I. Field and Purview of the Invention
The present invention concerns in particular a one-piece or a modular basal thumb joint implant for the trapeziometacarpal joint, and can also include an extension of the concept of modularity to other digital joints. The implant generally includes head and stem portions, and it has one or more of the following: a generally acute head-stem attachment orientation; a flanged cross-sectional stem profile; an inwardly curved stem; and an eccentric head attachment site for the stem.
II. Prior Art, and Discovered Problems
Cases of degenerative or post-traumatic arthritis of the trapeziometacarpal joint are known to leave the joint unstable, disfunctional, and painful. In addressing this problem, the Swanson Basal Thumb Joint was developed for use as an adjunct to resection arthroplasty of the joint. The Swanson implant has a generally simple, linearly straight, non-curved stem, which is squarelike in cross-section; when fitted into the intramedullary canal of the first metacarpal bone it is reportedly designed to resist rotation. It also has a convex head, which fits into a jointlike concave surface fashioned in the opposing distal part of the trapezium bone and which reportedly helps restore joint stability and motion. The Swanson joint is a one-piece unit made from unalloyed titanium (ASTM F67). See, the Wright Medical Technology brochure, “Swanson Titanium Basal Thumb Implant.”
Problems with the foregoing, however, have been discovered to include 1) the straight, non-anatomical countour of the stem, which (a) reduces the rotational stability of the implant, and (b) induces outward mechanical leveraging of the prosthetic head and the proclivity for lateral dislocation of the replaced joint; 2) the demonstrated inferior tribological characteristics of an articulating titanium surface; and 3) the one-piece construction or non-modularity of the implant, which precludes an ability to “mix and match” component parts, consequently requiring a redundant and costly on-the-shelf inventory of implants to assure the availability of an implant which will provide an appropriate head-stem combination that will produce a precise, individualized dimensional fit of both the head and the intramedullary stem parts of the prosthesis. Also, 4) the square-like configuration of the stem, which is the stabilizing part of the composite implant, provides a gross misfit with the curved and elliptically rounded inner counter of the normal medullary canal, which, as a consequence, requires excessive resectional depletion of endosteal bone to obtain an adequately intimate bone-stem interface fit to assure the long term stability of the implant.
In the hip joint implant field, it is known to employ certain principles of modularity. Certain appropriately sized heads that mate with the acetabular socket may be interchanged for assembly with certain properly sized stems of the femoral component.
The present invention provides, in one aspect, a basal thumb joint implant comprising a head including a smooth, generally hemispherical, medio-proximally directed, articulating surface, and a generally abrupt, distally directed, truncation thereto; and a stem attached to the head, which arises from the truncation of the head and includes at least one of the following features:
The invention is useful in digital arthroplasty.
Significantly, by the invention, problems in the art are ameliorated if not overcome. The inward (varus) curve of the stem proximally and the eccentric medial placement of the head on the stem avoid the propensity for dislocation of the replaced joint. This anatomically oriented arrangement also permits an unobstructed range of normal pain free motion. The anatomic stem curvature in conjunction with the flanged cross-sectional stem profile, which preferably is a tri-flanged cross-sectional stem profile, provides for a more precise fit with the metacarpal medullary canal anatomy, hence preserving bone stock and assuring optimal long term stability, including near if not complete immovability with respect to rotation, of the implant. The “mix and match” modularity of variably sized heads and stems allows for selective assembly of a composite implant which 1) provides a precise fit for both parts, head and stem, and 2) reduces the on-the-shelf inventory of the composite implant, which, in turn, reduces the cost of the procedure.
Numerous further advantages attend the invention.
The drawings form part of the specification hereof. With respect to the drawings, the following is briefly noted:
The invention can be further understood by the present detail, which may be read in view of the drawings. Such is to be taken in an illustrative, and not necessarily limiting, sense.
In general, the joint implant of the invention includes a head and a stem. It may be one-piece or modular in construction.
The implant can be made of any suitable material to include biocompatible ceramics, metals, plastics or other suitable material. However, manufacture from a cobalt-containing alloy is beneficially employed since, among other considerations, not the least of which is relative ease of manufacture, a better, more triboligically efficient articular surface can be provided than from the softer titanium, particularly when the implant is of one-piece construction. In modular digital joint implants, the cobalt-containing alloy may be employed for both head and stem components, or, preferably, the cobalt-containing, or other, alloy is employed to make the stem component, and a ceramic is employed to make the head component since, among other considerations, the ceramic can make for an even more smooth articular surface. For example, the implant of the invention which is one-piece or is modular can be machined from a cobalt-containing alloy made in accordance with ASTM F75, or even in accordance with ASTM F799 or ASTM F1537, or further, the modular implants of the invention can have its stem machined from the ASTM F75 cobalt-containing alloy and its head machined from, ZIRALLOY ceramic. The head, especially its smooth articulating surface, may be made from another hard, smooth material.
With respect to the drawings, in
The head 10 generally includes articulating surface 11, which is smooth, say, to a Number-4 (4√{square root over ( )}) tolerance, for example, when made of suitable metal, or better, say, if made of suitable ceramic or other suitable material, is generally hemispherical and is proximally directed, and includes truncation 12, which is generally abrupt and distally directed, and may take the form of a flat plane. See,
In modular joint implants, the head 10 can also include trunion receiving cup 15 which may be, say, cylindrical, conical, frustoconical, or have an elliptical, chordated curvilinear, triangular, rectangular, square, or other cross-section. The cup 15 can include walls 16, which may be tapered as for a Morse taper, and base 17.
The stem 20 generally includes intramedullary spike 21 may taper from the head 10 to its end distal from the head 10. See,
With the modular basal thumb joint implant 100, the stem is attachable to the head. Its stem 20 can have not only the intracarpal spike-like appendage 21, which, again, may be tapered toward its distal end, but also a proximally directed trunion 25, which itself may be, say, cylindrical, conical, frustoconical, or have an elliptical, chordated curvilinear, triangular, rectangular, square, or other cross-section. The trunion 25 can include walls 26, which may be tapered as for the Morse taper, and cap 27. The trunion 25 is insertable into the stem trunion receiving cup 15 of the modular head 10, and, in general, its walls 26 and cap 27 suitably correspond to the walls 16 and base 17 of the modular head 10. See,
Actual dimensions of the implant may vary according to needs or desires. For example, basal thumb joint implants 100 can have for its head 10 with noted diameter 30 (size in millimeters (mm)) the dimensions (listed in inches) which follow:
In addition, the modular head 10 can have its stem trunion receiving cup 15 include the following dimensions (
In addition, there may be 11-degree angle 57 and 170-degree angle 58 (
The implant is implanted at the discretion of the surgeon. Surgical cement such as polymethylmethacrylate may be employed.
The present invention is thus provided. Various features, subcombinations and combinations can be practiced with or without reference to other features, subcombinations or combinations in the practice of the invention, and numerous adaptations and modifications can be effected within its spirit, the literal claim scope of which is particularly pointed out as follows:
This is a divisional of application Ser. No. 09/352,472 filed on Jul. 14, 1999 A.D.
Number | Name | Date | Kind |
---|---|---|---|
2934065 | Townley | Apr 1960 | A |
4550450 | Kinnett | Nov 1985 | A |
4944758 | Bekki et al. | Jul 1990 | A |
4955916 | Carignan et al. | Sep 1990 | A |
5007932 | Bekki et al. | Apr 1991 | A |
5011497 | Persson et al. | Apr 1991 | A |
5326364 | Clift et al. | Jul 1994 | A |
5405399 | Tornier | Apr 1995 | A |
5507818 | McLaughlin | Apr 1996 | A |
5507822 | Bouchon et al. | Apr 1996 | A |
5645605 | Klawitter | Jul 1997 | A |
5674297 | Lane et al. | Oct 1997 | A |
5702469 | Whipple et al. | Dec 1997 | A |
5782927 | Klawitter et al. | Jul 1998 | A |
5871547 | Abouaf et al. | Feb 1999 | A |
5910171 | Kummer et al. | Jun 1999 | A |
6096084 | Townley | Aug 2000 | A |
Number | Date | Country |
---|---|---|
2670109 | Jun 1992 | FR |
2239398 | Jul 1991 | GB |
Number | Date | Country | |
---|---|---|---|
Parent | 09352472 | Jul 1999 | US |
Child | 10758455 | US |