The present invention relates to modular battery systems for storing electrical energy, and to methods of using such systems. In particular, though not necessarily, the invention relates to a battery system comprising a plurality of battery modules configurable to provide a voltage and power output from one of a set of available discrete voltage and power outputs.
The invention can be used in connection with intelligent battery systems for electric vehicles, but also in the fields of mobile electrical appliances, energy management, energy trading, routing and communication, to mention some examples.
There are many high power applications that require the use and configuration of battery systems that comprise a large number of electric battery cells coupled together. Electric Vehicles (EVs) are one example. These applications can require a range of different voltages and power outputs for operation. Examples of configurable battery systems are disclosed in US 2014/0203650, US 2014/0312828, US 2016/064160, US 2014/015488 and US 2012/0319493. Typically, in these existing configurable battery systems, a number of battery cells are selectively connected in series or parallel, or a combination of series and parallel, to form a ‘branch’ or ‘string’. The number of cells connected in the string determines the voltage and power supplied. A plurality of strings can also be connected selectively in parallel to vary the power output. Reference is also made to the “string cell” concept created by Tanktwo Oy, Espoo Finland, as exemplified by WO2015/036437.
Generally, configurable battery systems of fixed construction appear to suffer from the drawback that each cell is only selectively connectable in series to one or two adjacent cells within a string. This limits the number of configurations that the cells can be selectively connected in, and hence limits the possible combinations of voltage and power outputs which can be supplied. In other words, the paths through which currents can flow are very limited and not particularly flexible.
For example, a maximum voltage is provided when every cell in a string is connected. In order to selectively reduce the supplied voltage, one or more cells in each string must be disconnected or bypassed—resulting in one or more redundant cells, and hence a reduced power output. It may be desirable to reduce the voltage output without reducing the total number of cells connected. Thus, there is a need for a more flexible, reconfigurable battery framework.
Furthermore, the aforementioned configurable battery systems (e.g. US 2014/015488) can suffer from the problem that, if a given cell within a string fails, the entire string can become non-operational. US 2012/0319493 attempts to solve this problem by providing each cell with a bypass switch, thereby allowing a non-functioning cell to be bypassed. This however introduces extra electronics, increasing costs and the complexity of the system. There is therefore a need for a configurable battery system which can provide an alternative to, or which can supplement, bypass switches.
A further common problem with current rechargeable battery systems is the long charging time. In a typical case, charging requires many hours. A solution to this problem is provided by modular battery systems. In these systems, if one module needs to be recharged, it can be removed and replaced with a fully charged module. Therefore, there is a need for a modular system, wherein any given module can quickly and easily be removed and replaced.
It is an objective to solve at least some of the above mentioned problems, and to provide a novel solution of providing electric energy to electrical devices and systems. A particular aim is to provide a novel system of selectively connectable cells forming a battery module. A further aim is to provide system of connectable battery modules. A still further aim is to provide a system that is able to cope with the failure of one or a limited number of cells without significantly reducing electrical supply capacity.
The solution proposed here is based on the idea of providing multiple connected battery modules, each module comprising a reconfigurable network of battery cells which may be rechargeable. The cells are coupled together and to module terminals via conductors and switches to form a network. The switches are operated by a controller, allowing dynamic reconfiguration of the network of connected cells, such that the electrical energy can be supplied by the module via a number of different paths, depending on the configuration of said switches.
Embodiments presented here may provide considerable advantages. The modules described herein can be used for forming an energy source for EVs or other systems that use electrical power. Although an individual module can be used as a power source, in a typical case, several modules can be connected together to provide a larger source of power. These modules can be connected in series or parallel or in a parallel and series combination.
The invention is generic in nature. It can be of great benefit also to other devices and systems that need, or can benefit from, a source of electrical power. Examples include power tools, mobile medical stations, military deployment units, aircraft, construction machinery, warehouse logistics robots, and more.
According to a first aspect of the invention there is provided a battery system comprising a plurality of electrically coupled battery modules and a controller. Each module comprises a positive module terminal and a negative module terminal for electrically coupling with terminals of other modules, one or more module layers each comprising
The battery system may be configured such that current can flow between neighbouring cells of a module layer in only a single direction around the ring.
The switches may be configurable to disconnect one or more of the cells from a current path through the module layer. The controller may be configured to detect failure of one or more cells and to configure said switches to disconnect the one or more failed cells from a current path.
The switches may be configurable to provide two or more parallel current paths through the module layer.
The switches may comprise, for each battery cell, a first switch being configurable to couple a positive cell terminal to the positive module terminal or a negative terminal of another module layer, and a second switch being configurable to couple a negative cell terminal to the negative module terminal or a positive terminal of another module layer.
Each switch may be a two-way switch or a three-way switch in the sense that a single input can be switched between two or three outputs.
The battery system may comprise a plurality of said module layers, wherein the plurality of module layers are coupled in series. Alternatively, the plurality of module layers may be coupled such that each battery cell of a given module layer is coupled in series, via said switches, to a corresponding battery cell of one or more adjacent module layers. In a further alternative, the battery may be configured such that common terminals of all of the cells of a layer can be connected, via said switches, to a common point.
The switches may be configurable by the controller to electrically couple two or more non-neighbouring cells of a ring between the positive and negative module terminals.
One or more of the battery cells of a module layer may belong to two or more rings.
Each battery cell of a module layer may additionally be coupled to one or more non-neighbouring cells via switches.
According to a second aspect of the invention there is provided a method of operating the battery system according to the above first aspect and comprising configuring the switches, by means of said controller, to electrically couple all cells of the module, or all working cells, into a single series connected string of cells.
According to a third aspect of the invention there is provided a method of operating the battery system according to the above first aspect and comprising configuring the switches, by means of said controller, to connect a given subset of the cells of the module into a series connected string of cells in order to provide a required voltage and current output from the module. A plurality of such strings may be established across the module, with the plurality of strings being coupled in parallel between the positive and negative module terminals.
In the context of these aspects of the invention, the term “string” is used merely to identify a set of series connected cells.
According to a fourth aspect of the invention there is provided a method of operating the battery system according to the above first aspect and comprising configuring the switches, by means of said controller, to disconnect one or more failed cells of a module layer from other cells of the layer, and physically replacing the failed cells with one or more working cells.
The following definitions may be helpful in understanding the description which follows.
“Battery” is a generic term for a device which stores energy, and should not be considered to be limiting. For example, the battery system may comprise electrochemical cells, or cell arrays, or supercapacitors, or supercapacitor arrays. Alternatively, the battery system may comprise fuel cells or any other DC power sources. By way of example only, individual cells making up the battery system may have a capacity of 1 uWh to 1 kWh.
A pair of “logically neighbouring” cells indicates that these cells are not necessarily physically neighbouring—but in terms of network topology they can be directly coupled via a conductor.
Each module 2 comprises a positive module terminal 4, a negative module terminal 5, and a plurality of battery cells 6 electrically coupled between these terminals 4, 5. Generally, “electrically coupled” or “coupled”, between these terminals 4, 5 means connected via one or more conductors or components, such that a current can flow between these terminals. The positive module terminal 4 and negative module terminal 5 allow a module 2 to be electrically connected to other modules in series. The positive module terminal 4 and negative module terminal 5 can also be coupled to an external device for charging the cells 6 within the module 2, or for connecting to a load for supplying power to said load. The controller 3, which may comprise a microprocessor and program and data memory, is able to electrically configure each module as will be described further below.
The battery cells 6 are arranged in one or more module layers, wherein each layer comprises three or more battery cells 6 arranged logically as a ring. The ring is formed by arranging the battery cells 6 such that a given battery cell 6 is coupled to two neighbouring battery cells 6 within the ring (where cells at the ends of a layer are considered to be neighbouring). One of the neighbouring battery cells 6 is coupled to the given battery cell's positive terminal, and the second neighbouring cell is coupled to the given battery cell's negative terminal. In this way, a closed loop, or ring of battery cells can be formed 6.
Each layer further comprises a plurality of switches (not shown in
A module 2 includes one or more layers. By way of example,
In
In
In
In
Finally, in
The example module 2 is advantageous in that it can provide a number of different voltage outputs, as demonstrated. As such, a given module 2 can be used to supply power to a load requiring different voltages at different times. Alternatively, a given module 2 can be used to supply power to a range of different devices or loads, each requiring a different voltage.
It will be understood that the example configurations shown in
The example module 2 permits any number of battery cells 6 between two and twelve battery cells 6 to be selectively connected in series, giving a power utility ranging from 16.7% to 100%. For example, in
In
The controller 3 may be configured to detect failure of a battery cell 6. Upon detecting failure of one or more battery cells 6, the controller 3 may configure the switches 7 to disconnect the one or more failed battery cells 6, while allowing a current to flow through some or all of the working battery cells 6. In this way, provided at least one battery cell 6 remains working in each layer, a current can flow between the positive and negative module terminals 4, 5, and a voltage and power output are provided.
Detecting failure of a battery cell 6 may include the controller 3 measuring and analysing one or more battery cell parameters, including the battery cell voltage, current through the battery cell, temperature, and how much charge remains in the battery cell.
The battery cell parameters may be measured periodically, for instance, every second.
The controller 3 may comprise a memory for storing information. Information stored may include the number of layers in each module 2, the number of battery cells 6 in a layer. Information stored may also include a status for each battery cell 6, indicating whether each battery cell 6 is working or has failed.
The controller 3 may be able to detect if a module 2 is added or removed from the battery system 1.
By way of example, in
Specifically, the switches 7 are operated by the controller 3 such that the current flows in to one of the battery cells neighbouring the failed cell in the same layer, and out of the other logically neighbouring cell, thereby passing through all of the operational cells 6 within the layer. In this way, only the failed cell is disconnected from the layer and the impact on the overall performance of the system is minimised.
In
It will be appreciated by the person of skill in the art that various modifications may be made to the above described embodiments without departing from the scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
1900194.0 | Jan 2019 | GB | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2020/050136 | 1/6/2020 | WO | 00 |