BRIEF DESCRIPTION OF THE DRAWINGS
The present invention will now be described, by way of example only, with reference to the accompanying drawings, in which:
FIG. 1 is a top view of an embodiment of a modular building unit in accordance with the present invention.
FIG. 2 is a top view of an embodiment of a modular building unit coated with structural material in accordance with the present invention.
FIG. 3 is a side view of an embodiment of a modular building unit in accordance with the present invention.
FIG. 4 is a top view of one embodiment of a composite panel assembly in accordance with the present invention.
FIG. 5 is a top view of one embodiment of a modular building corner unit in accordance with the present invention.
FIG. 6 is a top view of one embodiment of a modular building corner unit coated with structural material in accordance with the present invention.
FIG. 7 is an elevated perspective view of one embodiment of a protective shelter in accordance with the present invention.
FIG. 8 is an elevated perspective view of one embodiment of a front wall composite panel assembly further comprising a door frame assembly and a door in accordance with the present invention.
FIG. 9 is a top view of one embodiment of a composite panel assembly in accordance with the present invention depicting a connecting means secured to the modular building units by typical bolts and receiving nuts.
FIG. 10 is a top view and side view of one embodiment of a receiving nut disposed within the lower portion of the modular building unit in accordance with the present invention.
FIG. 11 is a top view and side view of one embodiment of a receiving nut disposed within the upper portion of the modular building unit in accordance with the present invention.
FIG. 12 is a cut away side view of one embodiment of a connecting means securing modular building units to both the base and ceiling panel in accordance with the present invention.
FIG. 13 is a top view of one embodiment of a protective shelter in accordance with the present invention, having the ceiling panel removed for clarification purposes.
FIG. 14 is an elevated perspective view of one embodiment of a door frame assembly in accordance with the present invention.
FIG. 15 is an elevated perspective view of one embodiment of a door in accordance with the present invention.
FIG. 16 is a top view of one embodiment of a modular building unit in accordance with the present invention.
FIG. 17 is an elevated perspective view of one embodiment of a composite panel assembly in accordance with the present invention.
FIG. 18 is a top view of one embodiment of a modular building corner unit in accordance with the present invention.
FIG. 19 is an elevated perspective view of one embodiment of a modular building corner unit and adjacent modular building unit in accordance with the present invention.
DETAILED DESCRIPTION OF THE INVENTION
The present invention will now be described more fully hereinafter with reference to the accompanying drawings, in which preferred embodiments of the invention are shown. Unless otherwise defined, technical and scientific terms herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention pertains. Suitable methods and materials are described below; additionally however, methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention. In addition, the materials, methods and examples given are illustrative in nature only and not intended to be limiting. Accordingly, this invention may be embodied in many different forms and should not be construed as limited to the illustrated embodiments set forth herein. Rather, these illustrated embodiments are provided solely for exemplary purposes so that this disclosure will be thorough and complete, and will convey the scope of the invention to those skilled in the art. Other features and advantages of the invention will be apparent from the following detailed description.
Referring now to FIGS. 1-6, a composite panel assembly 10 in accordance with the present invention will be described. The composite panel assembly 10 comprises at least one modular building unit 20, preferably a composite panel assembly 10 comprises a plurality of modular building units 20 attached to each other.
As depicted in FIG. 1, the modular building unit 20 is formed from a first tube 22 and a second tube 24 having at least one integral connection 26 between the outer circumference of the first tube 22 and the outer circumference of the second tube 24. Tubes 22, 24 are preferably composed of readily available steel, however, tube 22, 24 composition material may include, but is not limited to, other metals, composite materials, polymeric materials, any combination thereof, and any other structural materials known within the art.
The integral connection 26 may be provided for in a wide variety of configurations including, but not limited to, a single connection point, one continuous connection along the majority of the lengths of tubes 22, 24, connections at approximately the midpoint and both ends of the tubes 22, 24, uniformly spaced connections along the length of the tubes 22, 24 (depicted in FIG. 3), and any other connection configurations known within the art. Further, integral connection 26 may be provided for via a variety of methods including, but not limited to, a welded connection, a laminate bond, an epoxy bond, a polyurethane bond, an acrylic bond, a cyanoacrylate bond, a silicone bond, and any other connection methods known within the art for each particular tube 22, 24 material.
As depicted in FIG. 2, a structural material 28 may be deposited onto the exterior surface of the modular building unit 20. Structural material 28 may serve to enhance the function and/or characteristics of the underlying tube 22, 24 materials. Beneficial attributes of the structural material may include, but are not limited to, protecting modular building unit 20, strengthening modular building unit 20, improving the durability of modular building unit 20, improving impact resistance of modular building unit 20, improving the connection strength between at least two modular building units 20, and any other beneficial coating attributes known within the art. Suitable structural materials 28 that may impart such characteristics include, but are not limited to, polymeric materials (e.g., polyvinyl chloride, polyurethane, etc.), rubberized materials, composite materials (e.g. KEVLAR®, which comprises fibers formed from long molecular chains produced from poly-paraphenylene terephthalamide), cement materials, and any other materials known within the art.
As depicted in FIG. 4, a composite panel assembly 10 may be formed from a plurality of attached modular building units 20 disposed within the same plane. The attachments 29 between adjacent modular building units 20 may be similar to the integral connections 26 between tubes 22, 24. Such attachments 29 between the abutting tubes of immediately adjacent modular building units 20 may include, but are not limited to, a welded connection, a laminate bond, an epoxy bond, a polyurethane bond, an acrylic bond, a cyanoacrylate bond, a silicone bond, and any other connection methods known within the art for the selected tubular material. The configuration for attachment 29 may be selected from the same wide variety as described for the integral connection 26. In a preferred embodiment, integral connection 26 is a welded connection and attachment 29 is an epoxy bond.
The modular building units 20 of composite panel assembly 10 may have an optional coating of structural material 28, as described above, disposed about the outer circumference of tubes 22, 24. In a preferred embodiment depicted in FIG. 2, the structural material 28 is disposed about the modular building unit 20 such that the external surface of the coated modular building unit 20 has a rectangular cross section. In one configuration, a portion of said outer circumference of tubes 22, 24 that is diametric to the integral connection 26 remains uncovered by the structural material 28. Such a configuration, as shown in FIG. 2 and FIG. 4, allows for the direct attachment 29 of abutting tubes 22, 24 in immediately adjacent modular building units 20. Additionally, abutting structural material 28 portions of immediately adjacent modular building units 20 may be bonded together to provide a contiguous outer surface to the composite panel assembly 10. Such structural material 28 to structural material 28 bonding may also serve to further strengthen and reinforce the attachment 29 junctions between adjacent modular building units 20.
A modular building corner unit 30 may be used in connecting two composite panel assemblies 10. FIG. 5 depicts a modular building corner unit 30 comprising a corner tube 32, a first side tube 34 and a second side tube 36, wherein said side tubes 34, 36 are attached to corner tube 32 by respective integral connections 26. FIG. 5 depicts side tubes 34, 36 connected to corner tube 32 forming an orthogonal modular building corner unit 30. Such an orthogonal configuration is a preferred embodiment, however, the scope of the present invention includes all possible corner angles desired by a user, subject only to the abutment of constituent side tube 34, 36 material. Structural material 28, as described above and depicted in FIG. 6, may be deposited onto the exterior surface of the modular building corner unit 30.
Filler material may optionally be disposed within the tubes 22, 24 of each modular building unit 20 and modular building corner unit 30. Filler materials enable a dramatic increase in the strength and impact resistance of the modular building units 20. Appropriate filler material may include, but is not limited to, cement, steel (e.g. steel rods disposed within tubes 22, 24), foam (e.g. high density foam), polymers (e.g. polyurethane), any combinations thereof, and any other filler materials known within the art. Use of such strengthening filler material allows the possibility of using a more economical material for tubes 22, 24 of the modular building units 20. As an example, with use of an appropriate filler material a user may opt for a lower grade standard metal fence post instead of ¼ inch steel pipe as the chosen material for pipes 22, 24.
Composite panel assemblies 10, as described above, are capable of use in a wide variety of construction functions. Such utility includes, but is not limited to, vertical structures such as walls and barriers, and horizontal structures such as decks, floors, roofs, and the like. Use of a plurality of strong and impact resistant composite panel assemblies together allows a user to construct a very safe definable space. Examples include safe rooms or storm rooms to protect people from harmful outside actions and forces. As an example, such a protective shelter would be highly advantageous in providing protection from tornadoes in the Midwest and hurricanes in the Southeast.
FIGS. 7-15 depicts a protective shelter 100 and its constituent elements. As viewed in FIG. 7, shelter 100 comprises a front wall 40, a rear wall 42, a left side wall 44, a right side wall 46, and a roof panel 48. A door frame assembly 50 may be disposed within the front wall 40. A movable door 52 may be attached to door frame assembly 50 through which access to shelter 100 can be gained. Movable door 52 may swing into shelter 100, swing out of shelter 100, slide parallel to front wall 40, or perform any other movable door function known in the art to allow access to the protective shelter 100. Shelter 100 rests on a base, wherein the base may be a floor constructed of any conventional building material, preferably being a concrete slab or cement floor.
A preferred embodiment of the protective shelter 100 of the present invention is depicted in FIG. 7. The walls 40, 42, 44, 46 and roof panel 48 may comprise a plurality of modular building units 20, each wall 40, 42, 44, 46 extending the height of the room walls and attached to adjacent modular building units 20 down the length of each room wall or to a modular building corner unit 30 at a room corner.
After determining the dimensions of the room to be retrofitted, an appropriate number of modular building units 20 are joined along the length of each interior wall of the pre-existing structure via an attachment 29. Similarly each modular building corner unit 30 is joined to adjacent tubes 22, 24 of modular building units 20 via attachment 29. The combined length of adjacent modular building units 20 and joined modular building corner units 30 at each corner along a wall may equal the length of each room wall. The length of a modular building corner unit 30 may approximately equal that of a modular building unit 20. Walls 40, 42, 44, 46 incident to a corner without a modular building corner unit 30 from the orthogonal adjacent wall 40, 42, 44, 46 will include an attached modular building corner unit 30. Alternatively, the modular building units 20 and modular building corner units 30 may be sized during the manufacturing process so that the appropriate number of modular building units 20 extends the length of the inner surface of each room wall.
After room wall interior surfaces are fitted with adjacent modular building units 20 and room corners include modular building corner units 30, connecting means 54 may be used to further secure each modular building unit 20 to adjacent unit(s) 20 or corner unit(s) 30 along a wall 40, 42, 44, 46 or roof panel 48 (see FIG. 9). The connecting means 54 for further securing modular building units 20 of a wall 40, 42, 44, 46 or ceiling panel 48 to each other may comprise a flat bracket or any other connecting means known within the art. The function of connecting means 54 may further include securing the walls 40, 42, 44, 46 to both the ceiling panel 48 and the base (e.g. floor or slab), as shown in FIG. 12. In a preferred embodiment depicted in FIGS. 8, 9, 12 and 13, connecting means 54 may comprise an L-bracket as is commonly used in the art. Connecting means 54 may also comprise any other connectors known to one of ordinary skill in the art.
Connecting means 54 may be attached to walls 40, 42, 44, 46 in any manner known within the arts including, but not limited to, welding, conventional bonding, and the use of typical nuts, bolts and/or screws. A preferred embodiment comprises typical bolt(s) 56 and complementary receiving nut(s) 58, as shown in FIGS. 9-12. Receiving nuts 58 may comprise individual components or may be provided in the form of a nut plate if more than one bolt 56 is to be used per tube 22, 24. As depicted in the preferred embodiment, at least one hole in connecting means 54 is aligned with at least one fastening hole 60 formed within the upper and lower ends of tubes 22, 24 of the modular building unit(s) 20. The fastening hole(s) 60 may be centered on the exposed circumference of the respective tubes 22, 24 of the modular building units 50 (see FIGS. 9 and 10). In such an embodiment, the bolts 56 and nuts 58 secure connecting means 54 to the modular building units 20 further securing the modular building units 20 of a composite panel assembly 10 to each other. Although this embodiment depicts the use of L-brackets as the connecting means 54 positioned at the top and bottom of adjacent modular building units 20, any number of clamps or other connecting means 54 may be used at any respective position. In addition, any method appreciated by one of skill in the art may be used to effectively secure the adjacent modular building units 20 of the room walls 40, 42, 44, 46 to each other, and to the roof panel 48 and base, respectively.
A roof panel 48 is composed of adjacent modular building units 20 similar to the units 20 used in composing the room walls 40, 42, 44, 46, as discussed above. As shown in FIG. 7, the tubes 22, 24 of the roof panel 48 may extend the width or length of the room as opposed to the height of the room in any pre-existing structure. A plurality of modular building units 20 are attached to one another, as described above, to form the roof panel 48 that is set atop the walls 40, 42, 44, 46 of the protective shelter 100. Similar to the wall 40, 42, 44, 46 constructions, a connecting means 54 may be used to further attach the modular building units 20 of the roof panel 48 to each other, and may further serve to secure the roof panel 48 to the upper portion of the walls 40, 42, 44, 46. Tubes 22, 24 comprising the modular building units 20 of the roof panel 48 may have at least one fastening hole 60 at each end of the respective tubes 22, 24. Such at least one fastening holes 60 may align with holes within a connecting means 54 attached to the upper portion of each wall 40, 42, 44, 46. The connecting means 54 may then be secured to the roof panel 48 by any means known within the art, with a preferred embodiment comprising typical bolts 56 and receiving nuts 58 depicted in FIG. 12. Additionally, a tube 22, 24 of the last modular building unit 20 on both ends of roof panel 48 may have fastening holes 60 along the length of the tube 22, 24 for attachment of connecting means 54 capable of securing roof panel 48 to the upper tube 22, 24 ends of the respective walls 40, 42, 44, 46 (e.g. see specifically front wall 40, back wall 42, and roof panel 48 of FIG. 7). In a preferred embodiment, the connecting means 54 is an L-bracket abutted into the intersection corner between the roof panel 48 and a wall 40, 42, 44, 46.
The modular building units 20 of the walls 40, 42, 44, 46 can be secured to the base or floor via connecting means 54 in the same method in which they were secured to the roof panel 58 above. Connecting means 54 may include a portion for securing to the lower end of tubes 22, 24 of walls 40, 42, 44, 46 and another portion for securing to the base. As with the roof panel 48 above, any other method known to one of skill in the art may be used in securing the walls 40, 42, 44, 46 of the protective shelter 100 to the base. The base or flooring may include pre-drilled holed coinciding with holes within connecting means 54, into which screws are passed thereby securing the shelter 100 to the floor. All means of securing the connecting means 54 to the roof panel 48, walls 40, 42, 44, 46, and base may be accessible from the inside of the shelter to permit its construction from within the protected space.
As depicted in FIG. 8, any room door may be retrofitted or replaced with a door 50 formed of adjacent modular building units 20, as disclosed above. An appropriate door hinge or door slide is preferably capable of withstanding the torque and forces for storm room requirements disclosed by FEMA. FIG. 14 shows one embodiment of a door frame assembly 52 to which an appropriate door hinge or slide may be attached. Similar to the wall 40, 42, 44, 46 and roof panel 48 constructions, the door 50 (see FIG. 15) may comprise adjacently attached modular building units 20 that may be further secured to one another using a connecting means 54, as discussed above. The movable door 50 may be utilized in place of or retrofitted over the door of the pre-existing structure.
Another embodiment of a modular building unit 20 and protective shelter 100 in accordance with the present invention will now be described in reference to FIGS. 16-19. Means of construction are similar to those disclosed above, with some minor differences discussed herein.
FIG. 16 depicts another embodiment of a modular building unit 70. The modular building unit 70 comprises an I-beam 72 and a tubular member 74. I-beam 72 may comprise a first flange 76 disposed parallel to a second flange 78, wherein the first flange 76 and the second flange 78 are connected by a web 80. The web 80 is disposed perpendicular to both the first flange 76 and the second flange 78. Tubular member 74 may be disposed parallel to the longitudinal axis of the I-beam 72, wherein half of the outer circumference of the tubular member 74 is positioned within the I-beam 72 between the first flange 76 and the second flange 78, as depicted in FIG. 16. Modular building unit 70 may further comprise positioning material 82 disposed within the I-beam 72 between the first flange 76 and the second flange 78 for maintaining approximately half of the outer circumference of the tubular member 74 within the I-beam 72 between its first flange 76 and its second flange 78.
The positioning material 82 serves to hold the tubular member 74 at the weakest part of the I-beam 72. Positioning material 82 may include, but is not limited to, polyurethane, other polymers, cement, foams, composite materials, and any other materials known within the art. The exposed surface of positioning material 82 may be formed in a concave shape that is complimentary to the external circumference of the tubular member 74, as shown in FIG. 16. The concave shape may be obtained during the manufacture of the I-beam 72 or during the retrofit procedure. Further, the exposed surface of positioning material 82 may have an adhesive disposed thereon to assist in maintaining the position of tubular member 74.
FIG. 17 depicts a plurality of modular building units 70 disposed within the same plane and in an alternating arrangement of I-beams 72 and tubular members 74. In such a configuration, the tubular members 74 serve to reinforce and support the weakest portion of the I-beams 72. With each modular building unit 70 comprising an I-beam 72 and a tubular member 74, a tubular member 74 of a first modular building unit 70 may be disposed within the open side of an I-beam 72 of a second modular building unit 70 in a repeating manner, as seen in FIG. 17. Similar to the disclosure above, to further secure the modular building units 70 to each other, a connecting means 54 may be disposed across the junctions of the modular building units 70. FIG. 17 depicts at least one fastening hole 84 on each modular building unit by which a connecting means 54 may be secured. Such a connecting means 54 may be attach to the modular building units 70 at any position and in any number desired across the secured panel. The method for securing the connecting means 54 to the panel of modular building units 70 may be any means known within the art, with a preferred embodiment being a typical bolt and receiving nut.
Another embodiment of a protective shelter 100 may comprise a plurality of modular building units 70 combined in a manner similar to the above disclosed shelter 100 constructions using modular building units 20. Walls, a roof panel and a door may be constructed from a panelized plurality of modular building units 70, as depicted in FIG. 17. FIGS. 18 and 19 depict an embodiment of a modular building corner unit 90. As shown in FIG. 18, two I-beams may be combined into a modular building corner unit 90. By cutting away one leg of a flange on both I-beams, the cut legs and normal legs may, respectively, abut and may be fixedly attached to each other by any means known within the art. In a preferred embodiment, the two I-beams may be welded together to form the modular building corner unit 90 in FIG. 18. The I-beams 72 and tubular members 74 of the modular building units 70 are cut to lengths equal to the height of the room to be retrofitted. Similarly, an appropriate number of modular building units 70 may be incorporated in forming walls that match the dimensions of the room within the pre-existing structure. Modular building corner units 90 may be utilized to connect panelized wall portions at the corners of the pre-existing room. Adjacent modular building units 70 may be secured together via connecting means 54, as done with modular building units 20, fastening holes 60, with the preferred method using nuts and bolts, as described above.
The I-beams 72 and tubular members 74 of each modular building panel 70 of the roof panel extends the length or width of the room to be retrofitted, as discussed above with the modular building units 20. Similarly, the walls of the shelter 100 may be fixedly connected to both the base and the roof panel via connecting means 54, which may be secured at both the upper and lower portion of each adjacent I-beam 72 constituent of the shelter 100 walls. Attachment of connecting means 54 to the roofs, walls, and base can be in any manner known in the art. A preferred means of attaching the connecting means is via typical nuts and bolts, as discussed above for the first embodiment of the protective shelter 100.
In the drawings and specification, there have been disclosed typical preferred embodiments of the invention, and all though specific terms are employed, the terms are used in a descriptive sense only and not for purposes of limitation. The invention has been described in considerable detail with specific references to these illustrated embodiments. It will be apparent, however, that various modifications and changes can be made within the spirit and scope of the invention as described in the forgoing specification.
While the above description contains many specificities, these should not be construed as limitations on the scope of any embodiment, but as exemplifications of the presently preferred embodiments thereof. Many other ramifications and variations are possible within the teachings of the various embodiments.
Thus the scope of the invention should be determined by the appended claims and their legal equivalents, and not by the examples given.