The present invention relates generally to environmental management systems such as security and automation systems, and more particularly to a controller for providing flexible and incremental expandability of environmental management systems.
In residential and commercial environments there are many stand-alone devices and often one or more individual environmental management systems functioning independently. For instance, electronic security systems are relatively common in residential and commercial environments. Individuals and families, in particular, desire a security system that monitors a defined premises and/or environment, to prevent or deter theft, burglary and robbery. In addition, there is a desire to monitor and detect other defined conditions and, in response to a detected condition, generate a warning. These other potentially hazardous conditions or threats include, for example, fire hazards, carbon monoxide and power failure and electricity outages.
A conventional security system for use in a residence, for example, includes one or more keypads with displays and a central control panel, which in some cases is remotely located from the keypads and displays. A number of sensors for detecting various conditions are arranged in the home or premises. In legacy security systems, the sensors are most commonly connected to the control panel by wired means. The sensors may be of various types designed to detect a variety of conditions. More recently, wireless security systems have become available. The sensors are generally relatively simple devices having two operational states represented by a contact that is either in an open or closed state.
In addition to security systems, home automation systems are another type of environmental management system that are becoming more readily available in residences. Home automation systems, or home management systems as they are sometimes called, enable control of lighting, heating and air conditioning, window shades or curtains, pool heaters and filtration systems, lawn sprinklers, ornamental fountains, audio/visual equipment, and other appliances. Home automation systems range from relatively simple systems that control one or a few functions in a home to more elaborate systems that control multiple, disparate features.
In general, a home automation or control system comprises one or more controlled devices, one or more controllers, and a communication link coupling a controller to a controlled device. The controllers may be directly programmable, in which case they include some form of user interface for setting switches, event timing, and the like. Alternatively, the controllers may be indirectly or remotely programmable, in which case a separate user interface may be implemented by a personal computer or the like. Systems may be programmed using either a simple command language or using a graphical user interface that requires a computer with a monitor. These systems are often expensive and require substantial investment by the user in time and energy to install and modify programming. To enter and/or change a program, a user must consult a user's manual or call a programming specialist. Hence, in comparison to some security systems, these systems can be difficult to install and adapt to changing needs. Moreover, they are difficult to expand by adding new controlled devices or new software to add functionality.
Traditionally, the security system market has been quite distinct from the home automation market. For example, not only do most security systems fail to provide the control capabilities offered by home automation systems, their monitoring abilities are also usually quite limited, typically to sensors that are either “on” or “off.” Thus, for instance, few security systems even have the capability to monitor and report something as simple as the ambient temperature of the monitored premises. In part this market segmentation arises from the different demands placed on the two different types of systems. For instance, security systems must be highly reliable and meet stringent regulatory and other requirements, something which is generally not necessary for automation systems. Security system controllers are generally designed to interface with a very limited range of sensors while home automation controllers generally interface with a large number of different devices. Additionally, security system controllers generally offer unidirectional communication between the sensors and controller, whereas automation system controllers more commonly offer bidirectional communication with various devices.
Even within the home automation market itself, there is significant market segmentation because most of the automation control manufacturers address narrow, vertical market segments, and use proprietary interfaces to protect their market. For example, some leading control manufacturers offer systems that focus on heating, ventilation, and air conditioning (HVAC) systems control. These manufacturers have little interest in controlling lighting, entertainment systems, and the like as these markets are entirely foreign to them. Other manufacturers make, for example, home entertainment controllers that integrate various video and audio components, but the primary focus has been to offer integrated control over only their own components. As a result, consumers face an array of control systems that do not interoperate, and that have proprietary interfaces that are difficult to understand and program. That is, the use of multiple platforms generally means that the interfaces are inconsistent with each other in the manner in which controls are accessed, displayed and operate so that a consumer must learn the unique interface features of each system. Hence, as more systems are added, the complexity for the consumer increases significantly as new control interfaces must be added and learned.
Recently, some efforts have been made to provide integrated security and automation systems. In addition to the simplifications that arise from using a single platform, this combination of systems offers enhanced functionality and features that neither provide on their own. For instance, home automation systems may be integrated with a home security system so that when a fire alarm is raised, for example, internal and external lights will be turned on. An example of such a system is Home Automation Inc.'s Omni Automation and Security System, which includes a controller that can support both security and automation needs.
The consumer is thus currently faced with three primary choices when considering installation of security and/or automation systems. The consumer may purchase just a security system, just an automation system or a system such as the Omni Automation and Security System that provides both security and automation. If the consumer purchases either a dedicated security or automation system, future expansion of the system to include the other is limited, thus requiring the purchase of a separate and independent system. On the other hand, if the consumer purchases an integrated security and automation system, he or she may be purchasing a system that is more capable, and hence more expensive, than their current requirements demand.
Accordingly, it would be desirable to provide a system that is flexible, interoperable with a variety of existing or legacy systems, and which allows for incremental or modular expansion to provide additional functionality as desired.
In general, security and automation systems may be used to provide security and automation to a home, office, or other type of commercial or residential building. In the residential context, the systems establish a home network that controls, coordinates, facilitates, and monitors user-designated activities within the home. The systems may also provide compatibility between external and internal networks, systems, and appliances. As described in more detail below, a controller is provided that is modular in construction to allow easy expansion and customization. The modular controller can be retrofitted for use in existing structures with legacy systems to provide enhanced functionality without the need for drastic remodeling, added wiring, or complicated installation/customization, and can simplify installation, whether performed by the resident or a professional installer. Moreover, the modularity of the controller provides for easy customization for either commercial or residential use. Expansion can be accomplished by adding new plug-in components or modules to the controller. Although the following examples are primarily described with reference to home applications, the described devices and concepts also are applicable for commercial use.
For purposes of illustration the following example will assume that a security system of the type shown in
Currently available wireless security systems use any of a variety of different communication standards. For example, such systems may use, without limitation, IEEE 802.11 (e.g., 802.11a; 802.11b; 802.11g), IEEE 802.15 (e.g., 802.15.1; 802.15.3, 802.15.4), DECT, PWT, pager, PCS, Wi-Fi, Bluetooth™, cellular, and the like. While the wireless security systems, and hence wireless controllers employed in such systems, may encompass any of these standards, one particularly advantageous network protocol that is currently growing in use is ZigBee™, which is a software layer based on the IEEE standard 802.15.4. Unlike the IEEE 802.11 and Bluetooth standards, ZigBee offers long battery life (measured in months or even years), high reliability, small size, automatic or semi-automatic installation, and low cost. With a relatively low data rate, 802.15.4 compliant devices are expected to be targeted to such cost-sensitive, low data rate markets as industrial sensors, commercial metering, consumer electronics, toys and games, and home automation and security. For these reasons ZigBee may be particularly appropriate for use in both wireless security systems and wireless home automation systems.
ZigBee-compliant products operate in unlicensed bands worldwide, including 2.4 GHz (global), 902 to 928 MHz (Americas), and 868 MHz (Europe). Raw data throughput rates of 250 Kbps can be achieved at 2.4 GHz (16 channels), 40 Kbps at 915 MHz (10 channels), and 20 Kbps at 868 MHz (1 channel). The transmission distance generally ranges from 10 to 75 m, depending on power output and environmental characteristics. Like Wi-Fi, Zigbee uses direct-sequence spread spectrum in the 2.4 GHz band, with offset-quadrature phase-shift keying modulation. Channel width is 2 MHz with a 5 MHz channel spacing. The 868 and 900 MHz bands also use direct-sequence spread spectrum but with binary-phase-shift keying modulation.
Given an installed security system such as described above in connection with
The plug-in components 2101-2105 operate in conformance with an application programming interface (API) layer that provides access to services available from the operating system (OS) 250 and augments those services that the OS provides. The API layer may be implemented in a variety of different ways, such as with Universal Plug-and Play protocols and procedures 220, flash processes 230 related to a Macromedia FLASH programming environment, and/or web server products 240.
The API layer, via the OS layer 250, controls the driver layer 260. The driver layer 260, in turn, interfaces with the various hardware components of the controller such as a microprocessor, hardware communication interfaces to sensors, actuators, and the like. Drivers may be added or removed as needed to support additional or updated functionality.
The modular controller 200 provides a consumer with a great degree of flexibility when initially purchasing a system. For example, if the consumer is in immediate need of a security system, the consumer can purchase the modular controller 200 with only the security plug-in 2102 (along with the associated sensors and the like). If at a later time the consumer wishes to install an automation system, the consumer can simply purchase the home automation plug-in 210, (along with the associated monitors, actuators and the like). In this way the consumer only needs to purchase as much equipment as is necessary to serve his or her immediate needs, without limiting the future expandability of the system.
The modular controller 200 also provides the consumer with a number of different upgrade paths, depending on the equipment that is already in place. For instance, if the legacy equipment includes the modular controller itself, upgrading to provide automation features is a simple matter of purchasing additional plug-in components along with any associated peripheral equipment. On the other hand, if the legacy system is a dedicated independent security system (or automation system) of a conventional type, the modular controller 200 can be incorporated into the legacy system with the use of an additional plug-in component that is configured to allow the modular controller to interoperate with the legacy controller. In other cases the legacy equipment can be upgraded to provide more capacity so that the system can monitor more sensors (in the case of a security system) or control more devices (in the case of an automation system). An example of such an arrangement is shown in
Referring to
The manufacturer of the modular controller 200 may also manufacture a variety of different bridge plug-ins for various legacy security systems to enhance its flexibility. Alternatively, or additionally, the manufacturer of the legacy security system or even a third party may provide bridge plug-in components for the modular controller 200. In this way the flexibility and number of compatible legacy systems with which the controller operates can be increased still further.
A number of other benefits arise from the use of a modular controller as described above. For example, the manufacturer may occasionally upgrade one or more the plug-in components to provide advanced features not previously available or even contemplated. For example, if lighting were eventually to become available in which the user could control not only its intensity, but also its color, it would be desirable if in addition to simply turning the lighting on and off and adjusting the dimming level, the automation system could also control the color of the lighting. The enhanced functionality can be readily achieved by providing the user with an upgraded automation plug-in module (e.g., module 210,) that expands the message set defining control of lighting from one that refers only to intensity to one that specifies color and intensity.
Although various embodiments are specifically illustrated and described herein, it will be appreciated that modifications and variations are covered by the above teachings and are within the purview of the appended claims without departing from the spirit and intended scope of the invention. For example, while modular functionality has been described in terms of the provision of plug-in modules, this same functionality can be provided by software components or modules that are downloaded directly to the controller without the need to add any additional hardware components to the controller. Moreover, while the environmental management system and controller have been described in terms of a wireless system and controller, in some cases the environmental management system and controller may operate in a wired manner.
This application claims the benefit of U.S. Provisional Application No. 60/669,101, filed Apr. 7, 2005, which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
60669101 | Apr 2005 | US |