1. Field of the Disclosure
The present disclosure relates to firearms. More particularly, it concerns a modular buttstock assembly that features enhanced modularity and structural integrity compared to known buttstock designs.
2. Description of the Related Art
Many firearms feature a component called a “buttstock.” Alternative terms for the same component include “stock,” “shoulder stock,” or “butt.” The buttstock, which is connected to the firing mechanism and barrel, is typically the most rearward component of a firearm during normal use. The buttstock allows a user to brace the firearm against his or her shoulder and cheek prior to firing. In some applications, such as when a user is firing from a prone position, the buttstock provides support by resting on the ground or other surface. Further, although primarily used for firing ammunition, firearms used by military or law enforcement personnel are sometimes used to apply blunt force to a person (e.g., a combatant) or object (e.g., a glass window). In such cases, the buttstock frequently serves as the striking surface.
Many modern buttstocks are considered “collapsible” or “adjustable” in the sense that a user can alter the distance between the buttstock and the receiver to accommodate his or her needs (e.g., arm length). Inventor Robert Roy introduced the first adjustable buttstock assembly in 1966. Roy's assembly, which still stands as the prevailing adjustable buttstock design, was designed to fit a standard sized receiver extension produced by Colt's Manufacturing Company, LLC of Hartford, Conn. Roy's design utilizes a receiver extension tube containing depressions. The buttstock slides over the receiver extension tube. The bottom of the buttstock contains a lever connected to a lock pin. The lock pin is biased by a conventional wire spring upwards through a passage in the buttstock and into one of the depressions in the received extension tube. When biased into one of the depressions by the spring, the head of the lockpin prevents the buttstock from sliding along the receiver extension tube. When the user wishes to adjust the distance between the buttstock and the receiver, he or she retracts the lockpin from the depression by applying force to the lever protruding from the buttstock. For more details on Roy's design, see U.S. Pat. No. 3,348,328.
Although Roy's design has remained the standard in adjustable buttstocks for many years, it suffers from a severe limitation. Many of the aforementioned applications for which buttstocks are used, such as delivering blunt force to an object or person, inflict mechanical stress on the lockpin, the lever, and the surrounding housing. Similar stresses are applied when firearms featuring traditional buttstocks impact the ground or other surface after being accidentally dropped. As a result, traditional buttstocks featuring Roy's design are overly susceptible to breakage. Customers in the firearm industry are increasingly demanding buttstocks with longer life expectancies. Alternatives to Roy's buttstock design have been attempted, such as the Magpul CTR® Carbine Stock offered by Magpul, Inc. of Boulder, Colo., but they have yet to offer any substantial advantage in structural integrity. Given such limitations, there is a persistent need in the firearm industry for a buttstock assembly that offers enhanced structural integrity.
Known buttstocks are further limited when it comes to offering flexible storage functionality. When regularly using firearms, users commonly need access to a number of accessory items, such as batteries (e.g., for weapon mounted lights, thermal imaging devices, laser sights, etc.), cleaning kits, or replacement parts. Some attempts at offering convenient storage functionality have succeeded to a degree but ultimately constitute inflexible solutions because they rely on permanently integrated storage compartments. One such attempt was the Magpul ACS™ Carbine Stock offered by Magpul, Inc. The presence of a storage compartment, while convenient and desirable in some situations, introduces additional components susceptible to breakage. As a result, users find a buttstock storage compartment desirable in some instances, and undesirable in others. Because existing buttstock offerings are inflexible, users must expend funds purchasing more than one buttstock and then must find sufficient space to store them. Further, users must endure the time-consuming task of swapping out the entire buttstock when transitioning from a scenario in which a buttstock storage compartment is desirable to a scenario in which enhanced mechanical strength is a greater priority, and vice versa. Accordingly, there is a need in the firearm industry for a modular buttstock assembly that offers flexible functionality.
An embodiment of a modular buttstock assembly that removably mounts to a receiver extension of a firearm is claimed. In one claimed embodiment, a modular buttstock assembly that removably mounts to a receiver extension of a firearm includes a main body and a rear body. The main body includes a passage that mates with the receiver extension. The main body also includes a toggle assembly, no part of which is disposed within the rear body. The toggle assembly includes an actuating spring and a locking block. The actuating spring includes a biased position and an unbiased position. The locking block is coupled to the actuating spring. The rear body is removably coupled to the main body.
Embodiments of a modular buttstock modular that removably mounts to a receiver extension of a firearm are provided. The modular buttstock assembly features enhanced modularity and structural integrity compared to known buttstock assemblies. Namely, in various embodiments, the modular buttstock assembly may feature an improved toggle assembly. The improved toggle assembly may include a multi-shaft locking block that is far superior in structural integrity to conventional lock pins and a bowed or arched actuating spring that is superior to conventional wire compression springs in structural integrity, elastic memory, wear resistance, and cost-efficiency. In various embodiments, the modular buttstock assembly may also feature a rear body that may be removably coupled to a front body such that any number of swappable, modular rear bodies (e.g., those containing built-in storage compartments or accessories) may be employed to suit particular applications.
Although certain embodiments of a modular buttstock assembly are discussed herein, it should be understood that such embodiments are illustrative only and in no way limit the scope of the present disclosure. Persons of ordinary skill in the art will readily recognize that the present disclosure suggests many other possible embodiments in addition to those expressly described herein.
Actuating lever 140 may serve as the surface through which actuating spring 130 may be indirectly operated by a user when toggle assembly 125 is fully assembled and coupled to main body 110. As such, actuating lever 140 may serve as the manual mechanism through which the user ultimately adjusts the distance between modular buttstock assembly 100 and the receiver of the firearm. To that end, actuating lever 140 may feature a region with a more aggressive or pronounced surface texture compared to other parts of modular buttstock assembly 100. The more aggressive texture may assist the user in quickly locating and firmly gripping actuating lever 140. In some embodiments, actuating lever 140 may be coupled to main body 110 through one or more hooks 167 disposed on actuating lever 140 and main body 110 (also shown in
As shown in
Because actuating spring 130 may serve as a biasing spring when coupled to actuating lever 140, actuating spring 130 may assume either a spring-biased position and an unbiased position. In an embodiment, actuating spring 130 may be maintained in the biased position by upward forces applied by an interior wall of actuating lever 140. In addition to providing just enough pressure to retain actuating spring 130 in the biased position, actuating lever 140 may also provide sufficient pressure to prevent locking block 135 and actuating spring 130 from rattling inside main body 110 when the user is moving. Such embodiments provide superior wear resistance and stealth capabilities compared to conventional designs featuring wire compression springs and lock pins.
When actuating spring 130 is in the biased position, actuating spring 130 may force locking block 135 upwardly through void 165 and into depression 160 of receiver extension 105. When locking block 135 is forced into depression 160, one or more of shafts 145 may abuttedly engage an interior wall of depression 160 as shown in
Upon releasing actuating lever 140, the force indirectly applied by the user to actuating spring 130 to shift actuating spring 130 into its unbiased position is removed. As a result, actuating spring 130 returns to its biased position and once again holds modular buttstock assembly 100 securely in place along the length of receiver extension 105 when locking block is properly realigned with a depression 160 in receiver extension 105. In some instances, the user may inadvertently release actuating lever 140 when locking block 135 is not perfectly aligned with a depression 160 in receiver extension 105. In such cases, the user can feel the resistance in actuating spring 130 and may make slight slide adjustments to the position of modular buttstock assembly 100 until locking block 135 becomes aligned with a depression 160 and actuating spring 130, as a result of being maintained in the biased position by actuating lever 140, automatically forces locking block 135 into depression 160.
Referring back to
Rear body 115 may further include a rear region 195 having a support surface 200. In some embodiments, support surface 200 may be a buttpad. When rear body 115 is coupled to a main body 110 of a modular buttstock assembly 100, which itself is coupled to a receiver extension 105 of a firearm, buttpad 200 may serve as the rearward-most surface of the fully assembled firearm. As a result, among other uses, buttstock 200 may allow a user to brace the firearm against his or her shoulder and cheek prior to firing or may serve as a striking surface for applying blunt force. Buttpad 200 may be coupled to rear region 195 of rear body 115 through well-known manufacturing processes such as over-molding. Persons of ordinary skill in the art will readily recognize that a wide variety of coupling mechanisms may be used with various embodiments disclosed herein.
Forward region 185 of rear body 115 may include a built-in sling mounting point to which a sling may be mounted. The sling mounted point may include one or more brackets 205 that are secured to forward region 185 of rear body 115 by a plug 210. In an embodiment, one or more brackets 205 may be installed within corresponding grooves, slots, indents, or the like of forward region 185. Plug 210, which may include a plurality of arms, may then be installed behind brackets 205 with respect to forward region 185 such that plug 210 exerts a forward force upon brackets 205 and helps to retain them securely in place within the corresponding grooves, slots, indents, or the like of forward region 185. Buttpad 200 may then be coupled to rear region 195 before the entire rear region 195 is over-molded to add further structural rigidity to the foregoing assembly. In some embodiments, buttpad 200 may include a first lip 207 that corresponds to a second lip 212 disposed at the rearward edge of rear region 195. Lip 207 of buttpad 200 and lip 212 of rear region 195 may interlock to help retain buttpad in place against rear region 195 prior to overmolding.
As discussed with respect to
Second buttpad section 225 may be fixed such that less than all of buttpad 200 provides access to storage compartment 215. Alternatively, buttpad 200 may be a single unit akin to a traditional buttpad, except that the entire buttpad may be hingedly coupled to rear region 195. Buttpad 200 may be retained in place by a pin 232 and a retaining clip 234. Retaining clip 234 may be a hair clip or any other fastener suitable for retaining pin 232 in place. Rear region 195 of rear body 115 may include a hole 235 that corresponds to pin 232 in shape and diameter. Buttpad 200 may include a similarly shaped and sized hole 240. When buttpad 200 is positioned flush against a rearmost surface of rear region 195, hole 235 of rear region 195 and hole 240 of buttpad 200 may align with one another to form a continuous passage that accommodates the length of pin 232. When pin 232 is inserted into the continuous passage, buttpad 200 is retained securely in place against rear region 195 of rear body 115. Retaining clip 234 may pressure fit over a corresponding groove disposed near a first end of pin 232 and into a groove disposed in rear region 195. In such embodiments, when retaining clip 234 is coupled to rear region 195 over pin 232, pin 232 is held securely in place within the continuous passage formed by hole 235 of rear region 195 and hole 240 of buttpad 200. In addition to the groove corresponding to retaining clip 234, pin 232 may further include a second end with a notch that obstructively prevents pin 232 from passing completely through the continuous passage formed by hole 235 of rear region 195 and hole 240 of buttpad 200.
In some embodiments, second buttpad section 225 may include a first lip that interlocks with a second lip disposed on an edge of rear region 195, much like first lip 207 and second lip 212 shown in
Forward region 185 may further include a cover 245 coupled to a bottom surface of rear body 115. Cover 245 may serve to conceal hinge 230 from view when buttpad 200 is hingedly coupled to rear region 195 so as to give rear body 115 a sleek, low profile appearance. Cover 245 may also serve as a locking member that couples to hinge 230 and may shield hinge 230 from debris that might otherwise impede the ability of first buttpad section 220 to pivot around hinge 230. Forward region 185 may further include a built-in sling mounting point to which a sling may be mounted. The sling mounted point may include one or more brackets 205 that are secured to forward region 185 of rear body 115 by a plug 210. In an embodiment, one or more brackets 205 may be installed within corresponding groove, slots, indents, or the like of forward region 185. Plug 210, which may include a plurality of arms, may then be installed in between brackets 205 such that the arms exert outward pressure on brackets 205 and effectively pin them in place against a section of forward region 185. Buttpad 200 may then be over-molded and/or hingedly coupled to rear region 195.
Although certain embodiments of rear bodies 115 have been described herein, persons of ordinary skill in the art will readily recognize that such disclosure is in no way limiting. On the contrary, in light of the disclosure provided herein, it should be readily apparent to persons of ordinary skill in the art that the present disclosure covers a wide variety of swappable, modular rear bodies 115, such as those featuring a variety of storage compartments, access panels, or built-in accessories.
The above description is illustrative and not restrictive. Many variations of the invention will become apparent to those of skill in the art upon review of this disclosure. While the present invention has been described in connection with a variety of embodiments, these descriptions are not intended to limit the scope of the invention to the particular forms set forth herein. To the contrary, the present descriptions are intended to cover alternatives, modifications, and equivalents as may be included within the spirit and scope of the invention as defined by the appended claim and otherwise appreciated by one of ordinary skill in the art.
The present application is a continuation and claims the priority benefit of U.S. application Ser. No. 14/256,904 filed Apr. 18, 2014, entitled “Modular Buttstock Assembly,” and set to issue as U.S. Pat. No. 9,109,855 on Aug. 18, 2015, the disclosure of which is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 14256904 | Apr 2014 | US |
Child | 14828430 | US |