The present disclosure is directed generally to firearms and, more particularly, to a modular chassis/stock system for a rifle type of firearm that incorporates a recoil reduction assembly.
The firing of a firearm typically results in a recoil caused by the force of the expanding gas propelling a bullet/shot down the barrel. The expanding gases force the firearm rearwardly in a recoil action. Accordingly, most rifle or long gun type firearms subject to substantial recoil include a buttstock for engaging the shooter's shoulder when firing the firearm to help support the firearm during a recoil action.
Recoil reduction devices have been employed with firearms to reduce recoil that is felt by the shooter when the firearm is fired. Reduction in recoil that is felt by the shooter reduces the fatigue of the shooter and also lessens the impacts on the shooter's body. In addition, the shooter is better able to maintain a sight picture to assist in shot identification, to assist in making follow-up shots, and to improve overall shooting performance.
The ability to easily configure a recoil reducing firearm to fit the shooter's needs and anatomy can be useful in several situations, such as in tactical, sniping and target shooting applications. In addition, a buttstock that supports the firearm is desirable where the overall weight of the firearm is minimized while incorporating a recoil reduction system. Accordingly, there remains a need for further improvements in this area.
The present disclosure generally is related to a modular chassis/stock system for a rifle type firearm that incorporates a recoil reduction assembly. The chassis/stock system includes a buttstock assembly that is configured to include an elongated housing for receiving a mounting body of the recoil reduction assembly. The mounting body houses a recoil strut to which the recoil pad assembly is engaged.
In one embodiment, an adjustment member is threadingly engaged to the mounting body to adjust the length of pull between the recoil reduction assembly and the buttstock assembly. In another embodiment, a shroud is provided around the rearward end of the buttstock that surrounds the recoil pad assembly and recoil strut.
This summary is provided to introduce a selection of concepts that are further described below in the illustrative embodiments. This summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used as an aid in limiting the scope of the claimed subject matter. Further embodiments, forms, objects, features, advantages, aspects, and benefits shall become apparent from the following description and drawings
Those skilled in the art will appreciate and understand that, according to common practice, the various features of the drawings discussed below are not necessarily drawn to scale, and that dimensions of various features and elements of the drawings may be expanded or reduced to more clearly illustrate the embodiments of the present invention described herein.
Referring now to the drawings in which like numerals indicate like parts throughout the several views, the figures illustrate example embodiments of the modular chassis/stock system 10 according to the principles of the present disclosure. Modular chassis/stock system 10 and/or one or more components thereof can be used for various types of firearms, including M4, M16, AR-15, SCAR, AK-47, HK416, ACR, sniper rifles, shotguns, hunting rifles and other long guns, and gas-operated semi-automatic, automatic and manually operable firearms. However, the present disclosure should not be limited to the listed examples.
The following description is provided as an enabling teaching of exemplary embodiments, and those skilled in the relevant art will recognize that many changes can be made to the embodiments described. It also will be apparent that some of the desired benefits of the embodiments described can be obtained by selecting some of the features of the embodiments without utilizing other features. Accordingly, those skilled in the art will recognize that many modifications and adaptations to the embodiments described are possible and may even be desirable in certain circumstances, and are a part of the invention. Thus, the following description is provided as illustrative of the principles of the embodiments and not in limitation thereof.
As shown in
In the illustrated embodiment, chassis/stock system 10 includes a buttstock assembly 30 that is mounted to the rearward end 24 of the chassis 12 at a hinge 32.
Referring further to
In the illustrated embodiment, there is shown a first laterally opening window 40 and a second laterally opening window 42 defined by frame 34. Frame 34 is sized and configured to provide the required structural support to transfer the force of the recoil to the recoil reduction assembly 80 (described below) without compromising the structural integrity of the buttstock assembly 30. Frame 34 can be made from a light-weight, high strength material such as, for example, aluminum, magnesium, steel, other metals and metal alloys, polymers, carbon fiber, composites, or any other suitable material. The members forming frame 34 can be solid, hollow, or combinations thereof.
Frame 34 includes an elongated housing 60 for receiving a part of recoil reduction assembly 80 to allow recoil reduction assembly 80 to be mounted to buttstock assembly 30. Housing 60 includes an outwardly projecting body portion 62 that extends outwardly from opposite sides of frame 34. Body portion 62 extends from a forward end 64 to an opposite rearward end 66. An inner bore 68 is defined by body portion 62 and opens at rearward end 66. Inner bore 68 receives a part of recoil reduction assembly 80 therein. As discussed further below, in one embodiment, the recoil reduction assembly 80 is translatable into and out of inner bore 68 to adjust the length of pull.
Frame 34 includes an upper frame member 44 extending rearwardly from forward end 36 to a rear mounting pad 46 at rearward end 38. Frame 34 also includes a lower frame member 48 extending forwardly from rear mounting pad 46 in parallel relation to upper frame member 44. Frame 34 also includes an obliquely oriented forward frame member 50 extending between the upper and lower frame members 44, 48. Frame 34 further includes an intermediate frame member 52 extending parallel to the upper and lower frame members 44, 48 that extends from the rear mounting pad 46 to the forward frame member 50.
Frame 34 defines two windows 40, 42 in the illustrated embodiment. However, other embodiments contemplate no windows, one window, or three or more windows. In the illustrated embodiment, the first window 40 is defined by the rear mounting pad 46, the lower frame member 48, the forward frame member 50, and the intermediate frame member 52. The second window 42 is defined by forward end 64 of the elongated housing 60, the intermediate frame member 52, the forward frame member 50, and the upper frame member 44. Windows 40, 42 open at each of the lateral sides of frame 34.
The elongated housing 60 is located between and extends along the upper frame member 44 and the intermediate frame member 52. In one embodiment, the elongated housing 60 is formed unitarily with the upper frame member 44 and the intermediate frame member 52. In another embodiment, the housing 60 is attached to one or more members of the frame 34.
Frame 34 further defines a slot 70 between the forward end 64 of the elongated housing 60 and the rear mounting pad 46. Buttstock assembly 30 also includes an adjustment member 72 that is received in the slot 70. In the illustrated embodiment, adjustment member 72 is a thumbwheel that is positioned around a part of recoil reduction assembly 80 in slot 70 and rotated clockwise or counterclockwise by the shooter to adjust the length of pull. In another embodiment, the adjustment member 72 is a lever or tab that is pivoted or translated by the shooter to adjust the length of pull.
Recoil reduction assembly 80 includes a cylindrical mounting body 82 that is received in inner bore 68 of housing 60. Mounting body 82 is shown in further details in
Recoil reduction assembly 80 further includes a recoil strut 90 that is positioned in a chamber 88 defined by mounting body 82. Recoil strut 90 extends rearwardly though rear mounting pad 46 to a recoil pad assembly 92. Recoil strut 90 can be employed in conjunction with a shock absorbing element in chamber 88 of mounting body 82, such as a spring, gas cylinder, air cylinder, or other recoil absorbing device (not shown). The retention member 94 can be loosened or tightened on mounting body 82 to adjust the tension of recoil reduction assembly 80.
Recoil reduction assembly 80 also includes an adjustable retention member 94 that is engaged to a rearward end of mounting body 82 to capture recoil strut 90 in chamber 88 mounting body 82 for engagement to rear mounting pad 46. Tightening or loosening of adjustable retention member 94 adjusts the tension pressure of recoil strut 90, providing for a stiffer or softer buffer depending on the adjustment that is made. In one embodiment, retention member 94 is a nut that extends through rear mounting pad 46 is rotated around recoil strut 90 to adjust the recoil resistance, but other arrangements are also contemplated. There is further provided a guide rod 96 that extends between rear mounting pad 46 and recoil pad assembly 92 to prevent or resist rotation of recoil pad assembly 92. Guide rod 96 is received in a bore 104 formed through rear mounting pad 46 and lower frame member 48 and in a hole in recoil pad assembly 92. Guide rod 96 and bore 104 extend parallel to recoil strut 90.
Recoil pad assembly 92 includes a recoil pad (not shown), a back plate 98, and an adapter plate 100. Back plate 98 attaches to the recoil pad and includes a track 102 that allows the recoil pad to be moved up or down to better fit the shooter. Adapter plate 100 attaches the back plate 98 and the recoil pad to recoil strut 90.
Buttstock assembly 30 includes a cheek piece 110 and a riser 112 that is attached to cheek piece 110 and frame 34. Riser 112 is positioned along and extends through upper frame member 44 at the forward end 64 of housing 60. Riser 112 is secured to upper frame member 44 with a fastener 114 that allows the vertical positioning of cheek piece 110 relative to upper frame member 44 to be adjusted and secured in the adjusted position. Cheek piece 110 is elongated and forms a U-shaped body that is positioned above upper frame member 44.
Referring now to
Frame 34′ of buttstock assembly 30′ includes an elongated cylindrical housing 160 that is located between and extends along the upper frame member 44 and the intermediate frame member 52. In one embodiment, the elongated housing 160 is formed unitarily with the upper frame member 44 and the intermediate frame member 52. In another embodiment, the housing 160 is attached to one or more members of the frame 34′. In contrast to housing 60, housing 160 does not include any slot or adjustment member, but includes an inner bore 168 defined by laterally outwardly projecting body portion 162 for receiving a part of a recoil reduction assembly 180 like housing 60. Body portion 162 of housing 160 includes a width that projects laterally outwardly from the adjoining frame members 44, 52 and a forward end wall 169 at the forward end 164 of housing 160. Forward end wall 169 extends between frame members 44, 52.
Buttstock assembly 30′ includes recoil reduction assembly 180 that includes a cylindrical mounting body 182 that is received in the inner bore 168 of housing 160 as shown in
Recoil strut 90 extends rearwardly through a back plate 148 and a rear mounting shroud 146 to a recoil pad assembly 192. Mounting shroud 146 forms an elongated oval or racetrack shaped perimeter around an inner space 147. In the illustrated embodiment, mounting shroud 146 is formed as a unit with back plate 148 at the outer perimeter edge of back plate 148. Back plate 148 defines a hole 149 that aligns with inner bore 168 of housing 160 and also define fastener bores 151 for receiving fasteners to secure back plate 148 and mounting shroud 146 to a rearward end of frame 34′.
Recoil strut 90 can be employed in conjunction with a shock absorbing element in the chamber 188 of mounting body 182, such as a spring, gas cylinder, air cylinder, or other recoil absorbing device 191 in forward portion 188b. Recoil strut 190 includes a cavity 193 for receiving the shock absorbing device 191. Recoil strut 190 includes a flange 191 that is positioned in rearward portion 188a of chamber 188 that is in contact with or near contact with the inner wall surface of mounting body 182 to guide the reciprocating movement of recoil strut 190 in chamber 188. The retention member 194 is secured against a rearward end 189 of mounting body 182 by a back plate 148 that is mounted to the rearward end of frame 34′, capturing recoil strut 90 in mounting body 182 and capturing mounting body 182 in inner bore 168 of housing 160.
Recoil pad assembly 192 includes a recoil pad 204, an optional spacer 202, and an adapter plate 200. One or more spacers 202 of selected thickness can be mounted between adapter plate 200 and recoil pad 34 to adjust the length of pull. Adapter plate 200 includes an inner flange 201 that is received in mounting shroud 146. Mounting shroud surrounds the connection to recoil strut 90 and protects the space between recoil pad assembly 192 and the rearward end of frame 34′. Adapter plate 200 attaches any spacers 202 and the recoil pad 204 to recoil strut 90.
Frame 34′ also includes a cheek piece 110′ that is similar to cheek piece 110 discussed above. However, cheek piece 110′ includes first and second risers 112a, 1112b that are attached to cheek piece 110′ and frame 34′. Forward riser 112a extends through upper frame member 44 and into oblique frame member 50, and rearward riser 112b is positioned along and extends through upper frame member 44 at the forward end 164 of housing 160. Risers 112a, 112b can be secured to upper frame member 44 to allow the vertical positioning of cheek piece 110′ relative to upper frame member 44 to be adjusted and secured in the adjusted position. Cheek piece 110′ is elongated and forms a U-shaped body that is positioned above upper frame member 44.
From the above description it is apparent that that the construction of a firearm and/or modular chassis/stock system 10, 10′ with an adjustable modular buttstock assembly 30, 30′ according to the principles of the present disclosure provides a firearm with a lightweight yet highly configurable buttstock and recoil reduction assemblies while further providing for substantially quick and easy adjustment and reconfiguration of features of the buttstock and recoil reduction assemblies.
It is believed that the disclosure set forth herein encompasses multiple distinct inventions with independent utility. While each of these inventions has been disclosed in its preferred form, the specific embodiments thereof as disclosed and illustrated herein are not to be considered in a limiting sense as numerous variations are possible. The subject matter of the disclosure includes all novel and non-obvious combinations and subcombinations of the various elements, features, functions and/or properties disclosed herein. Similarly, recitation of “a,” “a first” or “the” element, or the equivalent thereof, should be understood to include incorporation of one or more such elements, neither requiring nor excluding two or more such elements, unless the context clearly indicates otherwise. As used herein, the terms “having”, “containing”, “including”, “comprising” and the like are open ended terms that indicate the presence of stated elements or features, but do not preclude additional elements or features.
While the present application illustrates various embodiments, and while these embodiments have been described in some detail, it is not the intention of the applicant to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications will readily appear to those skilled in the art. Therefore, the invention, in its broader aspects, is not limited to the specific details, the representative embodiments, and illustrative examples shown and described. Accordingly, departures may be made from such details without departing from the spirit or scope of the applicant's general inventive concept.
Number | Date | Country | |
---|---|---|---|
62394894 | Sep 2016 | US |