Modular architecture for scalable phased array radars

Abstract
In one aspect, a radar array assembly includes two or more vertical stiffeners each having bores with threads and a first radar module. The first radar module includes radar transmit and receive (T/R) modules and a chassis having channels configured to receive a coolant. The chassis includes shelves having ribs. The ribs have channels configured to receive the coolant and the ribs form slots to receive circuit cards disposed in parallel. The circuit cards include the T/R modules. The chassis also includes set screws attached to opposing sides of the chassis. The set screws have bores to accept fasteners to engage the threads on a corresponding one of the two or more vertical stiffeners. The first radar module is configured to operate as a stand-alone radar array.
Description
BACKGROUND

As is known in the art, a phased array antenna includes a plurality of active circuits spaced apart from each other by known distances. Each of the active circuits is coupled through a plurality of phase shifter circuits, amplifier circuits and/or other circuits to either or both of a transmitter and receiver. In some cases, the phase shifter, amplifier circuits and other circuits (e.g., mixer circuits) are provided in a so-called transmit/receive (T/R) module and are considered to be part of the transmitter and/or receiver.


The phase shifters, amplifier and other circuits (e.g., T/R modules) often require an external power supply (e.g., a DC power supply) to operate correctly. Thus, the circuits are referred to as “active circuits” or “active components.” Accordingly, phased array antennas which include active circuits are often referred to as “active phased arrays.”


Active circuits dissipate power in the form of heat. High amounts of heat can cause active circuits to be inoperable. Thus, active phased arrays must be cooled. In one example heat-sink(s) are attached to each active circuit to dissipate the heat.


SUMMARY

In one aspect, a radar array assembly includes two or more vertical stiffeners each having bores with threads and a first radar module. The first radar module includes radar transmit and receive (T/R) modules and a chassis having channels configured to receive a coolant. The chassis includes shelves having ribs. The ribs have channels configured to receive the coolant and the ribs form slots to receive circuit cards disposed in parallel. The circuit cards include the T/R modules. The chassis also includes set screws attached to opposing sides of the chassis. The set screws have bores to accept fasteners to engage the threads on a corresponding one of the two or more vertical stiffeners. The first radar module is configured to operate as a stand-alone radar array.


In another aspect, a radar module includes radar transmit and receive (T/R) modules and a chassis having channels configured to receive a coolant. The chassis includes shelves having ribs. The ribs have channels configured to receive the coolant. The ribs form slots to receive circuit cards disposed in parallel. The circuit cards include the T/R modules. The radar module is configured to perform as a standalone radar array and perform with other radar modules to form a radar array.


In a further aspect, a radar radiator panel, includes a radome, cyanate ester quartz (CEQ) coupled to the radome and a stacked assembly coupled to the CEQ, the stacked assembly comprising a thermal conductive layer configured to facilitate a transfer of heat to the radome.


One or more of the aspects above may include one or more of the following features. The radar array module may include a dual digital receiver exciter (DDREX) module, a synthesizer module and an auxiliary power module disposed in the slots. The radar array assembly may include an array plate having a first side and a second side opposite the first side, a radiator panel attached to the first side of the array plate and RF jumpers attached to the second side of the array plate. The array plate may be coupled to the vertical stiffeners. The first radar array module may include a digital receiver and exciter (DREX) backplane coupled to the chassis, an RF backplane coupled to the DREX backplane and an overlap beamformer having a first side and a second side opposite the first side. The first side of the overlap beamformer coupled to the RF backplane and the second side of the overlap beamformer coupled to the RF jumpers. The radiator panel may include stacked assemblies each comprising a thermal conductive layer. The thermal conductive layer may include at least one of aluminum and copper. The thermal conductive layer may be greater than 1 mil. The thermal conductive layer may be about 60 mils. The radar array assembly may include a second radar module configured to be substantially the same as the first radar module. A set screw may include a notch configured to be engaged by a flat tip screwdriver.





DESCRIPTION OF THE DRAWINGS


FIGS. 1A and 1B are plan views of a radar module.



FIGS. 2A and 2B are plan views of different sized radar array frame structures.



FIG. 3A is an exploded view of the radar module and a portion of a radar array frame structure.



FIG. 3B is a side-view the radar module attached to the radar array frame structure.



FIG. 4A is a plan view of a set screw.



FIG. 4B is a cross-sectional view of the set screw securing the chassis to a vertical stiffener.



FIG. 5A is a plan view of a radiator panel.



FIG. 5B is a plan view of a radiator housing with one stacked-patch assembly.



FIG. 5C is a plan view of the radiator housing taken at the line FIG. 5C in FIG. 5B.



FIG. 5D is a cross-sectional view of an array plate and the radiator panel.



FIG. 5E a cross-sectional view of the array plate and the radiator panel depicting heat flow.



FIGS. 6A and 6B are plan views of a cooling chassis.



FIG. 7 is a view of a supply cold plate depicting an example of coolant flow.



FIG. 8 is a view of a return cold plate depicting an example of coolant flow.



FIG. 9A is a top view of a top cold plate depicting an example of coolant flow.



FIG. 9B is a bottom view of the top cold plate depicting an example of coolant flow.



FIGS. 9C and 9D are side views of the top cold plate.





DETAILED DESCRIPTION

Existing phased array architectures contain cooling systems, power systems and signal distribution systems that are sized to match the size of the array. Resizing the array requires a redesign of each of those systems. The cooling system is redesigned to control device operating temperatures and thermal gradients to avoid negatively impacting performance. This system redesign is costly and takes a significant amount of time to implement. Also, even if the number of line replaceable units (LRUs) could be increased (e.g., to accommodate a larger array size), the number of LRUs will be limited by power and control limitations because each row of LRUs is cooled and powered in series.


As described herein, a radar module may be used as a building block to form various radar array sizes. Each radar module is fabricated to be identical. In particular, each radar module receives in parallel the necessary coolant, power and control signals necessary to be a stand-alone antenna array. Thus, by merely adding radar modules together, the radar array sizes are scalable. In one example, the radar modules can form multiple array sizes from two feet to thirty-two feet and beyond.


Referring to FIGS. 1A and 1B, a radar module 10 includes a chassis 11 that includes a top cold plate 12, a supply manifold 14a with an input port 42, a return manifold 14b with an output port 22, a bottom cold plate 16 and a front plate 18. The chassis 11 is configured to hold LRUs (e.g., circuit cards) such as transmit/receive integrated microwave modules (TRIMMs) 32 that include transmit/receive (T/R) modules (33), dual digital receiver exciter (DDREX) modules 34, a synthesizer module 36, and an auxiliary/controller module 40.


The chassis 11 performs a cooling function. For example, the T/R modules 33 produce high amounts of heat which must be dissipated or else the active circuits (e.g., power amplifiers) will cease to operate properly. The supply manifold 14a includes channels that receive coolant at the port 42. The coolant is circulated through out the chassis 11 and removed via the return manifold 14b out the port 22. In particular, the chassis 11 performs as a heat sink drawing the heat away from the active circuits (e.g., in the T/R modules 33). The chassis 11 includes set screws 46 attached to the supply manifold 14a and to the return manifold 14b.


In operation the radar module radiates energy in a direction R. In particular, the T/R modules 33 radiate energy in the R direction.


The radar module 10 also includes a digital receiver and exciter (DREX) backplane 54 attached to the front plate 18, an RF backplane 50 attached to the DREX backplane and overlap beamformers 52 attached to the RF backplane.


Referring to FIGS. 2A and 2B, radar modules 10 may be secured inside honey-combed structures called radar array frame structures. For example, a radar array frame structure 80 includes an array plate 62 with vertical stiffeners 60 and horizontal stiffeners 58 attached to the array plate. The vertical stiffeners 60 and the horizontal stiffeners 58 form cavities (e.g., a cavity 61) in which a single radar module 10 may be disposed inside. In one example, the radar module 10 rests on a horizontal stiffener 58 and is secured to the vertical stiffeners using set screws 46 attached to the supply manifold 14a and the return manifold 14b.


The radar array frame structure 80 in FIG. 2A can include thirty-six radar modules 10 with an active area of about eight square meters. A radar array frame structure 80′ in FIG. 2B can hold one hundred and sixteen radar modules 10 with an active area of about thirty-seven square meters. In other examples, the horizontal stiffeners 58 are not used; but rather, each radar module 10 is secured to two vertical stiffeners 60.


Referring to FIGS. 3A and 3B, a radiator panel 70 is attached to one side of the array plate 62 and RF jumpers 64 are attached to the opposite side of the array plate. The RF jumpers 64 are attached to the overlap beamformers 52. In one example, each overlap beamformer is coupled to four RF jumpers 64.


As shown in FIG. 3A a coolant supply line 74 is coupled to the port 42 and a coolant return line 72 is coupled to the port 22. Data is supplied to the radar module 10 by a line 76 and power is supplied by a line 78.


Referring to FIGS. 4A and 4B, the set screws 46 are used to attach the radar module 10 to the vertical stiffeners 60. A set screw 46 includes threads 57 that engage with threads in the supply manifold 14a. The set screw 46 includes a notch 49 configured to be engaged by a flat tip screwdriver to adjust its depth to reduce a horizontal tolerance ht between the supply manifold 14a and the vertical stiffener 60. The set screw 46 also includes a bore 51 to receive a bolt 53 with washer 55 to secure the radar module 10 to the vertical stiffener 60 by having the threads 57 of the bolt 53 engage threads 59 of the vertical stiffener. The set screws 46 are used to compensate for the different horizontal tolerances ht as each radar module 10 is being secured with the radar array framework 80. Though only set screws 46 on the supply manifold 14a are described in FIGS. 4A and 4B, one of ordinary skill in the art would recognize that set screws 46 function similarly on the return manifold 14b.


Referring to FIGS. 5A to 5E, the radiator panel 70 includes a housing 96 (e.g., an aluminum housing) with a stacked-path assembly 98 (sometimes called an element) in each cavity 100 of the housing; a radome 102; cyanate ester quartz (CEQ) 104; and an epoxy 106 to bond the stacked-patch 98 to the housing 96. Each stacked-patch assembly 98 includes an epoxy 108, a multi-layer RF circuit card 110, foam 112, which includes cross-linked polymers, and a thermal conductive layer 114 (e.g., aluminum, copper and so forth). In one example, the thermal conductive layer 114 is greater than 1 mil (e.g., about 60 mils). RF energy is supplied to the RF circuit card 110 via a connector (not shown) that protrudes thru the housing 90.


For simplicity, in FIGS. 5B and 5C, the radiator panel 70 does not include the radome 102, the CEQ 104 or the epoxy 106. Also, FIGS. 5B and 5C only depict a single stacked-patch assembly 98 in one cavity 100 while the remaining cavities are empty. In one example, the radiator panel 70 is about two feet by two feet and holds about one hundred forty-four stacked path assemblies 98.


The CEQ 104 adds structural integrity by protecting the radiator panel 70 from damage from objects colliding with the radiator panel 70. In one example, the objects may include hail.


The configuration of the stacked-patch assembly 98 contributes to adding an anti-icing feature to the radiator panel 70. Even though the coolant in the chassis 11 cools the T/R modules 33 there is some excess thermal energy that transfers to the array plate 62. The excess thermal energy (depicted by arrows H in FIG. 5E) flows from the array plate 62 through the housing 96 and through the thermal conductive layers 114 to the radome 102. The thermal conductive layers 114 with a high thermal conductivity directs the heat to the radome 102. The thermal energy transferred to the radome 102 is sufficient enough to maintain its surface at a temperature above freezing so that ice and snow does not accumulate on the radome 102.


Referring to FIGS. 6A and 6B, the chassis 11 may be configured as chassis 11′ that includes a supply manifold 14a′ and a return manifold 14b′ that are orientated on opposite sides than the supply manifold 14a and the return manifold 14b respectively in the chassis 11. Similarly, the chassis 11′ includes a top cold plate 12′ that is oriented opposite to the top cold plate 12 and a bottom cold plate 16′ that is oriented opposite to the bottom cold plate 16. The chassis 11′ also includes large cold plates 118 and small cold plates 122. These cold plates 118, 122 include cooling ribs 124 that include channels (not shown) to carry coolant. Gaps between the cooling ribs 124 form slots 126 that hold the TRIMMs 32 in a parallel configuration, which contributes to a more efficient cooling of the T/R modules 33. The slots 126 are also configured to hold the DDREX modules 34, the synthesizer module 36 and the auxiliary/controller module 40.


Referring to FIGS. 7 and 8, the supply cold plate 14a′ receives coolant through the port 42 and flows through a channel 130 as indicated by arrows D. The return cold plate 14b′ includes a channel 152 that carries coolant in a flow as indicated by arrows D to the port 22. In one example, the port 42 receives propylene glycol water (PGW) coolant at 10 gallons per minute (gpm) and 20° C. and the port 22 returns the PGW coolant at 30° C.


Referring to FIGS. 9A to 9D, the top cold plate 12′ includes an upper channel 172a running along a top portion 212 of the top cold plate 12′ and a lower channel 172b running along a bottom portion 214 of the top cold plate 12′. The upper channel 172a and the lower channel 172b are connected by channels 172c.


The processes described herein are not limited to the specific embodiments described. Elements of different embodiments described herein may be combined to form other embodiments not specifically set forth above. Other embodiments not specifically described herein are also within the scope of the following claims.

Claims
  • 1. A radar array assembly comprising: two or more vertical stiffeners each having bores with threads; anda first radar module comprising: radar transmit and receive (T/R) modules; anda chassis having channels configured to receive a coolant, the chassis comprising: shelves having ribs, the ribs having channels configured to receive the coolant, the ribs forming slots to receive circuit cards disposed in parallel, the circuit cards comprising the T/R modules;set screws attached to opposing sides of the chassis, the set screws having bores to accept fasteners to engage the threads on a corresponding one of the two or more vertical stiffeners,wherein the first radar module is configured to operate as a stand-alone radar array.
  • 2. The radar array assembly of claim 1 wherein the radar array module further comprises a dual digital receiver exciter (DDREX) module, a synthesizer module and an auxiliary power module disposed in the slots.
  • 3. The radar array assembly of claim 1, further comprising: an array plate having a first side and a second side opposite the first side, the array plate being coupled to the vertical stiffeners;a radiator panel attached to the first side of the array plate; andRF jumpers attached to the second side of the array plate.
  • 4. The radar array assembly of claim 3 wherein the first radar array module further comprises: a digital receiver and exciter (DREX) backplane coupled to the chassis;an RF backplane coupled to the DREX backplane; andan overlap beamformer having a first side and a second side opposite the first side, the first side of the overlap beamformer coupled to the RF backplane and the second side of the overlap beamformer coupled to the RF jumpers.
  • 5. The radar array assembly of claim 3, wherein the radiator panel comprises stacked assemblies each comprising a thermal conductive layer.
  • 6. The radar array assembly of claim 5, wherein the thermal conductive layer comprises at least one of aluminum and copper.
  • 7. The radar array assembly of claim 5, wherein the thermal conductive layer is greater than 1 mil.
  • 8. The radar array assembly of claim 7, wherein the thermal conductive layer is about 60 mils.
  • 9. The radar array assembly of claim 1, further comprising a second radar module configured to be substantially the same as the first radar module.
  • 10. The radar assembly of claim 1 wherein a set screw includes a notch configured to be engaged by a flat tip screwdriver.
  • 11. A radar module comprising: radar transmit and receive (T/R) modules;a chassis having channels configured to receive a coolant, the chassis comprising: shelves having ribs, the ribs having channels configured to receive the coolant, the ribs forming slots to receive circuit cards disposed in parallel, the circuit cards comprising the T/R modules; and a dual digital receiver exciter (DDREX) module, a synthesizer module, and an auxiliary power module disposed in the slots;wherein the radar module is configured to: perform as a standalone radar array; andperform with other radar modules to form a radar array.
  • 12. The radar array module of claim 11, further comprising: a digital receiver and exciter (DREX) backplane coupled to the chassis;an RF backplane coupled to the DREX backplane; andan overlap beamformer having a first side and a second side opposite the first side, the first side of the overlap beamformer coupled to the RF backplane and the second side of the overlap beamformer coupled to RF jumpers.
  • 13. A radar module comprising: radar transmit and receive (T/R) modules; anda chassis having channels configured to receive a coolant, the chassis comprising: shelves having ribs, the ribs having channels configured to receive the coolant, the ribs forming slots to receive circuit cards disposed in parallel, the circuit cards comprising the T/R modules;wherein the radar module is configured to: perform as a standalone radar array; andperform with other radar modules to form a radar array,wherein the chassis further comprises set screws attached to opposing sides of the chassis, the set screws having bores to accept fasteners to engage the threads on a corresponding one of two or more vertical stiffeners.
  • 14. The radar module of claim 13 wherein a set screw includes a notch configured to engage a flat tip screwdriver.
CROSS REFERENCE TO RELATED APPLICATION

This application is a continuation of and claims priority to U.S. application Ser. No. 12/948,858 filed Nov. 18, 2010 which is incorporated herein by reference in its entirety.

GOVERNMENT SPONSORED RESEARCH

This invention was made with Government support under Contract Number N00024-09-C-5313 awarded by the Department of the Navy. The United States Government has certain rights in the invention.

US Referenced Citations (97)
Number Name Date Kind
3091743 Wilkinson May 1963 A
3665480 Fassett May 1972 A
4489363 Goldberg Dec 1984 A
4527165 deRonde Jul 1985 A
4698663 Sugimoto et al. Oct 1987 A
4706094 Kubick Nov 1987 A
4751513 Daryoush et al. Jun 1988 A
4835658 Bonnefoy May 1989 A
5005019 Zaghloul et al. Apr 1991 A
5055852 Dusseux et al. Oct 1991 A
5099254 Tsukii et al. Mar 1992 A
5276455 Fitzsimmons et al. Jan 1994 A
5327152 Kruger et al. Jul 1994 A
5398010 Klebe Mar 1995 A
5400040 Lane et al. Mar 1995 A
5404148 Zwarts Apr 1995 A
5431582 Carvalho et al. Jul 1995 A
5451969 Toth et al. Sep 1995 A
5459474 Mattioli et al. Oct 1995 A
5488380 Harvey et al. Jan 1996 A
5493305 Wooldridge et al. Feb 1996 A
5563613 Schroeder et al. Oct 1996 A
5592363 Atarashi et al. Jan 1997 A
5646826 Katchmar Jul 1997 A
5675345 Pozgay et al. Oct 1997 A
5724048 Remondiere Mar 1998 A
5786792 Bellus et al. Jul 1998 A
5796582 Katchmar Aug 1998 A
5854607 Kinghorn Dec 1998 A
5907304 Wilson et al. May 1999 A
6011507 Curran et al. Jan 2000 A
6037903 Lange et al. Mar 2000 A
6061027 Legay et al. May 2000 A
6078289 Manoogian et al. Jun 2000 A
6087988 Pozgay Jul 2000 A
6091373 Raguenet Jul 2000 A
6104343 Brookner et al. Aug 2000 A
6127985 Guler Oct 2000 A
6166705 Mast et al. Dec 2000 A
6181280 Kadambi et al. Jan 2001 B1
6184832 Geyh et al. Feb 2001 B1
6208316 Cahill Mar 2001 B1
6211824 Holden et al. Apr 2001 B1
6218214 Panchou et al. Apr 2001 B1
6222493 Caille et al. Apr 2001 B1
6225695 Chia et al. May 2001 B1
6297775 Haws et al. Oct 2001 B1
6388620 Bhattacharyya May 2002 B1
6392890 Katchmar May 2002 B1
6424313 Navarro et al. Jul 2002 B1
6469671 Pluymers et al. Oct 2002 B1
6480167 Matthews Nov 2002 B2
6483705 Snyder et al. Nov 2002 B2
6611180 Puzella et al. Aug 2003 B1
6621470 Boeringer et al. Sep 2003 B1
6624787 Puzella et al. Sep 2003 B2
6661376 Maceo et al. Dec 2003 B2
6670930 Navarro Dec 2003 B2
6686885 Barkdoll et al. Feb 2004 B1
6703976 Jacomb-Hood et al. Mar 2004 B2
6731189 Puzella et al. May 2004 B2
6756684 Huang Jun 2004 B2
6856210 Zhu et al. Feb 2005 B2
6900765 Navarro et al. May 2005 B2
6943330 Ring Sep 2005 B2
6961248 Vincent et al. Nov 2005 B2
6995322 Chan et al. Feb 2006 B2
7030712 Brunette et al. Apr 2006 B2
7061446 Short, Jr. et al. Jun 2006 B1
7129908 Edward et al. Oct 2006 B2
7132990 Stenger et al. Nov 2006 B2
7180745 Mandel et al. Feb 2007 B2
7187342 Heisen et al. Mar 2007 B2
7272880 Pluymers et al. Sep 2007 B1
7417598 Navarro et al. Aug 2008 B2
7443354 Navarro et al. Oct 2008 B2
7444737 Worl Nov 2008 B2
7489283 Ingram et al. Feb 2009 B2
7508338 Pluymers et al. Mar 2009 B2
7508670 Thorson et al. Mar 2009 B1
7548424 Altman et al. Jun 2009 B2
7597534 Hopkins Oct 2009 B2
7717470 Pluymers May 2010 B1
7836549 McGuigan Nov 2010 B1
20050110681 Londre May 2005 A1
20050151215 Hauhe et al. Jul 2005 A1
20060268518 Edward et al. Nov 2006 A1
20070152882 Hash et al. Jul 2007 A1
20080074324 Puzella et al. Mar 2008 A1
20080106467 Navarro et al. May 2008 A1
20080106482 Cherrette et al. May 2008 A1
20080150832 Ingram et al. Jun 2008 A1
20080316139 Blaser et al. Dec 2008 A1
20100039770 Danello et al. Feb 2010 A1
20100245179 Puzella et al. Sep 2010 A1
20110114289 Altman et al. May 2011 A1
20120051869 Johansen Mar 2012 A1
Foreign Referenced Citations (25)
Number Date Country
0 481 417 Apr 1992 EP
1 764 863 Mar 2007 EP
1 436 859 Aug 2007 EP
1 978 597 Oct 2008 EP
61 224504 Oct 1986 JP
4-122107 Apr 1992 JP
06-097710 Apr 1994 JP
7-212125 Aug 1995 JP
2000-138525 May 2000 JP
2005 505963 Feb 2005 JP
1020010079872 Aug 2001 KR
WO 9826642 Jun 1998 WO
WO 9966594 Dec 1999 WO
WO 0106821 Jan 2001 WO
WO 0120720 Mar 2001 WO
WO 0133927 May 2001 WO
WO 0141257 Jun 2001 WO
WO 03003031 Apr 2003 WO
WO 2007136941 Nov 2007 WO
WO 2007136941 Nov 2007 WO
WO 2008010851 Jan 2008 WO
WO 2008010851 Jan 2008 WO
WO 2008036469 Mar 2008 WO
WO 2010111038 Sep 2010 WO
WO 2011046707 Apr 2011 WO
Non-Patent Literature Citations (41)
Entry
Pluymers, B.A.; Reese, R.M., “Thermal Management of Active Electronically Scanned Array Transmit/Receive LRU (Line Replaceable Unit),” 2007 IEEE Radar Conference. pp. 150-155, Apr. 17-20, 2007.
Notification of International Search Report and Written Opinion of the International Searching Authority for PCT/US2010/049261, dated Feb. 7, 2011, 11 pages.
Response to Office Action of Dec. 1, 2010 from U.S. Appl. No. 12/694,450 dated Jan. 25, 2011, 11 pages.
Final Office Action dated Mar. 23, 2011 from U.S. Appl. No. 12/694,450 dated Jan. 25, 2011, 7 pages.
Div. Application (with translation of amended claims) as filed on Dec. 1, 2008 and assigned App. No. 10-2008-7029396.
Decision of Rejection dated Jul. 30, 2008 from KR Pat. App. No. 10-2004-7003900.
Notice of Trial Decision dated Mar. 23, 2010 from KR Pat. App. No. 10-2004-7003900.
EP Search Report for 06021905.2; dated Feb. 9, 2007; 8 pages.
European Office Action dated Nov. 3, 2005 from EP Pat. App. No. 02800372.1.
Response to European Office Action filed Jan. 12, 2007 from EP Pat. App. No. 02800372.1.
European Office Action dated Oct. 18, 2007 from EPO Pat. App. No. 06021905.2.
Response to European Office Action dated Oct. 18, 2007 filed in the EPO on Aug. 11, 2008 from EP Pat. App. No. 06021905.2.
Response to European Office Action dated Mar. 19, 2009 filed in the EPO on Nov. 19, 2009 from EP Pat. App. No. 06021905.2.
European Office Action dated Feb. 18, 2010 from EPO Pat. App. No. 06021905.2.
Notice of Allowance dated Feb. 2, 2007 from EP Pat. App. No. 02800372.1.
Korean Office Action dated Oct. 31, 2007 from KR Pat. App. No. 10-2004-7003900.
Response to Korean Office Action filed Mar. 26, 2008 from KR Pat. App. No. 10-2004-7003900.
Korean Office Action dated Feb. 25, 2009 from KR Pat. App. No. 10-2008-7029396.
Korean Office Action dated Nov. 27, 2009 from KR Pat. App. No. 10-2008-7029396.
Japanese Office Action dated Mar. 7, 2007 from JP Pat. App. No. 2003-533378.
Japanese Office Action dated Feb. 15, 2008 from JP Pat. App. No. 2003-533378.
Japanese Office Action dated Feb. 18, 2009 from JP Pat. App. No. 2003-533378.
Response to Japanese Office Action filed Jul. 5, 2007 from JP App. No. 2003-533378.
Response to Japanese Office Action filed Jun. 19, 2008 from App JP App. No. 2003-533378.
PCT Search Report of the ISA for PCT/US2010/026861 dated Jun. 18, 2010; 4 pages.
PCT Written Opinion of the ISA for PCT/US2010/026861 dated Jun. 18, 2010; 5 pages.
Office Action dated Jun. 11, 2010 from U.S. Appl. No. 12/694,450.
Response to Office Action of Jun. 11, 2010 from U.S. Appl. No. 12/694,450 dated Sep. 21, 2010.
Carter; “‘Fuzz Button’ interconnects and microwave and mm-wave frequencies;” IEEE Seminar, London, UK; Mar. 1-7, 2000; 7 pages.
Jerinic et al.; “X-Band “Tile” Array for Mobil Radar;” internal Raytheon Company publication; Spring 2003; 4 pages.
Puzella et al.; “Digital Subarray for Large Apertures;” slide presentation; internal Raytheon Company publication; Spring 2003; pp. 1-22.
Puzella et al.; “Radio Frequency Interconnect Circuits and Techniques;” U.S. Appl. No. 11/558,126, filed Nov. 9, 2006; 57 pages.
PCT International Preliminary Examination Report and Written Opinion of the ISA for PCT/US2002/30677 dated Nov. 27, 2003; 10 pages.
PCT International Preliminary Examination Report and Written Opinion of the ISA for PCT/US2007/074795 dated Apr. 2, 2009; 7pages.
PCT Search Report of the ISA for PCT/US2007/074795 dated Dec. 19, 2007; 5 pages.
PCT Written Opinion of the ISA for PCT/US2007/074795 dated Dec. 19, 2007; 5 pages.
Bash et al,; “Improving Heat Transfer From a Flip-Chip Package;” Technology Industry; Email Alert RSS Feed; Hewlett-Packard Journal, Aug. 1997; 3 pages.
Marsh et al.; “5.4 Watt GaAs MESFET MMIC for Phased Array Radar Systems;” 1997 Workshop on High Performance Electron Devices for Microwave and Optoelectronic Applications, Nov. 24-25, 1997; pp. 169-174.
U.S. Appl. No. 12/482,061, filed Jun. 10, 2009, file through Dec. 8, 2010, 196 pages.
Notice of Appeal and Pre-Appeal Brief Request for Review filed Aug. 30, 2011 from U.S. Appl. No. 12/694,450, 6 pages.
Response to European Office Action letter from FA dated Nov. 23, 2010, EP Pat. App. No. 06021905.2.
Continuations (1)
Number Date Country
Parent 12948858 Nov 2010 US
Child 13230271 US