the sensors.


In an example, the system receives information about physiologic parameters through multiple channels. In one example, the system 800 is senses at least two physiologic parameters concurrently using physically separate modules, and includes a memory circuit that records information relating to the at least two physiologic parameters. In an example, the system includes stores information about physiologic parameters received before a tachyarrhythmia in the memory circuit. In an example, the system includes an implantable memory circuit that can be replaced without replacing other modules.



FIG. 9 is a schematic illustration of an example of an antitachyarrhythmia therapy circuit 900. A pulse generator 905 includes a battery 910 and a pulse circuit 906. In an example, the pulse circuit 906 includes a capacitor for building a charge that is deliverable in a pulse across the electrodes. The pulse generator 905 receives an instruction from a controller circuit 925. In an example, the controller circuit 925 communicates through telemetry circuitry coupled to the pulse generator 905. In another example, the controller circuit 925 is physically connected to the pulse generator 905. The controller circuit 925 instructs the pulse generator 905 to draws power from the battery and delivers an energy, such as a defibrillation shock, across electrodes 915, 920.


It is to be understood that the above description is intended to be illustrative, and not restrictive. Since many embodiments of the invention can be made without departing from the spirit and scope of the invention, the invention resides in the claims hereinafter appended.

Claims
  • 1. An implantable cardiac therapy system comprising: an implantable analysis and therapy module (IATM) including a controller circuit, a first communication circuit operatively coupled to the controller circuit, and a therapy circuit comprising electrodes for outputting defibrillation energy and a pulse generator including a battery, a capacitor, and circuitry for charging the capacitor and delivering a defibrillation therapy via the electrodes; andan implantable module comprising a sensing circuit for sensing a physiologic parameter and a second communication circuit configured to send information about the sensed physiological parameter to the first communication circuit;wherein:the first communication circuit is configured to receive the information about the sensed physiological parameter from the second communication circuit;the first communication circuit is further configured to provide the information about the sensed physiological parameter to the controller circuit; andthe controller circuit is configured to analyze the information about the sensed physiological parameter to determine whether a defibrillation therapy is needed.
  • 2. The implantable cardiac therapy system of claim 1 wherein the sensing circuit is a heart sound sensor, and the information about the sensed physiological parameter comprises information about the heart sound.
  • 3. The implantable cardiac therapy system of claim 1 wherein the sensing circuit comprises a sense amplification circuit to detect an intrinsic electrical heart signal; and the information about the sensed physiological parameter comprises information about the intrinsic electrical heart signal.
  • 4. The implantable cardiac therapy system of claim 3 wherein the implantable module further comprises cardiac pacing circuitry, and the controller circuit of the IATM is configured to determine whether a tachyarrhythmia is present and, if so, to use the first communication circuit to issue a command for anti-tachycardia pacing to the implantable module.
  • 5. The implantable cardiac therapy system of claim 1 wherein the sensing circuit is a respiration sensor, and the information about the sensed physiological parameter is related to respiration.
  • 6. The implantable cardiac therapy system of claim 5 wherein the implantable module further comprises diaphragm pacing circuitry, and the controller is configured, in response to analysis of the sensed physiological parameter related to respiration, to use the first communication circuit to issue a command for diaphragm pacing to the implantable module.
  • 7. The implantable cardiac therapy system of claim 1 wherein the sensing circuit is a blood pressure sensor, and the information about the sensed physiological parameter is related to blood pressure.
  • 8. The implantable cardiac therapy system of claim 1 wherein the implantable module is sized and shaped for implantation in the heart.
  • 9. The implantable cardiac therapy system of claim 1 wherein the implantable module is sized and shaped for implantation in vasculature near the heart.
  • 10. The implantable cardiac therapy system of claim 1 wherein the implantable module is sized and shaped for implantation in the pulmonary vasculature.
  • 11. The implantable cardiac therapy system of claim 1 wherein the IATM comprises a lead that carries at least one of the electrodes.
  • 12. The implantable cardiac therapy system of claim 11 wherein the IATM is a defibrillator implanted outside the heart.
  • 13. A method of delivering electrical therapy to the heart of a patient using a system having each of: an implantable defibrillator module including a battery, a capacitor, pulse generator circuitry for charging the capacitor and delivering a defibrillation therapy via the electrodes, first communication circuitry, and a controller configured for controlling the pulse generator circuitry and for sending and receiving information via the first communication circuitry;an implantable sensing module having electrodes for receiving cardiac electrical signals and a sense amplification circuit to detect an intrinsic electrical heart signal, as well as second communication circuitry for communicating data related to the intrinsic electrical heart signal to the first communication circuitry;the method comprising:receiving a cardiac signal at the electrodes of the implantable sensing module;communicating, via the second communication circuitry, data related to the intrinsic electrical heart signal to the implantable defibrillator module;receiving, via the first communication circuitry, the data related to the intrinsic electrical heart signal;the controller analyzing the received data related to the intrinsic electrical heart signal and determining that a tachyarrhythmia is present; andthe controller commanding delivery of an antitachyarrhythmia therapy by the pulse generator.
  • 14. The method of claim 13 wherein the implantable sensing module is configured to sense atrial cardiac signals from an implantation position in or on one of the patient's atria.
  • 15. The method of claim 13 wherein the implantable sensing module is configured to sense ventricular cardiac signals from an implantation position in or on one of the patient's ventricles.
  • 16. The method of claim 13 wherein the implantable defibrillator module further comprises sensing circuitry for sensing cardiac signals separate from the implantable sensing module.
  • 17. The method of claim 13 wherein the implantable defibrillator module is a subcutaneous defibrillator having a lead.
  • 18. The method of claim 13 wherein the antitachyarrhythmia therapy is a defibrillation therapy.
  • 19. The method of claim 13 wherein the antitachyarrhythmia therapy is an anti-tachycardia pacing therapy.
  • 20. A method of delivering electrical therapy to the heart of a patient using a system having each of: an implantable defibrillator module including a battery, a capacitor, pulse generator circuitry for charging the capacitor and delivering a defibrillation therapy via the electrodes, first communication circuitry, and a controller for controlling the pulse generator and for sending and receiving information via the first communication circuitry;a sensing means, remote from the implantable defibrillator module, comprising a sense amplification circuit to detect an intrinsic electrical heart signal, and a second communication circuitry for communicating data related to the intrinsic electrical heart signal to the first communication circuitry;the method comprising:receiving a cardiac signal at the electrodes of the sensing means;communicating, via the second communication circuitry, data related to the intrinsic electrical heart signal to the implantable defibrillator module;receiving, via the first communication circuitry, the data related to the intrinsic electrical heart signal;the controller analyzing the received data related to the intrinsic electrical heart signal and determining that a tachyarrhythmia is present; andthe controller commanding delivery of a defibrillation therapy by the pulse generator.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 15/977,475, entitled “MODULAR ANTITACHYARRHYTHMIA THERAPY SYSTEM,” filed May 11, 2018, now U.S. Pat. No. 10,363,428, which is a continuation of U.S. patent application Ser. No. 15/138,734, entitled “MODULAR ANTITACHYARRHYTHMIA THERAPY SYSTEM,” filed Apr. 26, 2016, now U.S. Pat. No. 9,993,654, which is a continuation of U.S. patent application Ser. No. 14/726,688, entitled “MODULAR ANTITACHYARRHYTHMIA THERAPY SYSTEM,” filed Jun. 1, 2015, now U.S. Pat. No. 9,352,164, which is a continuation of U.S. patent application Ser. No. 14/639,426, entitled “MODULAR ANTITACHYARRHYTHMIA THERAPY SYSTEM,” filed Mar. 5, 2015, now U.S. Pat. No. 9,242,113, which is a continuation of U.S. patent application Ser. No. 14/510,626, entitled “MODULAR ANTITACHYARRHYTHMIA THERAPY SYSTEM,” filed Oct. 9, 2014, now U.S. Pat. No. 9,002,467, which is a divisional of U.S. patent application Ser. No. 14/164,447, entitled “MODULAR ANTITACHYARRHYTHMIA THERAPY SYSTEM,” filed on Jan. 27, 2014, now U.S. Pat. No. 8,903,500, which is a continuation of U.S. patent application Ser. No. 13/662,882, entitled “MODULAR ANTITACHYARRHYTHMIA THERAPY SYSTEM,” filed on Oct. 29, 2012, now U.S. Pat. No. 8,649,859, which is a continuation of U.S. patent application Ser. No. 11/131,583, entitled “MODULAR ANTITACHYARRHYTHMIA THERAPY SYSTEM,” filed on May 18, 2005, now U.S. Pat. No. 8,391,990; each of which are hereby incorporated by reference herein in their entirety.

US Referenced Citations (336)
Number Name Date Kind
3835864 Rasor et al. Sep 1974 A
3943936 Rasor et al. Mar 1976 A
4151513 Menken et al. Apr 1979 A
4157720 Greatbatch Jun 1979 A
4250884 Hartlaub et al. Feb 1981 A
4256115 Bilitch Mar 1981 A
4263919 Levin Apr 1981 A
4310000 Lindemans Jan 1982 A
4312354 Walters Jan 1982 A
4365639 Goldreyer Dec 1982 A
4440173 Hudziak et al. Apr 1984 A
4476868 Thompson Oct 1984 A
4522208 Buffet Jun 1985 A
4562841 Brockway et al. Jan 1986 A
4593702 Kepski et al. Jun 1986 A
4630611 King Dec 1986 A
4635639 Hakala et al. Jan 1987 A
4674508 DeCote Jun 1987 A
4712554 Garson Dec 1987 A
4729376 DeCote Mar 1988 A
4754753 King Jul 1988 A
4759366 Callaghan Jul 1988 A
4793353 Borkan Dec 1988 A
4858610 Callaghan et al. Aug 1989 A
4886064 Strandberg Dec 1989 A
4928688 Mower May 1990 A
4967746 Vandegriff Nov 1990 A
4987897 Funke Jan 1991 A
4989602 Sholder et al. Feb 1991 A
5012806 De Bellis May 1991 A
5036849 Hauck et al. Aug 1991 A
5058581 Silvian Oct 1991 A
5078134 Heilman et al. Jan 1992 A
5109845 Yuuchi et al. May 1992 A
5113859 Funke May 1992 A
5117824 Keimel et al. Jun 1992 A
5127401 Grevious et al. Jul 1992 A
5133353 Hauser Jul 1992 A
5144950 Stoop et al. Sep 1992 A
5170784 Ramon et al. Dec 1992 A
5179945 Van Hofwegen et al. Jan 1993 A
5193539 Schulman et al. Mar 1993 A
5193540 Schulman et al. Mar 1993 A
5243977 Trabucco et al. Sep 1993 A
5284136 Hauck et al. Feb 1994 A
5300107 Stokes et al. Apr 1994 A
5301677 Hsung Apr 1994 A
5312439 Loeb May 1994 A
5313953 Yomtov et al. May 1994 A
5314459 Swanson et al. May 1994 A
5318597 Hauck et al. Jun 1994 A
5324316 Schulman et al. Jun 1994 A
5342408 deCoriolis et al. Aug 1994 A
5376106 Stahmann et al. Dec 1994 A
5383915 Adams Jan 1995 A
5388578 Yomtov et al. Feb 1995 A
5404877 Nolan et al. Apr 1995 A
5405367 Schulman et al. Apr 1995 A
5411031 Yomtov May 1995 A
5411525 Swanson et al. May 1995 A
5411535 Fujii et al. May 1995 A
5456691 Snell Oct 1995 A
5466246 Silvian Nov 1995 A
5468254 Hahn et al. Nov 1995 A
5522866 Fernald Jun 1996 A
5540727 Tockman et al. Jul 1996 A
5545186 Olson et al. Aug 1996 A
5545202 Dahl et al. Aug 1996 A
5674259 Gray Oct 1997 A
5683426 Greenhut et al. Nov 1997 A
5683432 Goedeke et al. Nov 1997 A
5720770 Nappholz et al. Feb 1998 A
5728154 Crossett et al. Mar 1998 A
5741314 Daly et al. Apr 1998 A
5741315 Lee et al. Apr 1998 A
5752976 Duffin et al. May 1998 A
5752977 Grevious et al. May 1998 A
5755736 Gillberg et al. May 1998 A
5759199 Snell et al. Jun 1998 A
5774501 Halpern et al. Jun 1998 A
5792202 Rueter Aug 1998 A
5792203 Schroeppel Aug 1998 A
5792205 Alt et al. Aug 1998 A
5792208 Gray Aug 1998 A
5814089 Stokes et al. Sep 1998 A
5842977 Lesho et al. Dec 1998 A
5855593 Olson et al. Jan 1999 A
5891184 Lee et al. Apr 1999 A
5899876 Flower May 1999 A
5899928 Sholder et al. May 1999 A
5919214 Ciciarelli et al. Jul 1999 A
5935078 Feierbach Aug 1999 A
5941906 Barreras, Sr. et al. Aug 1999 A
5954757 Gray Sep 1999 A
5978713 Prutchi et al. Nov 1999 A
5999848 Gord et al. Dec 1999 A
5999857 Weijand et al. Dec 1999 A
6044298 Salo et al. Mar 2000 A
6044300 Gray Mar 2000 A
6055454 Heemels Apr 2000 A
6073050 Griffith Jun 2000 A
6076016 Feierbach Jun 2000 A
6080187 Alt et al. Jun 2000 A
6083248 Thompson Jul 2000 A
6106551 Crossett et al. Aug 2000 A
6115636 Ryan Sep 2000 A
6141581 Olson et al. Oct 2000 A
6141588 Cox Oct 2000 A
6141592 Pauly Oct 2000 A
6144879 Gray Nov 2000 A
6164284 Schulman et al. Dec 2000 A
6167310 Grevious Dec 2000 A
6208894 Schulman et al. Mar 2001 B1
6211799 Post et al. Apr 2001 B1
6221011 Bardy Apr 2001 B1
6240316 Richmond et al. May 2001 B1
6240317 Villaseca et al. May 2001 B1
6259947 Olson et al. Jul 2001 B1
6266558 Gozani et al. Jul 2001 B1
6270457 Bardy Aug 2001 B1
6272377 Sweeney et al. Aug 2001 B1
6277072 Bardy Aug 2001 B1
6280380 Bardy Aug 2001 B1
6285907 Kramer et al. Sep 2001 B1
6292698 Duffin et al. Sep 2001 B1
6295473 Rosar Sep 2001 B1
6298271 Weijand Oct 2001 B1
6312378 Bardy Nov 2001 B1
6315721 Schulman et al. Nov 2001 B2
6336903 Bardy Jan 2002 B1
6345202 Richmond et al. Feb 2002 B2
6351667 Godie Feb 2002 B1
6351669 Hartley et al. Feb 2002 B1
6353759 Hartley et al. Mar 2002 B1
6358203 Bardy Mar 2002 B2
6368284 Bardy Apr 2002 B1
6371922 Baumann et al. Apr 2002 B1
6398728 Bardy Jun 2002 B1
6400982 Sweeney et al. Jun 2002 B2
6400990 Silvian Jun 2002 B1
6409674 Brockway et al. Jun 2002 B1
6411848 Kramer et al. Jun 2002 B2
6424865 Ding Jul 2002 B1
6434429 Kraus et al. Aug 2002 B1
6438410 Hsu et al. Aug 2002 B2
6438417 Rockwell et al. Aug 2002 B1
6440066 Bardy Aug 2002 B1
6441747 Khair et al. Aug 2002 B1
6442426 Kroll Aug 2002 B1
6442432 Lee Aug 2002 B2
6443891 Grevious Sep 2002 B1
6445953 Bulkes et al. Sep 2002 B1
6453200 Koslar Sep 2002 B1
6459929 Hopper et al. Oct 2002 B1
6470215 Kraus et al. Oct 2002 B1
6471645 Warkentin et al. Oct 2002 B1
6480745 Nelson et al. Nov 2002 B2
6487443 Olson et al. Nov 2002 B2
6490487 Kraus et al. Dec 2002 B1
6507755 Gozani et al. Jan 2003 B1
6507759 Prutchi et al. Jan 2003 B1
6512940 Brabec et al. Jan 2003 B1
6522915 Ceballos et al. Feb 2003 B1
6526311 Begemann Feb 2003 B2
6542775 Ding et al. Apr 2003 B2
6561975 Pool et al. May 2003 B1
6564807 Schulman et al. May 2003 B1
6584352 Combs et al. Jun 2003 B2
6597948 Rockwell et al. Jul 2003 B1
6597951 Kramer et al. Jul 2003 B2
6622046 Fraley et al. Sep 2003 B2
6628985 Sweeney et al. Sep 2003 B2
6647292 Bardy et al. Nov 2003 B1
6689117 Sweeney et al. Feb 2004 B2
6690959 Thompson Feb 2004 B2
6704602 Berg et al. Mar 2004 B2
6721597 Bardy et al. Apr 2004 B1
6738670 Almendinger et al. May 2004 B1
6749566 Russ Jun 2004 B2
6758810 Lebel et al. Jul 2004 B2
6763269 Cox Jul 2004 B2
6778860 Ostroff et al. Aug 2004 B2
6788971 Sloman et al. Sep 2004 B1
6788974 Bardy et al. Sep 2004 B2
6804558 Haller et al. Oct 2004 B2
6847844 Sun et al. Jan 2005 B2
6878112 Linberg et al. Apr 2005 B2
6892094 Ousdigian et al. May 2005 B2
6897788 Khair et al. May 2005 B2
6922592 Thompson et al. Jul 2005 B2
6931282 Esler Aug 2005 B2
6934585 Schloss et al. Aug 2005 B1
6957107 Rogers et al. Oct 2005 B2
6985773 Von Arx et al. Jan 2006 B2
7013178 Reinke et al. Mar 2006 B2
7027871 Burnes et al. Apr 2006 B2
7060031 Webb et al. Jun 2006 B2
7110824 Amundson et al. Sep 2006 B2
7139613 Reinke et al. Nov 2006 B2
7142912 Wagner et al. Nov 2006 B2
7149581 Goedeke Dec 2006 B2
7162307 Patrias Jan 2007 B2
7177700 Cox Feb 2007 B1
7181505 Haller et al. Feb 2007 B2
7191015 Lamson et al. Mar 2007 B2
7200437 Nabutovsky et al. Apr 2007 B1
7200439 Zdeblick et al. Apr 2007 B2
7206423 Feng et al. Apr 2007 B1
7209790 Thompson et al. Apr 2007 B2
7212871 Morgan May 2007 B1
7226440 Gelfand et al. Jun 2007 B2
7228183 Sun et al. Jun 2007 B2
7236821 Cates et al. Jun 2007 B2
7254448 Almendinger et al. Aug 2007 B2
7260436 Kilgore et al. Aug 2007 B2
7277755 Falkenberg et al. Oct 2007 B1
7280872 Mosesov et al. Oct 2007 B1
7289847 Gill et al. Oct 2007 B1
7289852 Helfinstine et al. Oct 2007 B2
7289853 Campbell et al. Oct 2007 B1
7289855 Nghiem et al. Oct 2007 B2
7302294 Kamath et al. Nov 2007 B2
7305266 Kroll Dec 2007 B1
7333853 Mazar et al. Feb 2008 B2
7336994 Hettrick et al. Feb 2008 B2
7347819 Lebel et al. Mar 2008 B2
7384403 Sherman Jun 2008 B2
7386342 Falkenberg et al. Jun 2008 B1
7392090 Sweeney et al. Jun 2008 B2
7406105 DelMain et al. Jul 2008 B2
7406349 Seeberger et al. Jul 2008 B2
7425200 Brockway et al. Sep 2008 B2
7502652 Gaunt et al. Mar 2009 B2
7512448 Malick et al. Mar 2009 B2
7532933 Hastings et al. May 2009 B2
7536222 Bardy et al. May 2009 B2
7539541 Quiles et al. May 2009 B2
7565195 Kroll et al. Jul 2009 B1
7616991 Mann et al. Nov 2009 B2
7634313 Kroll et al. Dec 2009 B1
7647109 Hastings et al. Jan 2010 B2
7650186 Hastings et al. Jan 2010 B2
7691047 Ferrari Apr 2010 B2
7743151 Vallapureddy et al. Jun 2010 B2
7801596 Fischell et al. Sep 2010 B2
7860455 Fukumoto et al. Dec 2010 B2
7991467 Markowitz et al. Aug 2011 B2
8000791 Sunagawa et al. Aug 2011 B2
8001975 DiSilvestro et al. Aug 2011 B2
8002700 Ferek-Petric et al. Aug 2011 B2
8027729 Sunagawa et al. Sep 2011 B2
8032219 Neumann et al. Oct 2011 B2
8160672 Kim et al. Apr 2012 B2
8204595 Pianca et al. Jun 2012 B2
8391990 Smith et al. Mar 2013 B2
8649859 Smith et al. Feb 2014 B2
8744572 Greenhut et al. Jun 2014 B1
8818504 Bodner et al. Aug 2014 B2
8903500 Smith et al. Dec 2014 B2
9002467 Smith et al. Apr 2015 B2
9242113 Smith et al. Jan 2016 B2
9352164 Smith et al. May 2016 B2
9993654 Smith et al. Jun 2018 B2
20020032470 Linberg Mar 2002 A1
20020035376 Bardy et al. Mar 2002 A1
20020035377 Bardy et al. Mar 2002 A1
20020035378 Bardy et al. Mar 2002 A1
20020035380 Rissmann et al. Mar 2002 A1
20020035381 Bardy et al. Mar 2002 A1
20020042629 Bardy et al. Apr 2002 A1
20020042630 Bardy et al. Apr 2002 A1
20020042634 Bardy et al. Apr 2002 A1
20020049475 Bardy et al. Apr 2002 A1
20020052636 Bardy et al. May 2002 A1
20020068958 Bardy et al. Jun 2002 A1
20020072773 Bardy et al. Jun 2002 A1
20020082665 Haller et al. Jun 2002 A1
20020091414 Bardy et al. Jul 2002 A1
20020095196 Linberg Jul 2002 A1
20020099423 Berg et al. Jul 2002 A1
20020103510 Bardy et al. Aug 2002 A1
20020107545 Rissmann et al. Aug 2002 A1
20020107546 Ostroff et al. Aug 2002 A1
20020107547 Erlinger et al. Aug 2002 A1
20020107548 Bardy et al. Aug 2002 A1
20020107549 Bardy et al. Aug 2002 A1
20020107559 Sanders et al. Aug 2002 A1
20020120299 Ostroff et al. Aug 2002 A1
20020173830 Starkweather et al. Nov 2002 A1
20020193846 Pool et al. Dec 2002 A1
20030009203 Lebel et al. Jan 2003 A1
20030028082 Thompson Feb 2003 A1
20030041866 Linberg et al. Mar 2003 A1
20030088278 Bardy May 2003 A1
20030097153 Bardy et al. May 2003 A1
20030144701 Mehra et al. Jul 2003 A1
20040147969 Mann et al. Jul 2004 A1
20040147973 Hauser Jul 2004 A1
20040167587 Thompson Aug 2004 A1
20040172071 Bardy et al. Sep 2004 A1
20040172077 Chinchoy Sep 2004 A1
20040172104 Berg et al. Sep 2004 A1
20040176817 Wahlstrand et al. Sep 2004 A1
20040176818 Wahlstrand et al. Sep 2004 A1
20040186529 Bardy et al. Sep 2004 A1
20040204673 Flaherty Oct 2004 A1
20040210292 Bardy et al. Oct 2004 A1
20040210293 Bardy et al. Oct 2004 A1
20040210294 Bardy et al. Oct 2004 A1
20040215308 Bardy et al. Oct 2004 A1
20040220626 Wagner Nov 2004 A1
20040220639 Mulligan et al. Nov 2004 A1
20050061320 Lee et al. Mar 2005 A1
20050283208 Arx et al. Dec 2005 A1
20060052829 Sun et al. Mar 2006 A1
20060052830 Spinelli et al. Mar 2006 A1
20060064135 Brockway Mar 2006 A1
20060106442 Richardson et al. May 2006 A1
20060135999 Bodner et al. Jun 2006 A1
20060136004 Cowan et al. Jun 2006 A1
20060206151 Lu Sep 2006 A1
20060212079 Routh et al. Sep 2006 A1
20060241701 Markowitz et al. Oct 2006 A1
20060241705 Neumann et al. Oct 2006 A1
20060265018 Smith et al. Nov 2006 A1
20070078490 Cowan et al. Apr 2007 A1
20070150037 Hastings et al. Jun 2007 A1
20070150038 Hastings et al. Jun 2007 A1
20070219590 Hastings et al. Sep 2007 A1
20070225545 Ferrari Sep 2007 A1
20080004663 Jorgenson Jan 2008 A1
20080021519 De Geest et al. Jan 2008 A1
20080109054 Hastings et al. May 2008 A1
20080294210 Rosero Nov 2008 A1
20130053908 Smith et al. Feb 2013 A1
20140214104 Greenhut et al. Jul 2014 A1
Foreign Referenced Citations (20)
Number Date Country
1003904 Jan 1977 CA
1904166 Jun 2011 EP
2000051373 Feb 2000 JP
2002502640 Jan 2002 JP
2004512105 Apr 2004 JP
2005508208 Mar 2005 JP
2005245215 Sep 2005 JP
2008540040 Nov 2008 JP
5127701 Jan 2013 JP
9826840 Jun 1998 WO
9939767 Aug 1999 WO
0234330 May 2002 WO
02098282 Dec 2002 WO
0234330 Jan 2003 WO
02098282 May 2003 WO
2005000206 Jan 2005 WO
2005000206 Apr 2005 WO
2005042089 May 2005 WO
2006124833 Nov 2006 WO
2006124833 Nov 2006 WO
Non-Patent Literature Citations (29)
Entry
“U.S. Appl. No. 11/131,538, Appeal Brief filed Jun. 1, 2009”. 31 pgs.
“U.S. Appl. No. 11/131,538, Appeal Decision mailed Aug. 24, 2012”. 11 pgs.
“U.S. Appl. No. 11/131,538, Final Office Action, dated Dec. 15, 2008” 9 pgs.
“U.S. Appl. No. 11/131,538, Non-Final Action, dated May 9, 2008” 12 pgs.
“U.S. Appl. No. 11/131,538, Notice of Allowance, dated Oct. 18, 2012” 8 pgs.
“U.S. Appl. No. 11/131,538, Pre-Appeal Brief Request for Review filed Mar. 13, 2009” 5 pgs.
U.S. Appl. No. 11/131,538, Response filed Feb. 16, 2009 to Final Office Action dated Dec. 15, 2008 11 pgs.
“U.S. Appl. No. 11/131,538, Response filed Apr. 17, 2008 to Restriction Requirement dated Mar. 17, 2008” 7 pgs.
“U.S. Appl. No. 11/131,583, Response filed Sep. 9, 2008 to Non Final Office Action dated May 9, 2008” 11 pgs.
“U.S. Appl. No. 11/131,583, Restriction Requirement dated Mar. 17, 2008” 8 pgs.
“European Application Serial No. 06759887. 0. Office Action dated May 18, 2009”, 2 pgs.
International Search Report and Written Opinion for Application No. PCT/US2006/018824, dated Mar. 6, 2007, 14 pgs.
Invitation to Pay Additional Fees and Partial Search Report for Application No. PCT/US2006/018824, dated Nov. 15, 2006, pgs.
“Japanese Application Serial No. 2008-512423, Office Action dated Nov. 18, 2011”, 7 pgs.
“Japanese Application Serial No. 2008-512423, Office Action dated Feb. 6, 2012”.w/English Translation, 13 pgs.
“Japanese Application Serial No. 2008-512423, Response filed Dec. 22, 2011 to Office Action dated Nov. 18, 2011”. With English Claims, 10 pgs.
“Japanese Application Serial No. 2008-512423, Office Action dated May 28, 2012”. With English Translation, 9 pgs.
“U.S. Appl. No. 11/131,583, Notice of Allowance dated Nov. 5, 2012”, 8 pgs.
“U.S. Appl. No. 13/662,882, Response filed Sep. 25, 2013 to Non Final Office Action dated May 29, 2013”, 11 pgs.
“U.S. Appl. No. 13/662,882, Notice of Allowance dated Oct. 3, 2013”, 9 pgs.
“U.S. Appl. No. 13/662,882, Non Final Office dated May 29, 2013”, 9 pgs.
Hachisuka et al., Development and Performance Analysis of an Intra-Body Communication Device. he 12th International Conference on Solid State Sensors, Actuators and Microsystems: Boston, Jun. 8-12, 2003. p. 1-4, The University of Tokyo.
Nanostim Leadless Pacemakers Instructions Manual. Mar. 1, 2013. p. 1-28. Nanostim, Inc. 776 Palomar Ave Sunnyvale, CA 94085.
Seyedi et al., A Survey on Intrabody Communications for Body Area Network Applications. Journal. EEE. Mar. 15, 2013. p. 1-13. Australia.
Wegmuller, Intra-Body Communication for Biomedical Sensor Networks. Dissertation submitted to the Eth Zurich, No. 17323. 2007. p. 1-161. Switzerland.
Zao et al., An International Publication for the Study of the Electrical Phenomena Related to the Heart. Journal of Electrocardiology. 1970. p. 1-331. vol. 3, Nos. 3 & 4. Electrocardiology, Inc., Dayton Ohio.
U.S. Appl. No. 14/639,426, Amendment filed Oct. 23, 2015.
U.S. Appl. No. 14/639,426, non-final office action dated Jul. 29, 2015.
U.S. Appl. No. 14/639,426, Notice of Allowance dated Nov. 10, 2015.
Related Publications (1)
Number Date Country
20190329059 A1 Oct 2019 US
Divisions (1)
Number Date Country
Parent 14164447 Jan 2014 US
Child 14510626 US
Continuations (7)
Number Date Country
Parent 15977475 May 2018 US
Child 16451558 US
Parent 15138734 Apr 2016 US
Child 15977475 US
Parent 14726688 Jun 2015 US
Child 15138734 US
Parent 14639426 Mar 2015 US
Child 14726688 US
Parent 14510626 Oct 2014 US
Child 14639426 US
Parent 13662882 Oct 2012 US
Child 14164447 US
Parent 11131583 May 2005 US
Child 13662882 US