The present invention relates generally to modular construction techniques for erecting multi-story buildings, and more specifically to improve intra-connection of modular units “modules” for improving resistance to the progression of smoke and/or fire between assembled modular units that are assembled to create the modular building.
It is a growing trend to construct multi-story modular buildings, including hotels, apartments, dormitories, classrooms, restaurants and the like using a variety of modular units in different lengths, widths and heights, especially in crowded urban areas where heavy construction equipment has difficulty maneuvering. Modular construction techniques reduce material waste, and since the units are assembled indoors at remote locations, labor costs and working conditions are more closely controlled. Such modules are remotely constructed and assembled, trucked to the building site, then placed in position using a crane. The modules are assembled by stacking vertically, side-by-side or end-to-end, thus providing a variety of configurations of the final building design.
Each module is constructed of a combination of building components utilizing commonly sourced materials including wood and steel. The module components are groups and subgroups of various independent building materials that are combined to create a panel or building element. The panel or building element includes frames, joists, beams, columns, floor cassettes, ceilings and roofs. The panel or building elements are combined with intersecting connections to eventually form a two to six-sided module. A single or a series of parallel, adjacent and/or stacked modules make up the modular building. Modular buildings may be designed as combustible or non-combustible. A suitable module is described in commonly-owned U.S. Pat. No. 10,066,390 which is incorporated by reference.
In constructing such units, it is customary to place steel support or load plates at the corners of each unit as they are stacked on top of each other, so that there is a steel-to steel connection between the plates and the frames of the vertically-adjacent modules that supports the weight of the stack of modules forming the building. Usually, the plates have a thickness or height of approximately ¾ inch and a 4-inch×4-inch periphery. This assembly procedure creates a gap between the vertically stacked units, which extends laterally for the entire horizontal width of the structure, as well as for the entire length of the structure. Similar, vertically projecting gaps are also defined by the placement of laterally adjacent units.
These gaps have a potential for forming smoke or fire passageways or chimneys that potentially enhance the spread of fire from one modular unit to another. Accordingly, building codes require that these gaps are covered at the intersection of modular units on every floor by facing panels of gypsum wallboard, which as is well known in the art, has fire retarding properties. In some cases, the gypsum panels are backed with fiberglass insulation or the like. A drawback of these requirements is the difficulty in durably attaching relatively thin panels of wallboard to existing structures for adequately plugging these gaps. The issue here is that it is extremely difficult to extend the drywall uninterrupted from the top of wall through the floor/ceiling concealed space to the underside of the next adjacent upper deck in modular constructions in order to maintain the wall fire rating. The nature of the modules forces a joint in the drywall between the floor and ceiling assemblies, thereby causing a prohibited fire break. In some cases, the existing techniques are successful in inhibiting the vertical progression of smoke or fire, but not as successful in inhibiting lateral progression.
Thus, there is a need for an improved construction assembly and technique for assembling modular building units which inhibits the progression of smoke and fire between units both vertically and horizontally.
There is also a need for an improved construction assembly and technique for assembling modular building units which replaces the conventional techniques of adding thin strips of wallboard for closing the inter-module gap.
The above-listed needs are met or exceeded by the present gasket for installation between modular construction units. In a preferred embodiment, the gasket is dimensioned to fill a gap defined between vertically and horizontally adjacent modular units. As such, the gasket has cutouts or plate recesses dimensioned to accommodate the conventional support plates used between modular units. In construction, the present gasket in a preferred embodiment is a combination of layers of structural cement panel and mineral wool. Regarding the structural cement panel, all conventional, cement core, fiber-reinforced panels are contemplated, including Portland cement and magnesium oxide based panels.
Contemplated gasket combinations include a sandwich of a pair of panels with mineral wool inserted between the panels. In another embodiment, the combination includes respective layers of panel and mineral wool, with either layer facing up and the other facing down as the gasket is placed between vertically adjacent modular units. Still another contemplated gasket is a panel layer sandwiched between layers of mineral wool. Other contemplated gaskets are exclusively layers of structural cement panel or mineral wool. In embodiments where the gasket includes a combination of panels and mineral wool, it is preferred that the respective layers are fastened to each other with chemical adhesive. In other embodiments, the gasket is assembled onsite, with one layer placed upon another, in some cases optionally fastened together with adhesive.
By creating a gasket of noncombustible materials (structural fiber cement panel and mineral fiber), once the lower modules are placed, the support plates are installed, the gasket is put into position, and the top modules are placed over the top panel of the gasket. When provided, the mineral wool acts as a compressible sealant. Test fire temperatures for rated walls and floor/ceiling assemblies customarily reach 2000° C. The mineral wool melts at higher temperatures, and thus remains intact and is therefore suitable for the application.
An advantage of the present gasket is that it provides enhanced strength and durability compared to gypsum wallboard panels, allows for installation of building modules without sacrificing the integrity of the code-required fire barrier, while also preventing smoke and fire from travelling up through the cavity created between the two adjacent, same level modules. The present gasket prevents the propagation of smoke and fire from the concealed space of the floor/ceiling assembly from left-to-right (and vice versa), as well as in the vertically extending space between the double walls formed when two modules on the same level are placed beside each other.
More specifically, the present invention provides a gasket for installation in a gap defined by adjacent modular construction units, each having a support frame. The gasket includes at least one layer of structural cement panel; and at least one layer of mineral wool, and the at least one layer of said panel and mineral wool has at least one plate recess configured for accommodating a support plate.
In another embodiment, a modular building construction is provided, including a plurality of modular units, each unit having a steel frame. Four adjacent units of the plurality form an intersection, and support plates are fastened at upper surfaces of corners formed by each frame. A gasket is disposed in a gap defined at the intersection, the gasket having four plate recesses for accommodating the support plates. The gasket is constructed and arranged for insertion into the gap and for blocking passage of smoke and fire in the gap.
In still another embodiment, a method of constructing a building made of modular units includes providing a pair of modular units, each having a steel frame including intersecting beams forming at least one corner, each corner having a support plate; locating the modular units next to each other; providing a gasket that overlaps opposing edges of each modular unit, the gasket having plate recesses dimensioned for accommodating the support plates; and installing a supplemental pair of modular units vertically above the pair of modular units, the supplemental modular units engaging the support plates and also compressing the gasket.
In a preferred embodiment, one plate recess is formed at each of four corners of said panel and said mineral wool. In an embodiment, the gasket has a length corresponding to a length of the modular construction unit. Further, the combined panel and mineral wool layers have a height in the range of 1% to 3 inches. When the gasket is a single layer of panel or mineral wool, the thickness is at least 0.5 inch. In an embodiment, the combined panel and mineral wool layers have a width in the range of 12 to 24 inches in a main portion, excluding the corners.
In an embodiment, the gasket includes an upper panel layer, a lower panel layer, and a middle layer of the mineral wool. In an embodiment, the gasket includes an upper mineral wool layer, a lower mineral wool layer, and a middle layer of the panel. It is further contemplated that the gasket is made of at least one layer of structural cement panel. It is still further contemplated that the gasket includes an upper panel layer, a lower panel layer, and a middle layer of mineral wool. In another embodiment, the gasket includes an upper mineral wool layer, a lower mineral wool layer, and a middle layer of said panel.
Referring now to
Referring now to
A space, gap or cavity 36 is defined between the upper unit 12U and the lower unit 12L that extends a full length of the units 12, as well as a full height of the units, with the exception of the support plates 32. A gasket 40 is constructed and arranged for filling the space 36 between the upper and lower modular units 12U, 12L where opposing edges of laterally-spaced modules are adjacent each other. Preferably, the gasket 40 includes at least one, and preferably four polygonal plate recesses 42 every 12 feet dimensioned for accommodating the support plates 32 at each corner 34 of the frame 26. In the preferred embodiment, the plate recesses 42 are square in shape, however other configurations are contemplated, depending on the shape of the support plate 32. As seen in
The gasket 40 is planar in shape and is constructed and arranged for filling the space 36 at the intersection 24 between vertically adjacent modules 12U, 12L, as well as overlapping laterally adjacent modules to prevent the spread of smoke and/or fire in the space 36. As such, the gasket 40 has a length “L” corresponding to a length of the modular construction unit 12. Further, the gasket 40 has a width “W” in the range of in the range of 12 to 24 inches in a main portion, excluding the plate recesses 42. Preferably, the gasket 40 is made of fire resistant materials. Further, the gasket 40 is constructed to accommodate the compressive forces generated from the weight of the vertically-stacked modules. Thus, while the gasket 40 has a relatively limited width “W” compared to a width of the modules 12, due to the placement of the gasket 40 at the intersection 24, lateral and vertical migration of smoke and/or fire between modules is prevented.
Referring now to
In an embodiment, when the gasket 40 includes panel and mineral wool layers 44, 46, the gasket has a height “H” in the range of 1% to 3 inches. As seen in
Referring now to
Referring again to
During construction of the building 10, after placement of a pair of laterally adjacent modular units 12, the support plates 32 are optionally fixed in place on the corners and/or intermediary points 34 of the frame 26. It is also contemplated that the support plates 32 are installed remotely at a factory fabricating the units 12. The gasket 40 is installed along the opposing edges 48 of the adjacent modular units 12 so that the plate recesses 42 are located at the support plates 32. Each gasket 40 thus covers the space 36 between the adjacent modular units 12 and also prevents lateral migration of smoke and/or fire once an additional two supplemental units 12 are placed above the first two modular units and the gasket 40, and the supplemental units are secured in place. When multiple layers of the gasket 40 are provided, the layers of structural cement panel 44 and mineral wool 46 are preferably fastened together with chemical adhesive at a remote factory, or are assembled onsite by placing layers upon each other, and optionally applying chemical adhesive, as by spraying, brushing, rolling or the like as is known in the art.
While a particular embodiment of the present modular construction including a fire-suppressing gasket has been described herein, it will be appreciated by those skilled in the art that changes and modifications may be made thereto without departing from the invention in its broader aspects and as set forth in the following claims.
The present application is a Non-provisional of, and claims priority under 35 USC 119 from U.S. Provisional Application Ser. No. 63/148,331 filed Feb. 11, 2021, the contents of which are incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
2871544 | Youtz | Feb 1959 | A |
4077170 | van der Lely | Mar 1978 | A |
4283896 | Fricker | Aug 1981 | A |
4387544 | Schilger | Jun 1983 | A |
4599829 | DiMartino, Sr. | Jul 1986 | A |
4644708 | Baudot et al. | Feb 1987 | A |
5720146 | Arnold et al. | Feb 1998 | A |
5950376 | Kemeny | Sep 1999 | A |
7445738 | Dubey et al. | Nov 2008 | B2 |
7670520 | Dubey | Mar 2010 | B2 |
7921609 | Kordelin | Apr 2011 | B2 |
8910490 | Carr | Dec 2014 | B2 |
10066390 | Pospisil et al. | Sep 2018 | B2 |
11525257 | Poh | Dec 2022 | B2 |
11702845 | You | Jul 2023 | B2 |
11732465 | Austin | Aug 2023 | B2 |
20040040223 | De La Marche | Mar 2004 | A1 |
20060150534 | Window | Jul 2006 | A1 |
20060174586 | Morandi | Aug 2006 | A1 |
20070125017 | Blount | Jun 2007 | A1 |
20080163808 | Kordelin | Jul 2008 | A1 |
20130305629 | Stephenson et al. | Nov 2013 | A1 |
20140123573 | Farnsworth | May 2014 | A1 |
20150184383 | Foderberg | Jul 2015 | A1 |
20200399889 | Pospisil | Dec 2020 | A1 |
Number | Date | Country |
---|---|---|
3330447 | Jun 2018 | EP |
2519694 | Jun 2015 | GB |
186882 | Feb 2019 | RU |
Entry |
---|
International Search Report and Written Opinion received for PCT/US2022/070548, mailed May 24, 2022. |
Number | Date | Country | |
---|---|---|---|
20220251829 A1 | Aug 2022 | US |
Number | Date | Country | |
---|---|---|---|
63148331 | Feb 2021 | US |