This invention relates to a modular block system and more particularly to a modular block system for constructing a retaining wall or other similar landscaping structure.
Retaining wall structures and similar landscaping structures have been constructed from various materials. Examples of such materials include railroad ties, steel rods or bars, poured concrete, rocks, stones, and preformed concrete blocks. In recent years the preformed concrete blocks have been popular because such blocks can be mass produced and are relatively inexpensive. Additionally, such blocks are as durable as concrete and have various finishes, textures, and colors. Even though these blocks are relatively inexpensive, they typically require complex installations to construct various landscaping structures. Further, due to the weight of the blocks, they are sometimes difficult to carry or handle when constructing a landscaping structure. Frequent hand or finger injuries occur when handling these blocks. Additionally, more than one type or size of block is typically required to construct a structure. Homeowners and commercial landscapers will avoid using numerous blocks due to the difficulty encountered in building a landscaping project or structure unless there is a simple or easy way to construct structures using multiple blocks.
The present invention is designed to obviate and overcome many of the disadvantages and shortcomings associated with present wall blocks. In particular, the present invention is a modular block system that may be used to easily construct various landscaping structures. Moreover, the modular block system of the present invention can be employed to easily construct various complex landscaping structures.
In one form of the present invention, a modular block system comprising a first block, a second block, a third block, a fourth block, and a capstone, the first block having a front face, a back face, a first side, a second side, a top, and a bottom, with the front face being wider than the back face and the first side being slanted from the front face toward the back face, the second block having a front face, a back face, a first side, a second side, a top, and a bottom, with the front face being wider than the back face and the first and second sides being slanted from the front face toward the back face, the third block having a front face, a back face, a first side, a second side, a top, and a bottom, with the front face being wider than the back face and the first side being slanted from the front face toward the back face, and the fourth block having a front face, a back face, a first side, a second side, a top, and a bottom, with the front face being wider than the back face and the first side and the second side being from the front face toward the back face.
In another form of the present invention, a modular block system comprises a first block, a second block, a third block, a fourth block, and a capstone, the first block having a front face, a back face, a first side, a second side, a top, and a bottom, a first indicator formed in the top, with the front face being wider than the back face and the first side being slanted from the front face toward the back face, the second block having a front face, a back face, a first side, a second side, a top, and a bottom, a second indicator formed in the top, with the front face being wider than the back face and the first and second sides being slanted from the front face toward the back face, the third block having a front face, a back face, a first side, a second side, a top, and a bottom, a third indicator formed in the top, with the front face being wider than the back face and the first side being slanted from the front face toward the back face, and the fourth block having a front face, a back face, a first side, a second side, a top, and a bottom, a fourth indicator formed in the top, with the front face being wider than the back face and the first side and the second side being from the front face toward the back face.
In yet another form of the present invention, a modular block system comprises a first block, a second block, a third block, a fourth block, and a capstone, the first block having a front face, a back face, a first side, a second side, a top, and a bottom, an alignment groove spanning the first side, with the front face being wider than the back face and the first side being slanted from the front face toward the back face, the second block having a front face, a back face, a first side, a second side, a top, and a bottom, an alignment groove spanning the first side, with the front face being wider than the back face and the first and second sides being slanted from the front face toward the back face, the third block having a front face, a back face, a first side, a second side, a top, and a bottom, an alignment groove spanning the first side, with the front face being wider than the back face and the first side being slanted from the front face toward the back face, and the fourth block having a front face, a back face, a first side, a second side, a top, and a bottom, an alignment groove spanning the first side, with the front face being wider than the back face and the first side and the second side being from the front face toward the back face.
Another form of the present invention is a landscaping structure constructed from a modular block system comprising a first block, a second block, a third block, a fourth block, and a capstone, the first block having a front face, a back face, a first side, a second side, a top, and a bottom, with the front face being wider than the back face and the first side being slanted from the front face toward the back face, the second block having a front face, a back face, a first side, a second side, a top, and a bottom, with the front face being wider than the back face and the first and second sides being slanted from the front face toward the back face, the third block having a front face, a back face, a first side, a second side, a top, and a bottom, with the front face being wider than the back face and the first side being slanted from the front face toward the back face, and the fourth block having a front face, a back face, a first side, a second side, a top, and a bottom, with the front face being wider than the back face and the first side and the second side being from the front face toward the back face.
In light of the foregoing comments, it will be recognized that a principal object of the present invention is to provide a modular block system that is of simple construction and design and which can be easily employed with highly reliable results.
Another object of the present invention is to provide a modular block system that is easy to use to construct both residential and commercial landscaping projects or applications.
A further object of the present invention is to provide a modular block system that is capable of being manufactured using a mold with each mold being capable of producing two, four, or more modular blocks.
Another object of the present invention is to provide a modular block system that can be used to construct various landscaping structures such as retaining walls, fences, sitting walls, columns, and steps.
A still further object of the present invention is to provide a modular block system in which each of the blocks can be tumbled to present a natural or weathered appearance.
Another object of the present invention is to provide a modular block system that can be used to construct a mortarless retaining wall structure having courses interlocked in a predetermined set-back relationship in a variety of straight or curved configurations.
A still further object of the present invention is to provide a modular block system that has a designation on each of the modular blocks within the modular block system that can be used to easily construct various landscaping structures using installation instructions.
Another object of the present invention is to provide a modular block system in which two of the modular blocks within the modular block system may be used as a soldier stone.
These and other objects and advantages of the present invention will become apparent after considering the following detailed specification in conjunction with the accompanying drawings, wherein:
Referring now to the drawings, wherein like numbers refer to like items, number 10 identifies a preferred embodiment of a modular block system constructed according to the present invention. With reference now to
The top 30 has a pair of score lines or recesses 42 and 44 that are used to split the block 12 into two separate blocks. The score lines 42 and 44 allow the block 12 to be split into two blocks with the score lines 42 and 44 being centered on the wider or front face 20. The top 30 also has a pair of offset pockets 46 and 48 formed therein. The offset pockets 46 and 48 are used to construct a retaining wall structure in a tiered formation with each tier being setback or offset from each other. The pockets 46 and 48 provide for a predetermined or preselected distance that each of the tiers will be setback. On each side of the pocket 46 is a pair of shallow grooves 50 and 52. Within the groove 50 is a passage 54 and within the groove 52 is a passage 56. The passages 54 and 56 may extend the entire height of the block 12. The passages 54 and 56 are adapted to receive rods or pins for use in constructing a landscaping structure. Further, on each side of the pocket 48 is another pair of grooves 58 and 60. Again, within the groove 58 is a passage 62 and within the groove 60 is a passage 64. The passages 62 and 64 may extend the entire height of the block 12. The block 12 also has an alignment groove 66 along the first side 34 centered on the pocket 46. Although not shown, there is an alignment groove on the second side 36 centered with the pocket 48. The alignment groove 66 is used to align or offset the blocks 12, 14, 16, and 18 when constructing a structure using the modular block system 10.
With reference now to
The block 12 is also depicted having the indicator 38 and the marking 40 formed in the top 30. The score lines 42 and 44 are parallel to the second side 36. The score lines 42 and 44 only span a portion of the top 30. The top 30 also has the pair of offset pockets 46 and 48 formed therein and the grooves 50, 52, 58, and 60, and the passages 54, 56, 62, and 64.
The top 82 has a pair of score lines or recesses 94 and 96 that may be used to split the block 14 into two separate blocks. The score lines 94 and 96 allow the block 14 to be split into two blocks with the score lines 94 and 96 being centered on the wider or front face 22. The top 82 also has a pair of offset pockets 98 and 100 formed therein. The offset pockets 98 and 100 are used to construct a retaining wall structure in a tiered formation with each tier being setback or offset from each other. The pockets 98 and 100 provide for a predetermined or preselected distance that each of the tiers will be setback. On each side of the pocket 98 there is formed in the top 82 a pair of grooves 102 and 104. Within the groove 102 is a passage 106 and within the groove 104 is a passage 108. The passages 106 and 108 may extend the entire height of the block 14. The passages 106 and 108 are adapted to receive rods or pins for use in constructing a landscaping structure. The offset pocket 100 also has a pair of grooves 110 and 112 on each side. The groove 110 has a passage 114 and the groove 112 has a passage 116. The passages 114 and 116 may extend the entire height of the block 14. The block 14 also has an alignment groove 118 along the first side 86 centered on the pocket 98. Although not shown, there is an alignment groove on the second side 88 centered with the pocket 100. The alignment groove 118 is used to align or offset the blocks 12, 14, 16, and 18 when constructing a structure using the modular block system 10.
Referring now to
The second block 14 is also depicted having the indicator 90 and the marking 92 formed in the top 82. The score lines 94 and 96 are centered on the top 82 of the block 14. The score lines 94 and 96 only span a portion of the top 82. The top 82 also has the pair of offset pockets 98 and 100, the grooves 102, 104, 110, and 112, and the passages 106, 108, 114, and 116 formed therein.
The top 132 has a pair of score lines or recesses 144 and 146 that are used to split the block 16 into two separate blocks. The score lines 144 and 146 allow the block 16 to be split into two blocks with the score lines 144 and 146 being centered on the wider or front face 24. The top 132 also has a pair of offset pockets 148 and 150 formed therein. The offset pockets 148 and 150 are used to construct a retaining wall structure in a tiered formation with each tier being setback or offset from each other. The pockets 148 and 150 are employed to act as a setback for each tier with the setback being at a predetermined or preselected distance. The offset pocket 148 has a pair of grooves 152 and 154 on opposite sides of the pocket 148. A passage 156 is positioned within the groove 152 and a passage 158 is located within the groove 154. On each side of the pocket 150 is a pair of grooves 160 and 162. Within the groove 160 is a passage 164 and within the groove 162 is a passage 166. The passages 156, 158, 164, and 166 may extend the entire height of the block 16. The passages 156, 158, 164, and 166 are adapted to receive rods or pins for use in constructing a landscaping structure. The block 16 also has an alignment groove 168 along the first side 136 centered on the pocket 148. Although not shown, there is an alignment groove on the second side 138 centered with the pocket 150. The alignment groove 168 is used to align or offset the blocks 12, 14, 16, and 18 when constructing a structure using the modular block system 10.
The block 16 is also depicted having the indicator 140 and the marking 142 formed in the top 132. The score lines 144 and 146 are parallel to the second side 138. The score lines 144 and 146 only span a portion of the top 132. The top 132 also has the pair of offset pockets 148 and 150, the grooves 152, 154, 160, and 162, and the passages 156, 158, 164, and 166 formed therein. The block 16 is generally smaller in some dimensions than the block 12.
The top 202 has an offset pocket 214 that spans the entire length of the top 202. The offset pocket 214 may be used to setback the block 18 when constructing a retaining wall structure. On each side of the pocket 214 there is formed in the top 202 a pair of grooves 216 and 218. Within the groove 216 are a pair of passages 220 and 222 and within the groove 218 are a pair of passages 224 and 226. The passages 220, 222, 224, and 226 may extend the entire height of the block 18. The passages 220, 222, 224, and 226 are used to receive rods or pins for use in constructing a landscaping structure. The block 18 also has an alignment groove 228 along the first side 206 centered on the pocket 214. Although not shown, there is an alignment groove on the second side 208 centered with the pocket 214. The alignment groove 228 is used to align or offset the blocks 12, 14, 16, and 18 when constructing a structure using the modular block system 10.
With particular reference now to
As can be appreciated, the blocks 12, 14, 16, and 18 along with the pavers 254, 258, 264, and 268 of the present invention are formed in the mold box 250. Generally, the process entails molding the blocks 12, 14, 16, and 18 and the pavers 254, 258, 264, and 268 by using a mixture of cement and water and other materials. The blocks 12, 14, 16, and 18 and the pavers 254, 258, 264, and 268 are fabricated by compressing and vibrating the mixture in the mold box 250 by the application of pressure to the mixture by use of a block machine or similar machine. It is also known to use a press head having a press plate for applying pressure to the mold box 250. Further, the press plate may include structure that forms the shallow grooves, the indicators, and the markings in each of the blocks 12, 14, 16, and 18. Also, an insert bar may be used to form the passages and the offset pockets in each of the blocks 12, 14, 16, and 18. Once the blocks 12, 14, 16, and 18 and the pavers 254, 258, 264, and 268 are formed they may be cured through any method known in the art. For example, curing may take the form of air curing for a number of days or steam curing, but normally one day is allowed or needed for cure. Once cured, the blocks 12, 14, 16, and 18 along with the pavers 254, 258, 264, and 268 may be formed by splitting along the score lines 252, 256, 260, 262, 266, and 268. Some methods of splitting include using a manual chisel and hammer, a hydraulic splitting machine, or any other machine that can accomplish splitting. The score lines 252, 256, 260, 262, 266, and 268 provide a weak point that facilitates the splitting of the blocks 12, 14, 16, and 18 and the pavers 254, 258, 264, and 268. Additionally, splitting creates the split face surfaces 20, 22, 24, 26, 28, 80, 130, and 200 that resemble or mimic some types of natural stone or rock.
Many combinations of concrete mixtures may be employed in manufacturing the blocks 12, 14, 16, and 18 and the pavers 254, 258, 264, and 268. Some considerations in determining the particular concrete mixtures include compression strength requirements, density, and adsorption. Further, the costs of the materials, such as sand, gravel, cement, pigment additives, and rock have an impact on the mixture to be used. For example, gravel may be cheaper than river rock in some areas of the country and the blocks 12, 14, 16, and 18 and the pavers 254, 258, 264, and 268 may be formed of a mixture having more gravel than rock due to the difference in cost. The blocks 12, 14, 16, and 18 and the pavers 254, 258, 264, and 268 may be constructed with colored pigments to form different colored blocks. It should be recognized that the blocks 12, 14, 16, and 18 and the pavers 254, 258, 264, and 268 of the present invention may be constructed of various materials which are available. Preferably, the blocks 12, 14, 16, and 18 and the pavers 254, 258, 264, and 268 will be of relatively lightweight so that the blocks 12, 14, 16, and 18 and the pavers 254, 258, 264, and 268 can be easily manufactured, stored, transported, and stacked.
Some possible standard dimension for the blocks 12, 14, 16, and 18 are as follows. The first block 12 or the “A” block may be six inches tall, ten inches deep, and have a front face 20 that is twelve inches wide and a back face 28 that is ten inches wide. The second block 14 or the “B” block may be six inches tall, ten inches deep, and have a front face 22 that is ten inches wide and a back face 80 that is six inches wide. The third block 16 or the “Y” block may be six inches tall, ten inches deep, and have a front face 24 that is ten inches wide and a back face 130 that is eight inches wide. The fourth block 18 or the “X” block may be six inches tall, ten inches deep, have a front face 26 that is eight inches wide and a back face 200 that is four inches wide. All of these dimensions may be normalized to about 98% due to production constraints in some areas. It is also possible and contemplated to have all of the blocks 12, 14, 16, and 18 be only four inches tall. When blocks are constructed in with this particular dimension, the blocks will not include any passages and the offset pockets will be as deep as the shallow grooves.
With reference now to
Construction of the wall 300 is accomplished by using known construction methods. For example, a trench area may be excavated which approximates the size of the blocks 12, 14, 16, 18, 282, 282, and 322. Footing material may be placed into the trench area to be compacted and leveled. The first layer or course 302 of the blocks 12, 14, 16, 18, 282, 284, and 322 are then laid into the trench and then the ensuing individual course 304 of the blocks 12, 14, 16, 18, 282, 284, and 322 is laid on top of the first course 302. Although not shown, to finish the wall structure 300, a top or cap row or course may be formed by placing capstones 282 and 284 over the course 310. Additionally, if the wall structure is an engineered retaining wall, it is known to use material such as geogrid to help hold the soil retained by the wall in place. In this situation, the passages 54, 56, 62, 64, 106, 108, 114, 116, 156, 158, 164, 166, 220, 222, 224, and 226 may have a rod or pin inserted therein and the geogrid material, which includes holes, can be placed through the rod or pin. This helps to keep the geogrid in place and the weight of the blocks 12, 14, 16, 18, 282, 284, and 322 also help to hold the geogrid material in place. Also, if the wall structure is a retaining wall, then each course will be setback by using the pockets 46, 48, 98, 100, 148, 150, and 214 provided in each of the blocks 12, 14, 16, and 18.
Referring now to
With reference to
As can be appreciated, the modular block system 10 of the present invention may be used for both commercial and residential use in building various landscape structures. Numerous other designs or shapes for various landscaping structures may be formed by using the blocks 12, 14, 16, 18, 282, and 284. Further, instructions for a particular project may be shipped with the blocks 12, 14, 16, 18, 282, and 284. By using the indicators 38, 90, 140, and 210, an individual will be able to construct a structure quickly and easily. Also, the markings 40, 92, 142, and 212 insure that the correct modular block system 10 is being used.
Other advantages associated with the use of the modular block system 10 include the reduced number of different components or parts that need to be manufactured, transported, stored, or inventoried. Since the mold box 250 can yield at least four different blocks from a single mold, manufacturing costs are significantly reduced. In particular, only two molds are required which can greatly reduce manufacturing costs. The modular block system 10 is also easy to install or build with and various landscaping projects or structures may be built using the modular block system 10. Examples of other landscaping projects or applications which may be constructed using the modular block system 10 include circle planter boxes, tree rings, BBQ pits, tetra ponds, steps, free standing walls, raised patios, patio barrier walls, fence posts, and stone fences.
Another particular aspect of the modular block system 10 is that the blocks 12, 14, 16, and 18 may be tumbled to give a natural appearance to the blocks. Once the blocks 12, 14, 16, and 18 are formed and split, the resulting blocks 12, 14, 16, and 18 are put into a machine that tumbles the blocks 12, 14, 16, and 18 together. After the tumbling process is complete, the blocks 12, 14, 16, and 18 may be used in the same manner as above described. Tumbling enhances the appearance of the blocks 12, 14, 16, and 18 and this allows the blocks to be sold at a premium. Further, the capstones 282 and 284 and the split off pavers 254, 258, 264, and 268 may be tumbled in the same manner.
From all that has been said, it will be clear that there has thus been shown and described herein a modular block system which fulfills the various objects and advantages sought therefor. It will become apparent to those skilled in the art, however, that many changes, modifications, variations, and other uses and applications of the subject modular block system are possible and contemplated. All changes, modifications, variations, and other uses and applications which do not depart from the spirit and scope of the invention are deemed to be covered by the invention, which is limited only by the claims which follow.
Number | Name | Date | Kind |
---|---|---|---|
2810946 | Garnich | Oct 1957 | A |
D319885 | Blomquist et al. | Sep 1991 | S |
D321060 | Blomquist et al. | Oct 1991 | S |
D341215 | Blomquist et al. | Nov 1993 | S |
5294216 | Sievert | Mar 1994 | A |
D352789 | Adam | Nov 1994 | S |
5735643 | Castonguay et al. | Apr 1998 | A |
5827015 | Woolford et al. | Oct 1998 | A |
5848511 | Scales | Dec 1998 | A |
6149352 | MacDonald | Nov 2000 | A |
6447213 | MacDonald | Sep 2002 | B1 |
6637981 | MacDonald | Oct 2003 | B2 |
7062885 | Dickenson, Jr. | Jun 2006 | B1 |
20030009970 | MacDonald et al. | Jan 2003 | A1 |
Number | Date | Country | |
---|---|---|---|
20060117697 A1 | Jun 2006 | US |